CERVICAL MUCUS ARBORIZATION : A PRELIMINARY STUDY OF ITS USE IN ASSESSING OVARIAN HORMONE LEVELS IN THE EWE

M. F. MCDONALD

- April, 1957 -

A thesis presented at Massey Agricultural College in part fulfilment of the requirements for the Degree of Master of Agricultural Science in the University of New Zealand.
ACKNOWLEDGMENTS

The author wishes to thank most sincerely his supervisor, Dr. J. I. Rae side for his guidance and encouragement during this work. Appreciation is expressed to Professor A. L. Rae and members of the Sheep Husbandry Department for assistance with various problems; Mr. W.M. Webster and Mr. J.C. Newhook, for professional veterinary services; Messrs. L. Anderson, H. Drake, D.C. Collis and K.A. Rose for the photographs; and Miss. M.G. Campbell and her staff for unfailing co-operation in the use of library facilities. Further the author is indebted to those people who assisted in the field and to Miss. D. Seabrook who typed this manuscript.

This thesis was carried out under the tenure of a New Zealand Wool Board Scholarship, for which the writer is extremely grateful.
Table of Contents

I Introduction ... 1

II Review of Literature

A. Cervix
 1. Morphology ... 3
 2. Histology .. 4
 a. Sexual season .. 4
 b. Anoestrus and pregnancy 5

B. Characteristics of Cervical Secretion
 1. Origin and amount of cervical mucus 6
 2. Chemical properties ... 7
 3. Physical properties .. 8
 a. Rheological .. 8
 b. Arborization phenomenon 10

C. Endocrine Control of Cervical Secretion
 1. Amount .. 14
 2. Chemical properties 14
 3. Physical properties 15
 a. Rheological .. 15
 b. Arborization phenomenon 16

D. Ovarian Changes and their Relation to the Oestrous cycle in the Ewe 21

E. Oestrogen-Progesterone Control of the Oestrous Cycle ... 23
 1. Oestrogen ... 24
 2. Progesterone .. 24
 3. Oestrogen-Progesterone synergism 26
F. Quantitative Studies on Oestrogen and Progesterone Production in Large Animals

1. Oestrous cycle ... 28
 a. Oestrogens ... 28
 b. Progestogens .. 31
2. Pregnancy .. 34
 a. Oestrogens ... 34
 b. Progestogens .. 35

III PRELIMINARY INVESTIGATIONS

A. Slaughter Material

1. Materials and Methods 39
2. Results and discussion 40
 a. Non-pregnant ewes 40
 b. Pregnant ewes ... 43

B. Live Animals

1. Materials and methods 45
2. Results and discussion 45

C. Temperature

1. Experimental procedure 46
2. Results and discussion 47

D. Contamination

1. Experimental procedure 48
2. Results and discussion 50

IV FURTHER INVESTIGATIONS

A. Arborization During the Oestrous Cycle in the Ewe

1. Experimental procedure 56
2. Results and discussion 59
 a. Normal ewes ... 59
 b. Hysterectomised ewes 65
B. Injection Studies with Spayed Ewes

1. Experimental procedure 67
2. Results and discussion 73
 a. Preliminary series of trials 73
 b. November-December series of trials 84

