Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Title of thesis: THE EVALUATION OF MILK EXTENDERS IN UNRIPENED SOFT CHEESE

1) (x) I give permission for my thesis to be made available to readers in the Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for _______ months.

2) (x) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for _______ months.

3) (x) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for _______ months.

Signed

Date 28/7/89

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS

DATE

______________________________ _________________________

______________________________ _________________________

______________________________ _________________________
THE EVALUATION OF MILK EXTENDERS IN UNRIPENED SOFT CHEESE

A thesis presented in partial fulfilment of the requirements for the degree of Master in Technology in Food Technology at Massey University

Lucila L. Cruz 1989
ABSTRACT

Mixtures of soybean milk, coconut cream and reconstituted skimmilk were utilized in the manufacture of unripened soft-type cheese for the purpose of extending the milk supply. Different treatment combinations had been formulated replacing part of the reconstituted skimmilk used as milk base. The product formulation selected on the basis of product quality, stability and production costs analysis was that having low levels of soybean milk (10% w/w), coconut cream (20% w/w) and mixed starter culture (1% w/v) for acid development.

The sensory qualities of the resulting soft cheese were satisfactory although inferior to control cheese (fresh cow’s milk). Compositional analysis showed that the experimental soft cheese is equally nutritious relative to soft cheese produced from cow’s milk.

It was observed that the presence of soybean milk particularly at high level (20% w/w) resulted in high fat and protein losses, increased water-holding capacity and decreased firmness. The experimental soft cheese had the tendency to soften further and to develop an unacceptable acid taste during prolonged storage in cheese with a starter culture. Experimental soft cheese without starter culture had organoleptically good acceptance and good storage life at 5°C.
From the technological and nutritional standpoint, the use of milk extenders in combination for soft cheese manufacture is feasible and suitable for cottage industry. A major advantage is year-round availability regardless of fresh milk supply.
ACKNOWLEDGEMENTS

I sincerely thank my supervisor, Mr. R. Bennett for his help and time spent during the course of this study.

Thanks are also extended to Mr. S. Jebson and Prof. E. L. Richards for their recommendation to pursue this degree.

Acknowledgements are also extended to the governments of New Zealand and the Philippines for the study grant and to the Dairy Training and Research Institute, University of the Philippines at Los Banos for giving me the time for my academic advancement.

Sincere thanks are also due to the following people:

- Mr. M. Conlon and Steve for getting the raw materials available; and Mr. B. McKillop for fabricating the cheese moulds;

- Mrs. M. Bewley and Mrs. J. Husbands of Food Chemistry Laboratory and Mrs. J. Cleland of Food Microbiology Laboratory for their very accommodating attitude when their assistance was needed;

- Pairote for some helpful discussions;

- Members of the taste panel: Ofelia, Noemi, Christine, Lemuel; Roger, Carlo, PK, Liu and Zhao for their valuable time spent during the sensory evaluation;

- R. Bonoan for doing the statistical analysis and charts in the computer;

- Mr. H. van Til for his patience in converting the files from the computer programme used to fit into the laser printer for better outcome of the manuscript;

- Mrs. V. Fieldsend for typing the manuscript;

- Ate Linda, Myrna, Angel and Myregel for their friendships.

Special thanks to J. Baker for his care, patience and understanding.
TABLE OF CONTENTS

ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF TABLES x
LIST OF FIGURES xiii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: A REVIEW ON THE PROPERTIES AND EFFECTS OF MILK EXTENDERS FOR CHEESEMAKING 4
2.1 Quality of Cheeses from Reconstituted or Recombined Milk 4
2.2 Properties and Effects of Soybean Milk Addition 8
2.3 Properties and Effects of Coconut Milk Addition 17
2.4 Effect of Lactic Starter Organisms 20

CHAPTER 3: COMPARISON OF SOFT CHEESES WITH DIFFERENT LEVELS OF MILK EXTENDERS 24
3.1 Introduction 24
3.2 Experimental Plan 25
3.2.1 Design of Experiment 25
3.2.2 Selection and Training of Panelists 26
3.2.3 Questionnaire Design 27
3.3 Preparation and Sources of Raw Materials 28
3.3.1 Soybean Milk 28
3.3.2 Coconut Cream 29
3.3.3 Skimmilk Powder

