Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Spinal Analgesic Interaction Between Non-Steroidal Anti-Inflammatory Drugs and N-Methyl-D-Aspartate Receptor Systems

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Veterinary Science

Institute of Veterinary, Animal and Biomedical Sciences
Massey University
Palmerston North, New Zealand

Ignacio Lizarraga-Madrigal
2006
To Fernanda
Abstract

Activation of spinal N-methyl-D-aspartate (NMDA) receptors stimulates cyclooxygenase and nitric oxide pathways. Compounds that block the activity of these NMDA receptor systems reduce pain hypersensitivity. However, their usefulness is limited by the side effects they produce. One way of reducing side effects is by combining drugs that produce the same overt effect by different mechanisms, which hopefully increase the net effect. In these series of studies, drugs that interact with NMDA receptor systems and their combinations were screened in vitro to identify spinal antinociceptive synergistic combinations that could be assessed in vivo. Based on developmental changes in thresholds, conduction velocities and blocking actions of the local anaesthetic lignocaine in neonatal rat L4/L5 dorsal root potentials, it was decided to use spinal cord in vitro preparation from 5- to 7-day-old rat pups. In single drug studies, the NMDA receptor channel blocker ketamine (1-50 μM) and the non-steroidal anti-inflammatory drug (NSAID) ketoprofen (200-600 μM), but not the NSAID salicylate (1000 μM) and the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME; 1-100 μM), reduced spinal NMDA receptor-mediated transmission. Ketamine also depressed non-NMDA receptor-mediated transmission. Using isobolographic and composite additive line analyses, fixed-ratio combinations of ketamine and ketoprofen, ketamine and L-NAME, and ketoprofen and L-NAME synergistically depressed NMDA receptor-mediated transmission. The two former combinations had a subadditive effect on non-NMDA receptor-mediated transmission, and the latter had no significant effect. These studies identified that all combinations synergistically reduced both nociceptive transmission and potential side effects. In free-moving sheep implanted with indwelling cervical intrathecal catheters, 100 μl subdural administration of ketamine (25-400 μM) and ketoprofen (200-3200 μM) alone and in a fixed-ratio combination (873.95-3350.78 μM, 0.045:0.955) did not raise nociceptive thresholds as assessed by mechanical stimulation of one foreleg. Subdural administration of NMDA (2 mM) decreased mechanical nociceptive thresholds, and this was prevented by the highest concentrations of ketamine and ketoprofen alone and in combination. These findings demonstrated that NMDA receptor channel blockers and NSAIDs alone or in combination had no direct hypoalgesic effects when given onto the spinal cord of sheep, but they prevented NMDA-induced pain hypersensitivity. Simultaneous blockade of NMDA receptor systems could have important clinical implications.
Acknowledgements

I am extremely thankful to Paul Chambers and Craig Johnson for supervising this project. I appreciate all your academic and intellectual support, but mostly your friendship and generosity of time.

I could not have carried out this project without sponsorship of the National Autonomous University of Mexico, in particular the DGAPA scholarship I was granted and the support of the Faculty of Veterinary Medicine during my leave.

Special thanks to the Neuroscience Group in IVABS, in particular to Sheryl Mitchinson for her skilled assistance during sheep anaesthesia. Special thanks also go to Debbie Chesterfield, Judith Stanton and Louise Beazley from the Small Animal Production Unit for providing the rats for this project, and to Robin Whitson and Graeme King for looking after the sheep while housed in the Veterinary Teaching Hospital.

Thanks to Wendi Roe, Stuart Hunter, Mark Collett, and Alastair Johnstone for their expert advice in gross pathology and histopathology, to Nicolas Lopez-Villalobos for his advice on statistical analyses, to Aaron Hicks for processing the rat dorsal roots for histological examination, and to Allain Scott for her support with all postgraduate administrative requirements.

During this time in New Zealand I met extraordinary people who helped me in many different ways. Very special thanks to Alejandra, Victor, Natalia, Alfredo, Federico, Klelia, and the Whelan family. Also thanks to old friends, Kathy and Mike, Oscar and Sara, Sue and Godfrey, David and Diana, Patricia and Jose, and Sylvia.

I am grateful to my parents, Ignacio and Silvia, who have always been there for me and for being such great role models. Also to my family and friends in Mexico that kept me cheerful during this time.

