Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Massey University Library
Thesis Copyright Form

Title of thesis: AN EVALUATION OF WHEY, COMPOST AND MINERAL FERTILIZERS USED IN AN ORGANIC FARMING SYSTEM

(1) (a) I give permission for my thesis to be made available to readers in Massey University Library under conditions determined by the Librarian.

(b) I do not wish my thesis to be made available to readers without my written consent for . . . months.

(2) (a) I agree that my thesis, or a copy, may be sent to another institution under conditions determined by the Librarian.

(b) I do not wish my thesis, or a copy, to be sent to another institution without my written consent for . . . months.

(3) (a) I agree that my thesis may be copied for Library use.

(b) I do not wish my thesis to be copied for Library use for . . . months.

Signed / A. Bunnon-Celeorico

Date 17/4/91

The copyright of this thesis belongs to the author. Readers must sign their name in the space below to show that they recognise this. They are asked to add their permanent address.

NAME AND ADDRESS DATE
AN EVALUATION OF WHEY, COMPOST AND MINERAL FERTILIZERS USED IN AN ORGANIC FARMING SYSTEM

A thesis presented in partial fulfilment of the requirements for the degree of

MASTER OF AGRICULTURAL SCIENCE

in Soil Science, Massey University

Palmerston North, New Zealand

ANGELA BUNOAN-OLEGARIO

1991
ABSTRACT

An evaluation of whey, compost and mineral materials as fertilizers for an organic farming system, was undertaken in an ongoing 3 year old field trial at the MAFTech Levin Horticultural Research Centre. Sweetcorn (var. Honey and Pearl) was grown as a summer crop (1989-1990) and responses to the three fertilizer forms were measured using fresh cob, plant dry matter and dried grain yield as production criteria. Plant uptake of N and K was measured along with soil inorganic and total N and mineralizable N.

The whey fertilizer gave the highest sweetcorn cob yield averaging 12 t/ha. All fertilizer forms at low and medium levels increased fresh cob yield above the control in the order of whey > mineral > compost. The increase in yield averaged over all levels was 26% for whey and 21% for compost. The mineral treatment at the high level gave a significant depression (-20%). Whey fertilizer also increased sweetcorn N and K uptake to a higher level than compost and mineral fertilizers. Nitrogen and K weed uptake, which was measured only on the control and high level of fertilizer addition, was considerable (26-46 kg N/ha and 83-143 kg K/ha).

Apparent plant N recovery from whey and compost treatment levels were low, 3-13% for compost and 12-22% for whey. Apparent plant K recovery ranged from 4-15% for whey rates, 10-43% for compost rates and 0-27% for the mineral rates.

Soil inorganic N levels, 20 DAS, relate well to plant N uptake which also showed a good relationship with plant K uptake. The mineralizable N potential of the soil associated with various treatments was measured by 3 methods. The anaerobic incubation appeared to relate well to N uptake by sweetcorn. At all levels, the whey treatment mineralized at a faster rate than either the compost or mineral treatments. It appeared that the N component of whey and compost was mainly responsible where yield increases were measured although, the P and K component of the fertilizers may have
contributed in some situations.

Some suggestions are made regarding the design and conduct of future trials i.e. use of plant nutrient analysis to monitor nutrient status and a treatment eliminating annual fertilizer application from part of the main treatment to allow measurement of the residual effects from previous applications.

Some guidelines for organic growers using whey, compost and mineral fertilizers were suggested. These include the continual/annual monitoring of the soil's nutrient status, the measurement of nutrient losses in produce, the construction of a simple nutrient balance for each crop and the suggestion that the fertilizer forms used could be altered when some soil nutrients are considered to be in excess of requirements.
ACKNOWLEDGEMENT

Acknowledgement is due to the following persons:

My supervisors, Dr. Paul E.H. Gregg, for his valuable guidance, supervision, patience, encouragement and constructive criticisms, and to Dr. Dave Horne, for his advice and assistance.

Dr. Jo Springett and technical staff at the MAFTech Levin Horticultural Research Centre who allowed me the use of the site for this study and who readily supplied site information.

To Dr. S.K. Saggar, Dr. N. S. Bolan and Dr. M.J. Hedley for their suggestions and advice.

Prof. R.E. White and members of the Department of Soil Science, especially Ann Rouse and Colleen Mason for their assistance and friendship, and all technicians who helped in the field trial sampling.

Other postgraduates in the Department of Soil, Lee Heng for her assistance in some computer work and Mahimaraja Santiago in some chemical analysis.

The Ministry of External Relations and Trade, New Zealand for financial assistance.

To all my friends who made my stay in New Zealand worthwhile and enjoyable.

