Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Cold tolerance in warm season turfgrasses

A thesis presented in partial fulfilment of the requirements
for degree of

Doctor of Philosophy
in Plant Science

at Massey University
Palmerston North, New Zealand

Umer Habib
2017
Abstract

Warm season (C₄) turfgrasses are a popular choice for sports and public venues in tropical, subtropical, arid and semiarid climates due to their spreading characteristics, multiple stress resistance, including water deficit and heat tolerance, and faster establishment. However, intolerance of low temperature is the key limitation to their use in temperate regions. The New Zealand turf industry has a growing interest in warm season (C₄) grasses due to their water use efficiency under heat stress and summer dormancy of cool season (C₃) grasses, especially in the upper parts of the North Island. Twelve commercially available cultivars of four warm season grass genera (Cynodon, Zoysia, Paspalum and Pennisetum) were established in a glasshouse and ten cultivars in field at Palmerston North, New Zealand, using seeds and stolon cuttings. This phase of the project was carried out from November 2012 to January 2015, with three major aspects of turf function measured. Established plots were scored for quality attributes (colour, texture, uniformity, ground cover and overall quality) as prescribed by NTEP (National Turf Evaluation Program, USA). Field plots became dormant and began browning in late autumn. Browning progressed and became more visible by the end of winter. Glasshouse plots displayed better overall turf quality than field plots except for seeded Cynodon varieties which showed susceptibility to Anthracnose fungal attack. Vegetative Cynodon varieties (Agridark, Windsor green and Santa Ana) performed well along with Sea spray (Paspalum vaginatum). Regal Staygreen (Pennisetum clandestinum) proved more cold tolerant than other varieties but, being coarse textured, cannot attain high acceptance in the turf industry. A subsequent experiment was focused on detailed morphology and growth pattern of these varieties. It was observed that glasshouse plots developed fewer roots per node and a lower total root mass compared with those grown in field conditions. In field plots stolon structures were more compact with a high number of horizontal stolons. Rhizome appearance differed between the glasshouse and the field and during the first year of establishment only vegetatively established Cynodon varieties developed rhizomes under field conditions and only Agridark in the glasshouse. However, during the next growing season all varieties in the field, except Zenith, had formed rhizomes. Seeded couches failed to produce rhizomes in the glasshouse even after their 2nd growing season. Detailed study of stolon morphology confirmed findings on turf mat quality from visual scoring, and identified a pattern of ecological interest in that
varieties of the genera *Cynodon* and *Zoysia* formed compound or triplet nodes, with root, branch and internode formation allocated to different leaves.

A second phase of the research investigated cold tolerance in warm season turf grasses and the response of four varieties from three different warm season turf species Agridark and Windsor Green (*Cynodon dactylon*), Sea Spray (*Paspalum vaginatum*), and Zenith (*Zoysia japonica*) when exposed to low but non freezing temperatures. This experiment aimed to identify low temperature tolerance thresholds at various exposure durations, to help turf mangers define temperature tolerance of available varieties. Plants were established in trays in a glasshouse and were exposed to a series of progressively decreasing temperatures (16/10°C, 12/8°C, 10/6°C, 8/4°C and 6/2°C, day/night) with 2 weeks at each temperature step, or to sudden, short exposure to the same temperatures for 2 weeks. Colour change during the various combinations of low temperature exposure, and recovery after damage were observed along with measurement of selected physiological indices including proline, malondialdehyde (MDA) and carbohydrate accumulation. It was found that longer exposure with gradually lowered temperature was more detrimental to plants than sudden, short exposure. Seashore paspalm (Sea spray) exhibited better colour retention during cold exposure than the other three varieties in this experiment. Levels of proline and MDA in leaf and stolon tissue, and carbohydrate status tended to return towards pre-stress levels when plants were placed in a glasshouse for recovery from these cold-stress challenges.

The ecological significance of the triplet stolon structure is unclear but deserves further study. Understanding that cold damage is a cumulative process rather than a sudden event when a threshold is reached, will be helpful to development of recommendations for turf industry use of C4 grasses in temperate climates.
Acknowledgements

I am thankful to almighty Allah for all his blessings and bounties in my life. I duly regard Higher Education Commission of Pakistan for providing me a scholarship and Massey University, New Zealand for providing me excellent learning environment and support to pursue my goals. I am thankful to PMAS Arid Agriculture University, Rawalpindi, Pakistan for granting me study leave. I am also thankful to the Institute of Agriculture and Environment (IAE), Massey University for providing me the opportunity to attend the International Horticultural Congress 2014 in Brisbane, Australia and scholarship support for completion of studies and to the New Zealand Sports Turf Institute for their collaboration and funding support for my project.