Finally, I am most grateful to Fernanda. Thanks for all your help on every single part of this project, but mainly for being the wonderful person you are and sharing this journey with me. You mean all to me and I wish I could put in words how much I love you…
Table of contents

Abstract.. V
Acknowledgements.. VII
Table of contents.. IX
List of tables.. XII
List of figures.. XV
Abbreviations... XXIII

1. Introduction and thesis outline.. 1
 1.1 Introduction.. 1
 1.1.1 The research problem... 2
 1.2 Thesis outline... 3
 1.3 References... 4

2. Spinal processing of pain: a review on NMDA receptor-mediated activation of arachidonic acid and nitric oxide signalling pathways.............................. 7
 2.1 Spinal NMDA receptors.. 7
 2.1.1 Regulation of spinal NMDA receptors... 7
 2.1.2 NMDA receptors and the spinal nociceptive process..................................... 11
 2.2 NMDA receptors and the arachidonic acid pathway... 13
 2.2.1 Phospholipases A₂ and the spinal nociceptive process................................... 14
 2.2.2 Cyclo-oxygenases and the spinal nociceptive process................................... 15
 2.2.3 Prostaglandins and the spinal nociceptive process.. 22
 2.2.4 Prostaglandin receptors and the spinal nociceptive process......................... 24
 2.2.5 Protein kinases A and C and the spinal nociceptive process.......................... 28
 2.3 NMDA receptors and the nitric oxide pathway.. 29
 2.3.1 Nitric oxide synthases and the spinal nociceptive process.............................. 30
 2.3.2 Nitric oxide and the spinal nociceptive process.. 33
 2.3.3 Guanylate cyclases and the spinal nociceptive process................................... 34
 2.3.4 cGMP-dependent protein kinases and the spinal nociceptive process........... 36
 2.3.5 Poly(ADP-ribose) synthase and the spinal nociceptive process....................... 37
 2.4 Spinal interactions between arachidonic acid and nitric oxide pathways................. 37
 2.4.1 Effects of cyclo-oxygenase pathway modulation on nitric oxide synthesis......... 37
 2.4.2 Effects of nitric oxide pathway modulation on prostaglandin synthesis............. 38
7. Synergistic depression of C-fibre-mediated synaptic transmission by ketoprofen and L-NAME on the in vitro neonatal rat spinal cord preparation........ 127
 7.1 Abstract... 127
 7.2 Introduction.. 127
 7.3 Material and methods... 128
 7.4 Results.. 130
 7.5 Discussion.. 133
 7.6 References.. 135

8. Reduction of NMDA-induced mechanical hypersensitivity by intrathecal administration of ketoprofen and ketamine in sheep................. 139
 8.1 Abstract.. 139
 8.2 Introduction.. 139
 8.3 Material and methods... 140
 8.4 Results.. 148
 8.5 Discussion.. 157
 8.6 References.. 162

9. General discussion and conclusions.. 167
 9.1 In vitro sciatic nerve-dorsal root preparation.......................... 167
 9.2 In vitro spinal cord preparation.. 169
 9.2.1 Development of spinal NMDA receptor systems............ 169
 9.2.2 Single drug studies... 170
 9.2.3 Drug combination studies....................................... 171
 9.3 Intrathecal drug administration in sheep............................... 173
 9.4 References.. 174
List of tables

Table 2.1 Expression and anatomical distribution of mRNAs encoding for the different NMDA receptor splice variants in the lumbar spinal cord of the rat..............................12

Table 2.2 Constitutive expression of cyclo-oxygenase isozymes in the spinal cord........17

Table 2.3 Effects of spinal administration of cyclo-oxygenase inhibitors on different algesiometric tests...18

Table 2.4 Constitutive expression of prostaglandin and thromboxane synthases in the spinal cord..22

Table 2.5 Classification and signal transduction pathways of prostanoid receptors........25

Table 2.6 Expression of prostanoid receptors in the spinal cord and dorsal root ganglia neurones...26

Table 2.7 Constitutive expression of nitric oxide synthase isozymes in the spinal cord.....31

Table 3.1 Correlation and (P) values for threshold (t) and conduction velocity (cv) of, and effect of lignocaine (lingo) and capsaicin (caps) on A- (A) and C-fibre waveforms (C), and for myelination (myelin)..69

Table 5.1 IC\textsubscript{40} values with 95% confidence intervals (CI) for the depressive effect of ketamine (1-50 \textmu M) and ketoprofen (200-600 \textmu M) on the three evoked spinal segmental responses..105