C. Injection Studies with Intact Ewes

1. Experimental procedure 90
2. Results and discussion 92

V. DISCUSSION .. 95

VI. SUMMARY AND CONCLUSIONS 101

VII BIBLIOGRAPHY 104

APPENDICES
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Progesterone content of body fluids of non-pregnant animals determined by various methods</td>
<td>33 a.</td>
</tr>
<tr>
<td>2.</td>
<td>Progesterone content of body fluids of pregnant animals determined by various methods</td>
<td>37 a.</td>
</tr>
<tr>
<td>3.</td>
<td>Slaughtered ewes - arborization</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>Ovarian follicle counts of ewes showing arborization of cervical mucus</td>
<td>42</td>
</tr>
<tr>
<td>5.</td>
<td>Experimental ewes - previous surgery</td>
<td>44</td>
</tr>
<tr>
<td>7.</td>
<td>Effect of sodium chloride and perspiration on arborization</td>
<td>50</td>
</tr>
<tr>
<td>8.</td>
<td>Arborization of cervical and "vaginal" mucus collected before and after ram service</td>
<td>52</td>
</tr>
<tr>
<td>9.</td>
<td>The length of the oestrous cycle</td>
<td>60 a.</td>
</tr>
<tr>
<td>10.</td>
<td>Duration of arborization - normal oestrous cycles</td>
<td>60 b.</td>
</tr>
<tr>
<td>11.</td>
<td>Classification of abnormal cycles</td>
<td>63</td>
</tr>
<tr>
<td>12.</td>
<td>Macroscopic appearance of ovaries - ewe 10</td>
<td>64</td>
</tr>
<tr>
<td>14.</td>
<td>Groupings of ewes - November-December trials</td>
<td>71</td>
</tr>
<tr>
<td>15.</td>
<td>Oestrus and arborization in ewes treated with ODB alone</td>
<td>73</td>
</tr>
<tr>
<td>16.</td>
<td>Oestrous and arborization response to oestradiol benzoate given 40 hours after 3 days progesterone pretreatment</td>
<td>75 a.</td>
</tr>
<tr>
<td>17.</td>
<td>The effect of duration of progesterone pretreatment on oestrous and PL response</td>
<td>77</td>
</tr>
<tr>
<td>18.</td>
<td>Oestrous and arborization response to simultaneous progesterone - oestradiol benzoate given after three days of progesterone pretreatment</td>
<td>79</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>19.</td>
<td>Oestrus and arborization response to oestradiol benzoate given 24 hours after three days progesterone pretreatment</td>
<td>80</td>
</tr>
<tr>
<td>20.</td>
<td>Oestrus and arborization response to progesterone pretreatment, simultaneous progesterone-oestradiol benzoate and further oestradiol benzoate</td>
<td>82</td>
</tr>
<tr>
<td>21.</td>
<td>Vaginal smear responses of ewes injected with oestrogen following progesterone pretreatment</td>
<td>86</td>
</tr>
<tr>
<td>23.</td>
<td>Trials 5-10 preliminary series - cervical mucus response following three days progesterone pretreatment and oestradiol benzoate</td>
<td>87</td>
</tr>
<tr>
<td>24.</td>
<td>November-December trials - cervical mucus response following three days progesterone pretreatment and oestradiol benzoate</td>
<td>87</td>
</tr>
<tr>
<td>25.</td>
<td>Nasal mucus response following three days progesterone pretreatment and oestradiol benzoate</td>
<td>89</td>
</tr>
<tr>
<td>26.</td>
<td>Arborization of cervical mucus within 24-36 hours of a single oestradiol benzoate injection given during the oestrous cycle</td>
<td>93 a.</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>1.</td>
<td>Instruments</td>
<td>45a</td>
</tr>
<tr>
<td>2.</td>
<td>Negative cervical mucus</td>
<td>58a</td>
</tr>
<tr>
<td>3.</td>
<td>+ cervical mucus</td>
<td>58a</td>
</tr>
<tr>
<td>4.</td>
<td>++ cervical mucus</td>
<td>58b</td>
</tr>
<tr>
<td>5.</td>
<td>+++ cervical mucus</td>
<td>58b</td>
</tr>
<tr>
<td>6.</td>
<td>The length of the oestrous cycle</td>
<td>60a</td>
</tr>
<tr>
<td>7.</td>
<td>Arborization during oestrous cycle</td>
<td>60b</td>
</tr>
<tr>
<td>8.</td>
<td>4-6 day corpus luteum (x190)</td>
<td>64a</td>
</tr>
<tr>
<td>9.</td>
<td>4-6 day corpus luteum (x800)</td>
<td>64a</td>
</tr>
<tr>
<td>10.</td>
<td>Regressing corpus luteum (x190)</td>
<td>64b</td>
</tr>
<tr>
<td>11.</td>
<td>Regressing corpus luteum (x800)</td>
<td>64b</td>
</tr>
<tr>
<td>12.</td>
<td>Corpus luteum - hysterectomised ewe (x190)</td>
<td>66a</td>
</tr>
<tr>
<td>13.</td>
<td>Corpus luteum - hysterectomised ewe (x800)</td>
<td>66a</td>
</tr>
<tr>
<td>14.</td>
<td>Dose-response lines for oestrus, vaginal smear and cervical smear</td>
<td>87a</td>
</tr>
<tr>
<td>15.</td>
<td>Nasal mucus arborization - distinctive type (I)</td>
<td>89a</td>
</tr>
<tr>
<td>16.</td>
<td>Nasal mucus arborization - distinctive type (II)</td>
<td>89a</td>
</tr>
<tr>
<td>17.</td>
<td>Nasal mucus arborization - distinctive type (III)</td>
<td>89b</td>
</tr>
<tr>
<td>18.</td>
<td>Nasal mucus arborization - distinctive type (III)</td>
<td>89b</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