Lastly, but most important, to my family, my husband, Jun and daughters, Arianne Joy, Jancy Sarah and Celina Jean.
TABLE OF CONTENTS

- **ABSTRACT** ... i
- **ACKNOWLEDGEMENT** .. iii
- **TABLE OF CONTENTS** ... iv
- **LIST OF FIGURES** ... vii
- **LIST OF TABLES** .. ix

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 REVIEW OF LITERATURE 3

2.1. **ORGANIC FARMING SYSTEMS** 3

2.1.a. Definition ... 3
2.1.b. Organic farming, an Overview 3

2.2. **DETERMINATION OF FERTILIZER REQUIREMENTS IN AN ORGANIC SYSTEM** 4

2.3. **ORGANIC FERTILIZERS** .. 8

2.3.a. Characteristics and their reactions in the soil 9
2.3.b. Composting ... 10

2.4. **EFFECTS OF ORGANIC FERTILIZERS ON SOIL ORGANIC MATTER AND SOIL PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES** 13

2.4.a. Soil Organic Matter .. 13
2.4.b. Soil Biological Properties 15
2.4.c. Soil Physical Properties 18
2.4.d. Effects on Crop Productivity 20

2.5. **SYNTHETIC/CHEMICAL AND SOME NATURAL/INORGANIC FERTILIZERS** 23

2.5.a. Characteristics and their reaction in the soil 23
CHAPTER 3 MATERIALS AND METHODS 30

3.1. TRIAL SITE .. 30

1.a. Trail Site ... 30
3.1.b. Soil Type .. 30
3.1.c. Nutrient Status 30
3.1.d. Climate ... 31
3.1.e. Cropping History 31
3.1.f. Treatments .. 32
3.1.g. Application rates 33
3.1.h. Chemical Analysis of Compost and whey 33
3.1.j. Design and Lay-out 34
3.1.k. Planting .. 34

3.2. MEASUREMENTS 35
3.2.a. Plant Sampling 35
3.2.b. Plant Chemical Analysis 36
3.2.c. Soil Sampling .. 36
3.2.d. Soil Chemical Analysis 37

3.3 N MINERALIZATION STUDY 38
3.3.a. H₂O₂ Extractable N 38
3.3.b. Anaerobic Incubation 39

3.4. DATA ANALYSIS 39

CHAPTER 4 RESULTS AND DISCUSSIONS 40

4.1. EFFECT OF FERTILIZER FORM AND RATE ON THE
 YIELD OF SWEETCORN VAR. HONEY AND PEARL 40

4.1.a. Fresh Cob Yield 40
4.1.b. Graded Fresh Cob Yield 49
4.1.c. Dry Matter Yield 51
4.1.d. Grain Yield ... 55

4.2. PLANT N UPTAKE 56

4.2.a. N Uptake of Sweetcorn over time 56
4.2.b. N Uptake by Weeds 59
4.3.c. Plant N recovery from whey and compost 62
4.3. PLANT K UPTAKE ... 63
4.4. SOIL N .. 71
4.4.a. Soil Inorganic N (NO₃-N and NH₄-N) 71
4.4.a.1 Relationship between initial Ni levels, dry matter yield, fresh cob yield and plant N uptake 79
4.4.a.2. Relationship between initial Ni, mineralizable N and plant N uptake ... 81
4.4.b. Total Soil N (Kjeldahl N) 81
4.5. SOIL MINERALIZABLE N 86
4.6. FATE OF N ADDED .. 90

CHAPTER 5 GENERAL DISCUSSION 91
5.1. EFFECTIVENESS OF FERTILIZER FORMS 91
5.2. SOME PROBLEMS ENCOUNTERED IN THE EVALUATION OF FERTILIZER FORMS AND POSSIBLE SOLUTIONS 93
5.3. SOME GUIDELINE FOR ORGANIC GROWERS IN THE USE OF THESE MATERIALS 96