3.3.4 Cow's Milk

3.3.5 Rennet and Starter Cultures

3.3.5.1 Culture maintenance and propagation

3.3.5.2 Preparation of cheese starter cultures

3.3.5.3 Test of acid development on salted medium

3.4 Cheesemilk Preparation

3.5 Cheese Manufacture

3.6 Fabrication and Modification of Equipment

3.7 Sensory Evaluation

3.8 Analytical methods

3.8.1 Sampling

3.8.2 Analysis of Cheesemilk

3.8.3 Analysis of Cheese

3.8.4 Analysis of Whey

3.9 Results and Discussion

3.9.1 Effect of Salt Addition on Acid Development

3.9.2 Cheesemilk Composition

3.9.3 Soft Cheese Composition

3.9.4 Soft Cheese Yield and Percentages Recovery of Constituents

3.9.5 Whey Composition

3.9.6 Sensory Qualities of Soft Cheeses

3.9.7 Effect of SBM and CCM Levels on Sensory Attributes and Yield

3.10 Conclusion
CHAPTER 4: EVALUATION OF SELECTED POTENTIAL PRODUCT FORMULATION

4.1 Introduction 65
4.2 Experimental 66
4.3 Preparation and Sources of Raw Materials 66
4.4 Cheesemilk Preparation 67
4.5 Cheese Manufacture 67
4.6 Sensory Evaluation 68
4.7 Storage Stability Test 69
4.8 Methods of Analysis
 4.8.1 Chemical Analysis 69
 4.8.2 Microbiological Analysis 70
4.9 Results and Discussion
 4.9.1 Gross Composition of Control and Experimental Samples 70
 4.9.2 Sensory Characteristics of Soft Cheeses 74
 4.9.3 Storage Stability of Soft Cheeses
 4.9.3.1 Sensory evaluation 80
 4.9.3.2 Microbiological quality 84
 4.9.3.3 Objective measurements 88
 4.9.3.4 Shelf life 94
4.10 Conclusion 94

CHAPTER 5: COMPARATIVE PRODUCT COSTS ANALYSIS

5.1 Introduction 96
5.2 Method of Costing
 5.2.1 Labour Costs 97
 5.2.2 Raw Material Costs 98
 5.2.3 Processing-Packaging Costs 100
 5.2.4 Overheads 100
 5.2.5 Total Production Costs 101
5.3 Results and Discussion 102
5.4 Conclusion 105
CHAPTER 6: OVERALL DISCUSSION AND CONCLUSION

SUGGESTED FURTHER STUDY

LITERATURE CITED

APPENDICES:

Appendix I A layout of the 8 treatment combinations randomized within each replication 123

Appendix II Sample questionnaire for triangle test 124

Appendix III Definition of sensory terms used 125

Appendix IV Sample questionnaire used to evaluate cheese samples 127

Appendix V Compositional analysis of ingredients and buffalo’s milk 129

Appendix VI Analysis of cheesemilks 130
 VI-A Total solids content 130
 VI-B Protein content 131
 VI-C Fat content 132
 VI-D Acidity values 133
 VI-E Clotting time 134