I Slaughtered ewes - follicle counts

II Arborization of cervical mucus from ovariectomised, hysterectomised and intact ewes after heat treatment

III Arborization during oestrous cycle

IV Arborization of cervical mucus in ewes after hysterectomy

V Arborization in entire ewes after ODB injections.
I INTRODUCTION

Many of the gross physiological processes affecting reproduction in animals have been elucidated. The availability of the ovarian hormones in relatively pure form has further allowed the confirmation of their role. It is apparent that there is general agreement and confidence in the findings of much of this work, as is shown by the increasing application of steroids to animal production. However, in the main the investigations so far reported have been of a qualitative nature only. It is thus apparent that for a thorough understanding of the basic mechanisms controlling reproduction it will be necessary also to study in detail the quantitative changes in hormone levels and their associated effects.

Progress in the investigation of the quantitative changes has been slow, owing to the lack of suitable techniques of study. A number of criteria have however been utilized to study ovarian activity and ovarian hormone levels. Unlike other large species, palpation of the ovaries per rectum is not possible with the ewe. Oestrous behaviour and visual observation of the ovaries after laparotomy thus remain the methods for assessment of ovarian activity. Biological assay of body fluids and excretory products using small animals has been somewhat successful. To avoid the attendant problems of the bioassay chemical methods are being developed but as yet
have met with limited success. In addition, biological endpoints obtained from within have been used. The characteristic vaginal smear changes found in the ewe are favoured by some workers, although there is not entire agreement on the application of this method. So far no work has been reported for the ewe utilizing the rheological properties or the arborization phenomenon of cervical mucus. However, the results obtained with other species suggest their possibilities. It thus seemed apparent that the investigation of one of these phenomena would be worthwhile.

Cervical mucus arborization, first reported by Papanicolaou (1945) and later used by Zondek (1954) as a biological test in the human was suggested as an endpoint for determining ovarian activity. The object of this study was to investigate cervical mucus arborization and to demonstrate its application as a method for study of ovarian function and hormone levels. Thus, as will be described presently, a preliminary study of the normal occurrence of this phenomenon in the entire ewe was made. In addition, cervical mucus along with the criteria of oestrous behaviour and vaginal smear changes was used to study some effects of progesterone and oestrogen injected into castrate ewes. The results of these trials were subsequently related to studies made with entire ewes.
II REVIEW OF LITERATURE

A. Cervix

1. Morphology

"The cervix or neck of the uterus consists of a powerful sphincter like segment of the genital tract, serving to separate anatomically and physiologically, the uterus from the vagina. It is continuous anteriorly with the uterine body via the os uteri and posteriorly with the vagina by the os externum which leads into the ventral floor of the vagina" (Sisson, 1953).