I would like to express my deepest gratitude to my principal supervisor Professor Cory Matthew for all his kindness, guidance, patience, hard work and support throughout my study tenure. He provided the best learning environment and created excellent skill development opportunities for me. He is a true mentor and I feel myself fortunate having the opportunity to work with him. Undoubtedly I would not be able to achieve my goals without his kind support and supervision.

I am also grateful to my co-supervisor Dr Andrew Mitchell, Research manager and Agronomist at NZSTI, Palmerston North for his technical insight and help during the project. He not only helped from his industry knowledge but also provided support to establish the experiments and their maintenance on a long-term basis. I wish to express my thanks to my co-supervisor Dr Kerry Harrington, Senior Lecturer, IAE, Massey University for his counselling time management suggestions and availability at short notice when help was needed. It was an enjoyable experience working with him. Special thanks are due to Bill Walmsley, Keith Salisbury, Leigh Hunt and Nick Jones for their support in acquiring germplasm and helping me to familiarise myself with New Zealand sports turf industry.

My thanks are due to the staff members of the Plant Growth Unit, Massey University, Steve Ray, Lesley Taylor, and Lindsay Sylva for their help during my experiments in the glasshouse and controlled growth chamber. I was impressed with their problem solving capacity. I wish to express my thanks to Mark Osborne and Simon Orsborn for their technical and manual support. I am also thankful to Chris Rawlingson
for his equipment tutorials and technical support and Kay Sinclair for helping with lab management and material acquisition, as and when it was required. I would like to appreciate help from Sunmeet Bhatia and Cécile Duranton and Roberta Carnevalli to carry out analyses for me. Very special thanks to the kind face of the Institute, Denise Stewart for her advice in making this manuscript look like a thesis.

I have to say special thanks to my PhD fellow Lulu He, for teaching me analysis skills and her guidance during my laboratory work. My heart felt gratitude also goes to fellow PhD students Wei Zhang, Januarius Gobilik and Mauricio Maldonado, and other graduate student colleagues. Time spent in New Zealand and Massey University has become much more valuable with lots of memories due to the presence of my sincere friends Muhammad Naveed Anwar and Ahmed Raza. I am thankful to Dr Muhammad Ajmal for his presence and support who was always like a big brother to me. I would also like to commend other Pakistani scholars and community members for their presence which never let me feel homesick. I am greatly thankful to Dr. Nadeem Akhtar Abbasi, Dean FCFS for being, boss, brother, friend and mentor; your encouragement and follow up will be always remembered.

I greatly appreciate the contributions of my family to pursue my ambitions especially to my parents for their endless efforts to help in my life and my career. I am thankful to my Uncle Abdul Wahid for his mentoring and extraordinary support and love throughout my life. Most due love and gratitude to my sister Sadia Habib and brother Qasim Habib always like friends than siblings to me.

At last I will like to express my thoughts and sincere thanks for my loving wife Fatima Mazhar, being with me encouraging and supporting as and when it was needed, and to my gorgeous little man Muhammad Danyal for all the joys and love. You both are absolute treasure for me.
Table of Contents

Abstract i
Acknowledgements .. iii
Table of Contents .. v
List of Figures .. x
List of Tables... xiii

CHAPTER 1 .. 1
Introduction .. 1
 1.1 Emergence of the modern turf industry ... 1
 1.2 Thesis objectives ... 3
 1.2.1 Phase 1: Assessment of agronomic and mat forming properties of some commonly used warm season turfgrasses 3
 1.2.2 Phase 2: Response evaluation of selected varieties from Phase 1 under controlled exposure to low temperature 4
 1.3 Thesis structure .. 4
References ... 6

CHAPTER 2 .. 9
Review of Literature .. 9
 2.1 Grass to turfgrass ... 9
 2.2 Turfgrass classification .. 11
 2.3 Warm season turfgrasses .. 12
 2.3.1 Bermuda grass (Cynodon) ... 12
 2.3.2 Alternative species .. 13
 2.4 Emergence of the global warm season turfgrass industry 14
 2.4.1 Turfgrass evolution in the USA ... 14
 2.4.2 The Australian turf industry .. 15
References ... 62

