Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Cognitive Trait Model for Adaptive Learning Environments

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

*Information System_

Massey University
Palmerston North,
New Zealand

Tai-Yu Lin
2007
"If we understand the human mind, we begin to understand what we can do with educational technology."

- Herbert A. Simon
Abstract

Among student modelling researches, domain-independent student models have usually been a rarity. They are valued because of reusability and economy. The demand on domain-independent student models is further increased by the need to stay competitive in the so-called knowledge economy nowadays and the widespread practice of lifelong learning. On the other hand, the popularity of student-oriented pedagogy triggers the need to provide cognitive support in virtual learning environments which in turn requires student models that create cognitive profiles of students. This study offers an innovative student modelling approach called cognitive trait model (CTM) to address both the needs mentioned above.

CTM is a domain-independent and persistent student model that goes beyond traditional concept of student model. It is capable of taking the role of a learning companion who knows about the cognitive traits of the student and can supply this information when the student first starts using a new learning system. The behaviour of the students in the learning systems can then be used to update CTM.

Three cognitive traits are included in the CTM in this study, they are working memory capacity, inductive reasoning ability and divergent associative learning. For the three cognitive traits, their domain-independence and persistence are studied and defined, their characteristics are examined, and behaviour patterns that can be used to indicate them are extracted.

In this study, a learning system is developed to gather behaviour data of students. Several web-based psychometric tools are also developed to gather the psychometric data about the three cognitive traits of students. In the evaluations, Cognitive trait modelling is then applied on the behaviour data and the results are compared with the psychometric data. The findings prove the effectiveness of CTM and reveal important insights about the three cognitive traits.

Keywords: Cognitive trait model, working memory capacity, inductive reasoning ability, divergent associative learning, psychometric tools, student model, adaptive learning systems
Acknowledgements

For a project this large in scale, there are many people to thank. The first person comes into mind is my supervisor, Kinshuk. Kinshuk is the source of inspiration for this project. He leads me through this dissertation process with super-human enthusiasm. His professional working attitude, love for research, and joyful personality make him an excellent mentor and a valuable friend. I would also like to express my gratitude to Paul and Marcia McNab of Online Learning Systems Ltd and New Zealand Foundation for Research, Science & Technology for their sponsorship through the Bright Future Scholarship that allows me to concentrate on my study. Paul and Marcia’s keen interest in this project had also been a great motivation to me. I would also like to thank my co-supervisors, Dr. Tak-Wai Chan and Dr. Demetrios G. Sampson, for their assistances in the course of my study and the chance to experience and learn from the research cultures other than our own.

My family deserves special thanks. My father and mother have always been very supportive for my pursuit of education. Their care and love are always reminders to me to do something useful for others. Finally, I would like thank my wife, Shu-Fei. It is difficult for me to express the magnitude of my appreciation to her: so many things, and so many times. This project would not be possible without her.
Table of Content

Abstract ... ii
Acknowledgements .. iii
Table of Content ... iv
Chapter 1: General Introduction .. 1-1 to 1-13
Chapter 2: Literature Review ... 2-1 to 2-19
Chapter 3: Cognitive Trait Model .. 3-1 to 3-13
Chapter 4: Semantic Relation Analysis ... 4-1 to 4-8
Chapter 5: Multiple Portrayal Network ... 5-1 to 5-11
Chapter 6: Working Memory Capacity ... 6-1 to 6-20
Chapter 7: Inductive Reasoning Ability .. 7-1 to 7-17
Chapter 8: Divergent Associative Learning ... 8-1 to 8-16
Chapter 9: Theoretical Validation .. 9-1 to 9-10
Chapter 10: Web-OSPA N: Web-based Computerised Measurement
of Working Memory Capacity .. 10-1 to 10-14
Chapter 11: Web-based Tools to Measure Inductive Reasoning Ability 11-1 to 11-24
Chapter 12: Web-DAL: Web-based Computerised Tool to Measure
Divergent Associative Learning .. 12-1 to 12-6
Chapter 13: Relations of Cognitive Traits from Psychometric Tests 13-1 to 13-8
Chapter 14: Implementation Details of Learning System 14-1 to 14-9
Chapter 15: Empirical Evaluation of Working Memory Capacity 15-1 to 15-7
Chapter 16: Empirical Evaluation of Inductive Reasoning Ability 16-1 to 16-5
Chapter 17: Empirical Evaluation of Divergent Associative Learning 17-1 to 17-7
Chapter 18: Conclusion ... 18-1 to 18-10
References .. R1 to R21
Appendix A: Ethical Approval Information Sheet .. AA1
Appendix B: Ethical Approval Application Form ... AB1 to AB4