The comparative anatomy of this organ has been described for the ewe, cow and mare (Trautman, 1917). Williams (1917) has described that for the cow.

The cervix uteri of the ewe is remarkable for the great length and complexity of its lumen, as shown by the diagrams of Marshall and Hammond, (1937). The dimensions of the cervix have been stated by Grant (1935), Cloete (1939), and Sisson (1953). During periods other than at or close to parturition, the length of the cervix is 5 cm. approximately. The lumen of the cervix was greatly constricted by annular or tongue-like folds and ridges projecting inwards. These interleaved with one another when the cervix was contracted and completely blocked the passage. Because of this it was difficult to insert any instrument very far into the cervical canal of the ewe (Walton, 1933; Grant, 1934; Gunn, 1936; Inkster, 1956). However Grant (1934) did note that relaxation of the cervix was evident at oestrus. Four or five folds were effective in closing the cervix in the
ewe (Gunn, 1936) and the cow (Hammond, 1927). With the
human and mare these folds were less apparent, while the
tongue-like projections were absent.

The complexity of the external orifice of the cervix
(os externum) was observed by Grant (1934), who noted one
or more muscular folds to constitute the os externum.
Dunn (1955) studied the vaginal – cervical junction, before
and after slaughter. It was found that the structure of
the os externum became more complex, as the number of
parturitions increased. The annular folds appeared to be
split by pregnancy and "tags" of musculature projected out
through the canal opening. The passage or canal was more
difficult to locate in aged ewes which had had more pregnancies
than in maiden ewes. Dunn found that the os externum could be
located in 100 per cent of maiden ewes, but in only 70 per cent
of older sheep.

2. Histology

a. Sexual season

Casida and McKenzie (1932) Grant (1934),
Cole and Miller (1935), and McKenzie and Terrill (1937)
found the mid-cervical epithelium region to secrete
mucus throughout the cycle. However, most mucus appeared
to be produced and stored during dioestrous and later
liberated at prooestrus and oestrus. It was evident that
the changes in height of the epithelial layer was closely
associated with the amount of mucus in the cells. Thus
a "spent appearance" during the late luteal and follicular
phases was observed (McKenzie and Terrill, 1937).

b. Anoestrus and pregnancy

Grant (1934) detected mucus in the epithelial cells throughout anoestrus but noted that active secretion began approximately six weeks before the commencement of the breeding season. Cole and Miller (1935) found that mid anoestrus was characterized by a lower cell height of the superficial layer, less active underlying epithelial cells and reduced complexity of the cervical glands.

The changes occurring during pregnancy have been noted by Grant (1934). A tenacious, stringy mucus was secreted during most of pregnancy. Since little escaped into the vagina a cervical mucous plug was formed, which flattened and disorganized the epithelial cells.
B. Characteristics of Cervical Secretion

1. Origin and amount of cervical mucus

Pommerenke and Viergiver (1946 a) investigated the origin of cervical mucus in women. During pregnancy, the chorion, decidua and amnion effectively sealed the cervical canal from the uterine cavity, hence the mucus was likely to be entirely of cervical origin. These workers could not demonstrate that supracervical hysterectomy resulted in a lower output of mucus, than from intact non-pregnant women. However, they considered that for non-pregnant women the evidence was insufficient to determine the origin of the cervical secretion.

In the human the cervical canal was relatively open and mucus was aspirated easily. Abarbanel (1946 b) determined the volume and noted a relationship with the menstrual cycle. Mucus was found in greatest quantity near the time of ovulation (approximatey the middle of the menstrual cycle), while a greatly reduced amount was apparent at other times. Similar findings have been reported by Pommerenke (1946), Pommerenke and Viergiver (1946 a, b), and Zondek and Rozin (1954).

The difficulty in obtaining all of the mucus contained in the cervix of the cow and ewe appears to have prevented accurate measurement of the volume in the living animal. However, Woodman and Hammond (1925) with slaughter material from cows, noted a
gradual increase in amount of mucus until oestrus, but a
decrease occurred just after heat.