CHAPTER 4 ... 65
Morphological Attributes of Different Warm Season Turfgrasses 65
4.1 Introduction.. 65
4.2 Materials and methods .. 66
 4.2.1 Collection of turf cores.. 67
 4.2.2 Data collection .. 67
 4.2.3 Data analysis .. 67
4.3 Results ... 70
 4.3.1 Green mass, root mass and dead mass (thatch) 70
 4.3.2 Stolon length and rhizome length .. 71
 4.3.3 Above ground attributes ... 77
4.4 Discussion .. 82
 4.4.1 Root mass, rhizome length and dead material (thatch) 82
 4.4.2 Above -ground attributes .. 84
4.5 Summary ... 86

CHAPTER 5 ... 91
Stolon Morphology of Warm Season Turfgrasses ... 91
5.1 Introduction.. 91
5.2 Materials and methods .. 93
 5.2.1 Sample collection ... 93
 5.2.2 Measurement .. 93
 5.2.3 Data analysis .. 94
5.3 Results ... 96
 5.3.1 Internode distance .. 96
 5.3.2 Grass leaf attributes on a stolon ... 96
 5.3.3 Bud/branch and root occurrence ... 97
5.3.4 Light microscopy .. 97
5.3.5 Principal component analysis .. 102
5.4 Discussion ... 104
 5.4.1 Internode distance .. 104
 5.4.2 Grass leaf attributes on a stolon ... 104
 5.4.3 Bud/branch and root occurrence ... 105
 5.4.4 Triplet morphology ... 105
5.5 Summary ... 106
References .. 108
CHAPTER 6 .. 111
Evaluation of Cold Hardiness in Selected Warm Season Turfgrasses under
Controlled Conditions ... 111
6.1 Introduction .. 111
6.2 Materials and methods .. 113
 6.2.1 Turf establishment ... 113
 6.2.2 Experimental design ... 113
 6.2.3 Sample collection ... 114
 6.2.4 Leaf proline contents ... 117
 6.2.5 MDA analysis .. 117
 6.2.6 Carbohydrate content analysis ... 118
 6.2.7 Change in colour .. 119
 6.2.8 Green up or recovery ... 119
 6.2.9 Statistical analysis .. 119
 6.3.1 Proline .. 121
 6.3.2 MDA .. 121
 6.3.3 Recalibration of the anthrone procedure for glucose and starch 124
 6.3.4 Low molecular weight sugars ... 124
6.3.5 High molecular weight sugars ... 125

6.3.5 Plant colour change during cold exposure and subsequent recovery 129

6.4 Discussion .. 131

6.4.1 Proline .. 131

6.4.2 MDA .. 131

6.4.3 Carbohydrates .. 132

6.4.4 Discoloration .. 133

6.5 Conclusion .. 134

References ... 135

CHAPTER 7 ... 139

General Discussion and Future Directions .. 139

7.1 Introduction ... 139

7.2 Turf establishment when using warm season grasses 140

7.3 Qualitative traits of warm season turfgrasses 140

7.4 Stolon and rhizome formation strategies .. 141

7.5 Phytomer specialisation in warm season turfgrasses 142

7.6 Cold stress physiology ... 143

7.7 Key findings and their applications .. 144

7.8 Future research .. 145

References ... 147

INDEX TO APPENDICES .. 149

APPENDICES ... 151
List of Figures

Fig. 2.1 Structure of grasses with stolons and rhizomes (Christians, 2011) ... 20

Fig. 3.1 Establishment of field plots (left) and glasshouse plots (right) ... 42

Fig. 3.2 Established field plots (left) and glasshouse plots (right) in March 2013 .. 42

Fig. 3.3 Daily minimum/maximum temperatures in the field during summer, autumn, and winter in 2012-14. .. 46

Fig. 3.4 Daily minimum/maximum temperatures in the glasshouse (GH) during 2012-13. ... 47

Fig: 3.5 Quality (overall visual appearance) of turf mat in glasshouse and open field conditions during Autumn/Winter 2013-2014......................... 48

Fig: 3.6 Ground cover percentage of turf mat in glasshouse and open field conditions during Autumn/Winter 2013-2014 49

Fig: 3.7 Density of turf mat under glasshouse and open field during Autumn/Winter 2013-2014 ... 51

Fig: 3.8 Texture of turf mat in glasshouse and open field conditions during Autumn/Winter 2013-2014 ... 52