Appendix VII Analysis of soft cheese 135
 VII-A Moisture content 135
 VII-B Protein content 136
 VII-C Fat content 137
 VII-D Salt content 138
 VII-E pH value 139
 VII-F Objective measurement of firmness 140
 VII-G Yield of soft cheeses 141
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII-H</td>
<td>Recovery of total solids</td>
<td>142</td>
</tr>
<tr>
<td>VII-I</td>
<td>Recovery of protein</td>
<td>143</td>
</tr>
<tr>
<td>VII-J</td>
<td>Recovery of fat</td>
<td>144</td>
</tr>
<tr>
<td>VIII</td>
<td>ANOVA for whey composition</td>
<td>145</td>
</tr>
<tr>
<td>IX</td>
<td>Statistical analysis of sensory scores (Chapter 3)</td>
<td>146</td>
</tr>
<tr>
<td>IX-A</td>
<td>ANOVA for various sensory attributes of soft cheeses</td>
<td>146</td>
</tr>
<tr>
<td>IX-B</td>
<td>Tukey's Test (LSD) for significant results</td>
<td>149</td>
</tr>
<tr>
<td>IX-C</td>
<td>Correlation coefficients among different parameters measured and evaluated in soft cheeses</td>
<td>153</td>
</tr>
<tr>
<td>IX-D</td>
<td>Regression analysis</td>
<td>154</td>
</tr>
<tr>
<td>X</td>
<td>Ideal Values</td>
<td>158</td>
</tr>
<tr>
<td>XI</td>
<td>Score sheets</td>
<td>159</td>
</tr>
<tr>
<td>XII</td>
<td>Statistical analysis of mean ratio scores of various sensory attributes to ideal score (Chapter 4)</td>
<td>161</td>
</tr>
<tr>
<td>XII-A</td>
<td>ANOVA for mean ratio scores of soft cheeses without starter cultures</td>
<td>161</td>
</tr>
<tr>
<td>XII-B</td>
<td>Tukey's Test (LSD) for significant results</td>
<td>164</td>
</tr>
<tr>
<td>XII-C</td>
<td>ANOVA for mean ratio scores of soft cheeses with starter cultures</td>
<td>167</td>
</tr>
<tr>
<td>XII-D</td>
<td>Tukey's Test (LSD) for significant results</td>
<td>170</td>
</tr>
<tr>
<td>XIII</td>
<td>Quoted prices and sources considered in the cost analysis</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Quantity of ingredients for cheesemilk preparations at different treatment combinations</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Acid development at different salt concentrations in reconstituted skim milk and pasteurised milk added with 3% single starter culture</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of the composition and clotting time of cheesemilks prepared from pure cow's milk and from different treatment combinations of milk extenders</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>Gross composition, pH and firmness of fresh soft cheeses made from pure cow's milk and from different treatment combinations of milk extenders</td>
<td>47</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean percentages of yield, total solids, protein and fat recovered in soft cheeses from cow's milk and experimental treatments</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Total solids, protein and fat and their losses and acidity values of whey</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Mean scores of the sensory qualities of fresh soft cheese samples</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>The gross composition of cheesemilk, soft cheese and whey samples with and without starter cultures added on experimental treatments</td>
<td>71</td>
</tr>
</tbody>
</table>
Table Number

4.2a Mean ratio scores of the sensory qualities of fresh soft cheeses without starter culture addition 75

4.2b Mean ratio scores of the sensory qualities of fresh soft cheeses with 1% mixed starter cultures added on experimental treatments 76

4.3a Mean ratio scores of sensory qualities of soft cheese samples with and without starter culture addition on experimental treatments stored at 5°C 82

4.3b Mean ratio scores of sensory qualities of soft cheese samples with and without starter culture addition on experimental treatments stored at 10°C 83

4.4a Microbiological quality of soft cheese samples with and without starter culture addition on experimental treatments stored at 5°C 85

4.4b Microbiological quality of soft cheese samples with and without starter culture addition on experimental treatments stored at 10°C 86

4.5a Objective measurements of some physico-chemical qualities of soft cheeses with and without starter culture addition on experimental treatments stored at 5°C 89