Pregnancy was marked by a rise in total volume, over
that of the oestrous cycle. Roark and Herman (1950) similarly
found the greatest volume of mucus within the first three
hours of oestrus in the live animal.

Grant (1934) reported the absence of mucus secreting
glands in the vagina of the ewe. The mucus volume he
measured originally came from the cervix. Further, it
was observed that the volume of mucus secreted followed
a cyclic pattern. A copious flow commenced at prooestrus
and continued during oestrus but this was greatly diminished
during the rest of the cycle.

In conclusion it is apparent that considerable
variation in the amount of cervical mucus secreted does
exist between species. The findings of Viergiver and
Pommerenke (1944), and Pommerenke and Viergiver (1946 a)
with intact and hysterectomyed women shows that a large
variation also exists within a species.

2. Chemical properties

Detailed examination of human cervical mucus has
revealed that the chemical composition varied according
to the stage of reproduction (Pommerenke and Viergiver,
1946 b; Viergiver and Pommerenke, 1947; Atkinson et al.,
1948; Pederson and Pommerenke, 1950; Bergmann and
Werner, 1951; Breckenridge and Pommerenke, 1951; Shettels, 1951; Shettels et al., 1951).

Thus during the intermenstrum, the water content rose while the concentration of carbohydrate, amino acids, cholesterol and lipid phosphorus decreased.

Changes in composition of cervical mucus from the cow during the oestrous cycle and pregnancy have also been reported (Woodman and Hammond, 1925; Scott Blair et al., 1941 b; Boyland, 1946). Thus the latter worker noted that cervical mucin present at oestrus was mainly a carbohydrate and possibly a mucopolysaccharide. However, during dioestrous and pregnancy both polysaccharide and protein were present.

The literature does not indicate any analysis made for mucus from the ewe.

3. Physical properties

a. Rheological

Woodman and Hammond (1925) have described the character of the cervical secretion of the cow. They noted the secretion to be extremely fluid at oestrus, but more viscous during mid-cycle. Pregnancy was characterized by large amounts of a thick, tenacious, almost rubber-like mucus which effectively sealed the entrance to the cervix. This phenomenon was later proposed as the basis for a pregnancy test (Marshall and Hammond, 1937).

The rheological properties of human cervical secretion have been studied extensively. Scott Blair
et al. (1941 a, b) and Clift (1945) also measured the flow elasticity* of cervical secretion from cows. Maximum values occurred near the time of ovulation, while much lower values were obtained during the rest of the cycle and in pregnancy. Urine contamination of the mucus caused erroneous values for viscosity measurements, but did not appear to affect flow elasticity. The additional characteristics of spinnbarkeit,** plasticity and tact have also been investigated for the human (Clift, 1945; Cohen et al., 1952).

Further work (Clift et al., 1950; Glover and Scott Blair, 1951; Clift and Hart, 1953; Glover and Scott Blair, 1953; Scott Blair, 1953) using mucus from cows and women, indicated that the variations in flow properties were closely correlated with the physiological changes of the cycle and pregnancy.

*When a column of fluid is being extruded from a capillary tube and the pressure is suddenly released the column will recoil. The amount of recoil is a measure of the flow elasticity of the fluid. (Scott Blair et al., 1941 b).

**Spinnbarkeit - the capacity of liquids to be drawn into threads, (Clift, 1945).
b. Arborization phenomenon

Papanicolaou (1945, 1946) observed that cervical mucus collected from women near the time of ovulation "crystallised" and formed a typical arborization pattern when allowed to dry on a microscope slide. Under the microscope, the smear had a striking pattern of flowers and leaves resembling fern or palm-leaves. Zondek (1954) described this as "fern'or palm leaf (PL) formation. However the type of pattern was dependent partly upon the thickness of mucus; arborization often failed with thin smears, whereas flower patterns and palm leaf patterns were found with thicker mucus.