Fig: 3.9 Colour variations of turf mat in glasshouse and open field conditions during Autumn/Winter 2013-2014.. 54

Fig. 3.10 Progression in cold damage of experimental plots during 2013 under field conditions 55

Fig: 3.11 Differences in appearance of experimental plots from early autumn to mid-winter (2013) under glasshouse conditions 56

Fig: 3.12 Differences in appearance of experimental plots from early autumn to mid-winter (2013) under Field conditions 57

Fig: 3.13 Visual status of field plots in third summer, showing recovery of colour after winter (October 2014) and retention of colour through summer 2014–2015... 58

Fig. 4.1 Extraction of turfgrass cores (A) and cling-film wrapped turfgrass cores (B) .. 70

Fig. 4.2 A typical grass core dissection, in this case Regal Staygreen
(P. clandestinum) .. 71

Fig. 4.3 Dry weight comparison of green mass, dead mass and root mass in glasshouse and field plots - June, 2013 ... 74

Fig. 4.4 Dry weight comparison of green mass, dead mass and root mass in glasshouse and field plots - February, 2014.. 75

Fig. 4.5 Comparison of stolon length and rhizome length in glasshouse and field plots June, 2013 ... 76

Fig. 4.6 Comparison of stolon length and rhizome length in glasshouse and field plots - February, 2014 ... 77

Fig. 4.7 Comparative turf height at Field and Glasshouse (before core extraction) ... 78

Fig:4.8 Dry weight comparison of structural components (leaf, vertical branches, stems/stolons, roots, and rhizomes) in June 2013 81

Fig:4.9 Dry weight comparison of structural components (leaf, vertical branches, stem/stolon, roots, and rhizome) in Feb 2014......................... 82

Fig 5.1 Dissected 12-phytomer stolon segments of A) Pennisetum (Regal Staygreen), and B) Cynodon (Windsor green).. 96

Fig 5.2 Stolon growth pattern of different turfgrass species on the basis of internode distance in twelve successive nodes (ID1-ID12) 99

Fig 5.3 Comparison of leaf blade length, sheath length, and blade width in glasshouse and open field (average of twelve successive leaves on a stolon) ... 100

Fig. 5.4 Total number of bud/branch and roots on a stolon for 12 successive nodes ... 101

Fig. 5.5 Triplet structure of a Cynodon stolon (Left), No grouping of internodes in Pennisetum (Right)... 101

Fig. 5.6 Triplet formation of nodes in (A) Cynodon, (B) Zoysia japonica . 102

Fig. 5.7 Plot of principal component scores for principal components 1 and 2 for nine warm season turfgrass varieties in glasshouse and field plots .. 104

Fig. 5.8 Mean principal component scores for nine warm season turfgrass varieties from a principal component analysis designed to quantify morphological variation ... 104

Fig. 6.1 Induction and removal mechanism of turf trays in CTR 116
Fig 6.2 Turfgrass trays during establishment in the glasshouse 116
Fig 6.3 Established turf in the glasshouse .. 116
Fig 6.4 Turf trays in the controlled temperature room (CTR) 116
Fig 6.5 Colour development for the anthrone reagent in the cross-calibration
with glucose, starch and inulin.
..
... 127
List of Tables

Table 2.1 Important warm season turfgrass species with their uses and characteristics... 14

Table 3.1 Warm-season turfgrass varieties, sources establishment method, and seed rate.. 40

Table 3.2 Randomized layout plan .. 41

Table 5.1 Eigenvalues, proportion of variation explained, and coefficients for principal components 1 to 3 of a principal component analysis designed to detect differences in morphological pattern between varieties .. 103

Table 6.1 Table of treatments as followed during the experiment 115

Table 6.2 Proline accumulations (mg g\(^{-1}\) of dry matter) in turfgrasses after sudden and prolonged exposure to low temperature. 122

Table 6.3 MDA accumulations (nmol g\(^{-1}\) of dry matter) in turfgrasses after sudden and prolonged exposure to low temperature. 123

Table 6.4 Variations in Low molecular sugar levels (mg g\(^{-1}\) of dry matter) in turfgrasses after sudden and prolonged exposure to low temperature. .. 127

Table 6.5 Variations in high molecular sugar levels (mg g\(^{-1}\) of dry matter) in turfgrasses after sudden and prolonged exposure to low temperature. .. 128

Table 6.6 Degree of colour change during and after exposure to low temperature based on % age and colour characteristics 130