4.5b Objective measurements of some physico-chemical qualities of soft cheeses with and without starter culture addition on experimental treatments stored at 10°C 90
<table>
<thead>
<tr>
<th>Table Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Correlation coefficients among the quality parameters in soft cheeses without starter cultures stored at 5°C</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Breakdown of operations, hours and cost per day</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Breakdown of costs for three different types of soft cheeses</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>An estimate of total production costs for three different types of soft cheeses</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>Gross composition of experimental, cow’s milk and carabao’s milk soft cheeses</td>
<td>104</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Schematic diagram for soft cheese manufacture</td>
<td>35</td>
</tr>
<tr>
<td>3.2a</td>
<td>Acid development at different salt concentrations in reconstituted skim milk added with 3% mixed starter cultures</td>
<td>40</td>
</tr>
<tr>
<td>3.2b</td>
<td>Acid development at different salt concentrations in pasteurized-homogenised milk added with 3% mixed starter cultures</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>The protein and fat losses in whey as affected by different treatment combinations of milk extenders</td>
<td>53</td>
</tr>
<tr>
<td>3.4</td>
<td>The relationship between firmness and overall acceptability of soft cheese samples</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>The relationship between acid flavour and overall acceptability of soft cheese samples</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of treatment combinations on a) creaminess b) firmness c) overall acceptability and d) yield of soft cheese</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>The relationship of various sensory attributes of soft cheeses using milk extenders to the ideal scores without starter culture addition</td>
<td>78</td>
</tr>
</tbody>
</table>
Figure Number Page

4.2 The relationships of various sensory attributes of soft cheeses using milk extenders to the ideal scores with starter culture addition 79

4.3 The control and experimental soft cheeses
1) pure cow's milk 2) mixture of CCM and SBM in RSKM 3) CCM in RSKM and 4) SBM in RSKM 81

4.4 Quality changes in soft cheeses without starter culture addition stored at 5°C 92

4.5 Quality changes in soft cheeses without starter culture addition stored at 10°C 93
Soft cheeses can be made easily and profitably in small farms since less labour and capital investment is needed, besides being ripened quickly. Although this type of cheese cannot be kept longer due to its high moisture content, however, its high protein and the minerals present made it excel as a good source of nutrients for the human diet (FAO, 1970). As proteins have acquired special significance in the discipline of nutrition, they are essential food ingredients needed daily to promote growth and replace worn out tissues in the body. Fresh milk is the best source of these nutrients but it is not available to many particularly in developing, underdeveloped or non-dairy countries (Abou El-Ella, 1980).

With the increasing concern for improving protein quality and increasing protein content of many existing foods coupled with the rising prices of conventional protein-containing foods, an interest in relatively low cost, high protein products are given attention to simulate existing foods. Dairy products especially cheeses are very expensive in countries with seasonal, insufficient or non-existent local dairy industry. Fresh milk as the main raw material and considered the most complete and nutritious food is not available to many, hence
the use of milk extenders or even substitutes may be worthwhile to bridge the protein gap thereby combating the world's perennial problem - malnutrition.

In the Philippines, buffalo's milk or carabao's milk is the chief ingredient in making soft cheese locally known as "kesong puti" (white cheese). This cheese is normally eaten as fresh or within a few days of manufacture. It is one of the most saleable type of cheese as other cheeses are imported which are unaffordable by the pockets of the majority of the people. Another type of cheese dominating the local market is the processed cheese where the main raw materials used are also imported.

Buffalo's milk and/or carabao's milk has high solids content, (Alim, 1975), hence giving higher yield compared with cow's milk. The colour of the cheese produced is white due to the absence of carotene pigment which is present in cow's milk. Nevertheless, the product is still highly acceptable to cheese eaters despite the impression especially among the Westerners that cheese colour is creamy. However, the production of buffalo's milk or carabao's milk in the Philippines is very minimal relative to the demand on soft cheese production. The difficulty in supply yet the popularity of the product led to the idea of extending milk to develop similar product.

It is therefore the purpose of this study to assess the suitability of soybean milk, coconut cream and skimmilk powder
as milk extenders simulating the composition of buffalo’s milk or carabao’s milk in producing unripened soft-type cheese.

Specifically, the objectives of this project are:

1. To formulate a prototype product utilising the readily available raw materials such as soybean milk, coconut cream and skimmilk powder.

2. To develop and process an acceptable and nutritious product that best fits the low income consumer purchasing group.

3. To determine the acceptability for the prototype product.

4. To characterise the prototype product in terms of composition, sensory qualities and shelf life.

5. To evaluate the feasibility of production in terms of costs.

This study was conducted at the Pilot Plant, Department of Food Technology, Massey University, Palmerston North, New Zealand during the period from March 1988 to January 1989.