Arborization has also been shown to be characteristic of cervical mucus from the cow (Garm and Skjerven, 1952; Colluzzi and Battistacci, 1953; Mijaki and Awai, 1953; Bone, 1954; Fedrigo, 1955; & Lora 1955) and the ewe (Raeside, unpublished data, 1955).

1. Mechanism of arborization - Papanicolaou (1946) observed that the abundance of arborization coincided with increased cervical secretory activity and a change in viscosity of the fluid. However Zondek (1954) stated that arborization and elasticity of mucus were independent.

Rydberg (1948) suggested that the phenomenon was caused by crystals of sodium chloride. The characteristic

*Zondek (1954) has suggested that true crystals may not be involved in the phenomenon and preferred to term the process arborization.
forms which these assumed were thought to be dependent upon the presence of mucin-like substances secreted by the cervical glands. An intensive investigation reported by Zondek (1954) showed that arborization resulted when a protein complex was mixed with electrolytes and allowed to dry. Examination of many body fluids including nasal mucus, cerebrospinal fluid, follicular fluid, ovarian cystic fluid and that from the hydrosalpinx all showed arborization when completely dry. Detailed examination of the constituents of mucus showed that mucin was not the essential factor as suggested by Rydberg (1948). Thus tears which did not contain mucin or similar substances showed a typical PL reaction. Further, it was found that albumin, fibrinogen, and globulins, and the degradation products of protein (including peptones, dipeptides, tripeptides and polypeptides and certain amino acids), as well as monosaccharides and polysaccharides all showed arborization when mixed with electrolytes.

II. Factors affecting arborization - In the literature several factors which were likely to influence the PL reaction have been discussed.

Electrolyte status: Landerstrom-Lang produced typical arborization by drying a mixture of egg albumin and 0.9 per cent sodium chloride. Zondek (1954) showed that neither the sodium or chloride ions were specific to the PL reaction, since potassium bromide also
facilitated arborization when mixed with a protein complex. Some salts failed to cause a PL reaction, notably calcium chloride, barium chloride, sodium bromide, potassium nitrate, sodium sulphate and sodium iodide.

The presence of electrolyte was essential to the arborization process since dialysis of cervical mucus inhibited arborization, whereas subsequent addition of electrolyte allowed PL formation (Zondek 1954). Further, it was noted that cellular type cervical mucus (negative smear) from premenstrual, menstrual, postmenstrual, pregnant, menopausal and castrate women developed arborization when electrolyte solution was added.

High concentrations of electrolyte were found to facilitate the PL reaction better than low concentrations (Zondek, 1954). However, arborization was still apparent even when low concentrations of both protein complex and electrolyte were present. Zondek concluded that for cervical mucus any protein or carbohydrate will produce arborization, provided a minimum concentration of electrolyte was present. The possibility that still unknown factors present in cervical mucus might be involved in the phenomenon, was also stressed.

Temperature: Papanicolaou (1945), Rydberg (1948), Roland (1952), Zondek (1954), Bone (1954), Zondek et al. (1955) observed arborization after cervical mucus
was dried at air temperature. The atmospheric temperature was not stated. Campos da Paz (1953), and Zondek (1954), dried the smears in a flame and found arborization persistent even when the smear turned brown at high temperatures. No recordings appear to have been made of low temperature effects on arborization.

Foreign materials: Bone (1954) in a preliminary study of cervical mucus of the cow observed that the blood chlorides normally present in serum or tissue fluids failed to promote arborization. Zondek (1954) noted a similar condition with human cervical mucus. Further, he found that sperm and prostatic secretion inhibited the FL reaction. Similarly, boiled sperm prevented arborization and thus excluded the possibility that enzyme action was responsible.

No investigation of the mechanism by which these contaminants inhibit arborization has so far been reported. Zondek (1954) suggested an inhibition of arborization by a "mechanical effect" of the contaminants. It should be mentioned that this was in contrast to hormonal inhibition of arborization, to be discussed later.