Table 5.2 Theoretical and experimental IC\textsubscript{40} values with 95% confidence intervals (CI) for combinations of ketoprofen and ketamine in a fixed drug proportion on the three evoked spinal segmental responses...107

Table 6.1 Theoretical and experimental IC\textsubscript{40} values with 95% confidence intervals (CI) for combinations of ketamine and L-NAME in a fixed drug proportion on the three evoked spinal segmental responses...119

Table 7.1 IC\textsubscript{40} values with 95% confidence intervals (CI) for the depressive effect of ketoprofen (200-600 \textmu M) and L-NAME (1-100 \textmu M) on the three evoked spinal
segmental responses..130

Table 7.2 Theoretical and experimental IC\textsubscript{40} values with 95\% confidence intervals (CI) for combinations of ketoprofen and L-NAME in a fixed drug proportion on the three evoked spinal segmental responses...131

Table 8.1 Distribution of sheep used in the experiments...146

Table 8.2 Summary of cervical intrathecal catheterisation and effects of xylazine injected though the intrathecal catheter on nociceptive mechanical thresholds in healthy sheep...149
List of figures

Figure 1.1 Schematic representation of neurotransmission of pain signals from the periphery to higher centres of the brain and back to the spinal cord..........................3

Figure 2.1 Schematic representation of pain neurotransmission in the spinal cord........8

Figure 3.1 Schematic representation of the experimental setting for the sciatic nerve-dorsal root preparation...58

Figure 3.2 High power images of transverse sections of L5 dorsal root from a 12-day-old rat...61

Figure 3.3 Developmental changes in L4 or L5 dorsal root A- (a) and C-fibre thresholds (b) after electrical stimulation of the sciatic nerve of 0- to 12-day-old rats.........................63

Figure 3.4 Action potential recordings from a L4/L5 dorsal root-sciatic nerve preparation from a 6-day-old rat...64

Figure 3.5 Developmental changes in conduction velocity of A- (a) and C-fibre waveforms (b) from L4 or L5 DRCAPs of 0- to 12-day-old rats...65

Figure 3.6 Developmental changes in the depressive action of lignocaine on A- and C-fibre waveforms from L4 or L5 DRCAPs of 0- to 12-day-old rats...............................66

Figure 3.7 DRCAPs form 11-day-old rat preparations. (a) Recordings in this column show the selective depressive action of capsaicin (2 µM) on the C-fibre waveform. (b) Recordings in this column show the lack of effect of ethanol (0.192%)...............................67

Figure 3.8 Effect of capsaicin and ethanol on A- and C-fibre waveforms from L4 or L5 DRCAPs of 0- to 12-day-old rats...68

Figure 3.9 Developmental changes in myelination of L4 or L5 dorsal roots in 0- to 12-day-old rats..68

Figure 4.1 Schematic representation of the experimental setting for the *in vitro* neonatal rat spinal cord preparation...82
Figure 4.2 Time course showing the effect of artificial cerebrospinal fluid (aCSF) on the different components of the synaptic response (mean ± s.e.m.)

Figure 4.3 (a-c) Effects of ketamine (50 μM) on the synaptic responses. Ketamine depressed the MSR (a), the low intensity epsp (b), and the high intensity epsp (c). Recovery is shown in the right panels after 90 min of ketamine-free medium. (d) Time course showing the depressant actions of ketamine on the different components of the synaptic response (mean ± s.e.m). At the time that reached equilibrium (30 min after infusion), 50 μM ketamine depressed the MSR by 76.03 ± 1.39%, the low intensity epsp by 63.70 ± 1.99%, and the high intensity epsp by 43.9 ± 8.35%.

Figure 4.4 (a) Time course showing the depressant actions of ketamine (1-50 μM) and the lack of activity of naloxone (1 μM) to reverse ketamine’s depressant effects (mean ± s.e.m). (b) Concentration-effect plot showing the effect of ketamine. IC₅₀ values (with 95% CI) were 10.8 (5.97 to 19.54) μM for the MSR, 8.29 (4.53 to 15.17) μM for the low intensity epsp, and 5.35 (3.05 to 9.40) μM for the high intensity epsp.

Figure 4.5 (a) Time course showing the lack of depressive effect of L-NAME (1-100 μM) on the different components of the synaptic response (mean ± s.e.m). (b) Concentration-effect plot showing the lack of effect of L-NAME.

Figure 4.6 Time course showing the lack of depressive effect of salicylic acid (1000 μM) on the different components of the synaptic response (mean ± s.e.m).