CHAPTER 6 SUMMARY AND CONCLUSIONS 98

BIBLIOGRAPHY
APPENDICES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagram</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Yield response over control of treatment forms and level</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Dry matter yield overtime</td>
<td>52</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Relationship between dry matter yield and N uptake</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Plant N uptake over the growing period</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Effect of added K from fertilizers</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Relationship between dry matter yield and K uptake</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Relationship between N and K uptake</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.7.a-c</td>
<td>Plant N uptake and soil Ni overtime</td>
<td>75, 76, 77</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Relationship between the applied N from compost and whey and soil Ni 20 DAS</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.9.a&b</td>
<td>Effect of the applied N from compost and whey on fresh cob yield and dry matter yield</td>
<td>80</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Relationship between plant N uptake and soil N level measured 20DAS</td>
<td>82</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Relationship between plant N uptake and Soil Ni + Mineralizable N (anaerobic incubation)</td>
<td>82a</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Relationship between soil Ni and Anaerobic mineralizable N from samples taken 20 DAS</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Relationship between N uptake and mineralizable N (anaerobic incubation)</td>
<td>84</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1.	Approximate composition of materials suitable for composting	11
Table 2.2.	Chemical composition ranges of matured composts	12
Table 2.3.	Approximate number of some organisms in a typical agricultural surface soil	15
Table 2.4.	Some concentrated organic fertilizers	21
Table 3.1.	Soil Characteristics at the start of the study	31
Table 3.2.	Weather conditions during the growing season	31
Table 3.3.	Application rate of materials based on nutrient analysis	33
Table 4.1.	Effect of fertilizer form and rate on the fresh cob yield of sweetcorn	40
Table 4.2.	MAF fresh cob yield data and weight per cob	41
Table 4.3.	Graded Fresh Cob Yield	50
Table 4.4.	Dry matter yield of whole plant at final harvest	51
Table 4.5.	Grain Yield Data	55
Table 4.6.	Nuptake of sweet corn parts at harvest	60
Table 4.7.	Apparent N recovery from whey and compost fertilizers	63
Table 4.8.	K uptake of sweetcorn	64
Table 4.9.	Apparent K recovery from whey and compost fertilizers	70
Table 4.10.	Total Soil inorganic N (NH$_4$ and NO$_3$)	71
Table 4.10a.	Soil NO$_3$-N	72
Table 4.10b.	Soil NH$_4$-N	73
Table 4.11.	Total soil N at the start (S_0) and end of the trial (S_f)	85
Table 4.12.	Soil mineralizable N from hydrogen peroxide extraction method, anaerobic (30°C) incubation and apparent mineralizable N	88
Table 4.13.	Fate of N added from fertilizers	90
CHAPTER I

INTRODUCTION

The present trend in intensive agricultural and horticultural systems, where high yielding and fertilizer responsive cultivars are used, will eventually exhaust the fertility of the soil unless proper soil and fertilizer management is practiced. Additional inputs of plant nutrients in the form of fertilizers, synthetic/chemical or natural, has over the years proved to be necessary to achieve and maintain high yields. Numerous trials have shown that no less than 30 per cent increase in yields can be attained by the proper use of chemical fertilizers (Flaig, et al., 1977).

Today, the spiralling cost of synthetic fertilizers and pesticides, brought about in part by the disruption in oil supply, is having a marked influence on the profitability in agriculture and horticultural enterprises. Consequently, there is increasing interest in more efficient fertilizer application rates, timing and methods of application along with the use of N fixing legumes in rotations. In addition, people are becoming more conscious of their health and are demanding "organically grown" foods. Organic farmers are turning their attention to the better utilization of rural wastes, farmyard manures and other agricultural wastes as sources of plant nutrients.

Organic farming systems have been practiced in New Zealand by a handful of farmers for some years now. The interest in bio-dynamic farming is also fast increasing. Both organic and bio-dynamic systems aim for a "balanced" and "sustainable" production system.

In many overseas grassland organic farms, where fertilizer N input is low, leguminous herbage together with excreta from housed livestock are the prime source of N. However, under intensive cropping (arable farming) where N is almost always limiting, brought-in organic farm supplements are necessary.
Many claims have been made concerning the advantages of organic fertilizers over inorganic sources. For instance, organic sources are claimed to slowly release nutrients at rates that match the uptake of the crop (Smith & Hadley, 1988). Thus, there are less nutrient losses and the residual pool slowly increases. Organic fertilizers can also help improve soil structure as well as provide a source of trace elements.

There has been little experimental work done to evaluate the relative ability of different fertilizer sources used in organic production to supply plant nutrients. Variability in the composition of organic material often causes inconsistent crop and soil responses to organic materials (MacRae & Mehuys, 1985). Furthermore, the availability and cost of organic materials are important considerations in the choice of these materials.

The general aim of the research reported in this thesis is to evaluate the effects of whey, compost and mineral fertilizers, such as phosphate rock/dolomite and potassium sulphate, on the production of sweetcorn in an organic farming system.

More specifically the aims are to;

1. determine at various stages of growth the nitrogen and potassium uptake of sweet corn.
2. relate plant N and K uptake to the chemical composition of fertilizer and soil properties including soil inorganic N (NO₃ and NH₄), mineralizable nitrogen and K levels.
3. determine the effect of the fertilizer sources on the final yield of sweet corn.
4. provide guidelines on the use of fertilizer materials for organic growers.