Figure 4.7 (a-c) Effects of ketoprofen (600 μM) on the synaptic responses. Ketoprofen depressed the low intensity epsp (b) and the high intensity epsp (c), but had no effect on the MSR (a). Recovery is shown in the right panels after 60 min of ketoprofen-free medium. (d) Time course showing the actions of ketoprofen on the different components of the synaptic response (mean ± s.e.m). At the time that reached equilibrium (35 min after infusion), 600 μM ketoprofen depressed the low intensity epsp by 35.00 ± 3.69% and the high intensity epsp by 51.08 ± 9.38%, but had a minor depressive effect on the MSR (5.54 ± 2.17%).

Figure 4.8 (a) Time course showing the depressant actions of ketoprofen (200-600 μM) on the synaptic responses (mean ± s.e.m). (b) Concentration-effect plot showing the effect of ketoprofen. IC₅₀ values (with 95% CI) were 354.2 (217.5 to 576.8) μM for the low intensity epsp, and 302.7 (174.0 to 526.7) μM for the high intensity epsp.
Figure 4.9 Time courses showing the lack of depressive effect of anandamide (0.1-1 μM) on individual recordings for (a) the MSR, (b) the low intensity epsp, and (c) the high intensity epsp.

Figure 5.1 (a) Percent maximal possible effect (MPE%) of ketoprofen alone (A), ketamine alone (B), ketoprofen and ketamine in a theoretical additive fixed ratio proportion (0.955 : 0.045) in which the quantities of the constituents are in proportion to their respective IC₄₀ values (C), and the actual combination of ketoprofen and ketamine having the same proportion (D) for the low intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for low intensity epsp at the effect level 40% MPE for the combinations ketoprofen and ketamine in a fixed ratio proportion as indicated above. The solid line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are [264.32 (223.72 - 327.80) μM, 12.43 (10.52 - 15.41) μM] and those of point C [93.23 (77.48 - 108.27) μM, 4.38 (3.64 - 5.09) μM].

Figure 5.2 (a) Percent maximal possible effect (MPE%) of ketoprofen alone (A), ketamine alone (B), ketoprofen and ketamine in a theoretical additive fixed ratio proportion (0.952 : 0.048) in which the quantities of the constituents are in proportion to their respective IC₄₀ values (C), and the actual combination of ketoprofen and ketamine having the same proportion (D) for the high intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for low high epsp at the effect level 40% MPE for the combinations ketoprofen and ketamine in a fixed ratio proportion as indicated above. The solid line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are [184.28 (113.10 - 234.88) μM, 9.31 (5.72 - 11.86) μM] and those of point C [61.61 (33.13 - 86.96) μM, 3.11 (1.68 - 4.40) μM].

Figure 5.3 (a) Percent maximal possible effect (MPE%) of ketoprofen alone (A), ketamine alone (B), and the actual combination of ketoprofen and ketamine in a fixed ratio proportion (0.955 : 0.045) in which the quantities of ketamine are in 0.5 fractions to its respective IC₄₀ value (D) for the MSR. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for low intensity epsp at the effect level 40% MPE for the combinations ketoprofen and ketamine in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and
contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are [(164.49 (126.03 - 212.18) μM, 7.75 (9.94 - 10.00) μM] and those of point C (5164.32 μM, 243.35 μM; CI were too wide and hence not included).

Figure 6.1 (a) Percent maximal possible effect (MPE%) of L-NAME alone (A), ketamine alone (B) and the actual combination of ketamine and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities of ketamine are in 0.5 fractions to its respective IC₄₀ value (D) on the MSR. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for the MSR at the effect level 40% MPE for the combinations ketamine and L-NAME in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are [7.75 (5.94 - 10.00) μM, 1.05 (0.81 - 1.36) μM] and those of point C [14.46 (11.55 - 19.05) μM, 1.96 (1.57 - 2.59) μM].

Figure 6.2 (a) Percent maximal possible effect (MPE%) of L-NAME alone (A), ketamine alone (B) and the actual combination of ketamine and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities of ketamine are in 0.5 fractions to its respective IC₄₀ value (D) on the low intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for the low intensity epsp at the effect level 40% MPE for the combinations ketamine and L-NAME in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are [24.85 (16.78 - 42.79) μM, 3.37 (2.28 - 5.81) μM] and those of point C [11.5 (9.13 - 13.83) μM, 1.56 (1.24 - 1.88) μM].

Figure 6.3 (a) Percent maximal possible effect (MPE%) of L-NAME alone (A), ketamine alone (B) and the actual combination of ketamine and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities of ketamine are in 0.5 fractions to its respective IC₄₀ value (D) on the high intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for the high intensity epsp at the effect level 40% MPE for the combinations ketamine and L-NAME in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and
contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are $[18.63 \ (8.62 - 79.87) \ \mu M, 2.53 \ (1.17 - 10.84) \ \mu M]$ and those of point C $[8.05 \ (5.03 - 10.91) \ \mu M, 1.09 \ (0.68 - 1.48) \ \mu M]$. ... 121

Figure 7.1 (a) Percent maximal possible effect (MPE%) of L-NAME alone (A), ketoprofen alone (B) and the actual combination of ketoprofen and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities ketoprofen are in 0.5 fractions to its respective IC$_{40}$ value (D) on the high intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for the low intensity epsp at the effect level 40% MPE for the combinations ketoprofen and L-NAME in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are $[368.55 \ (326.72 - 414.85) \ \mu M, 50.02 \ (44.34 - 56.30) \ \mu M]$ and those of point C $[163.65 \ (119.43 - 207.25) \ \mu M, 22.21 \ (16.21 - 28.13) \ \mu M]$. ... 131

Figure 7.2 (a) Percent maximal possible effect (MPE%) of L-NAME alone (A), ketoprofen alone (B) and the actual combination of ketoprofen and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities ketoprofen are in 0.5 fractions to its respective IC$_{40}$ value (D) on the low intensity epsp. The horizontal dashed line represents the effect level 40% MPE. (b) Isobologram for the low intensity epsp at the effect level 40% MPE for the combinations ketoprofen and L-NAME in a fixed ratio proportion as indicated above. The dashed line is the line of additivity and contains point A representing the calculated additivity quantities for this proportional combination. Point C is the combination point determined experimentally with this same proportional mix. Coordinates of point A are $[528.64 \ (452.85 - 683.19) \ \mu M, 71.75 \ (61.46 - 92.72) \ \mu M]$ and those of point C $[443.11 \ (355.36 - 569.28) \ \mu M, 60.14 \ (48.23 - 77.26) \ \mu M]$. ... 132

Figure 7.3 Percent maximal possible effect (MPE%) of L-NAME alone (A), ketoprofen alone (B) and the actual combination of ketoprofen and L-NAME in a fixed ratio proportion (0.8805 : 0.1195) in which the quantities of the constituents were the same as those used on the high intensity epsp. The horizontal dashed line represents the effect level 40% MPE. ... 132

Figure 8.1 Radiograph showing the correct placement of an intrathecal catheter at the
level of the fifth cervical vertebra in sheep.. 142

Figure 8.2 Intrathecal catheterisation of sheep... 143

Figure 8.3 Mechanical nociceptive device used to stimulate a foreleg in sheep...... 144

Figure 8.4 Mechanical device calibration curve... 145

Figure 8.5 Transverse sections of the cervical spinal cord of sheep 597 showing histopathological changes associated with penetration of the catheter into the spinal parenchyma... 150

Figure 8.6 Transverse sections of the spinal cord and brain of sheep 46................ 151

Figure 8.7 (a) Time course showing the effect of intrathecal administration of xylazine (1.95 mM, 100 µl) and saline (0.9%, 100 µl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given. (b-d) Xylazine induced hypoalgesia as assessed by the area under the curve (AUC) for 60 min (b) and 180 min post-treatment (c), but there was marked variation in individual AUC values (d). * Represents significant difference between xylazine and saline (P < 0.0001). Data are the mean ± s.e.m. of 13 sheep... 152

Figure 8.8 (a) Time course showing the effect of intrathecal administration of ketoprofen (200-3200 µM, 100 µl) and saline (0.9%, 100 µl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given. (b-c) Ketoprofen had no significant effect on the area under the curve (AUC) for 60 min (b) and 180 min post-treatment (c) as compared to saline. (d-e) The concentration-effect curves for ketoprofen for 60 min (d) and 180 min post-treatment (e) were not significantly different to zero. Data are the mean ± s.e.m. of 6 sheep................................. 153

Figure 8.9 (a) Time course showing the effect of intrathecal administration of ketamine (25-400 µM, 100 µl) and saline (0.9%, 100 µl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given. (b-c) Ketamine had no significant effect on the area under the curve (AUC) for 60 min (b) and 180 min post-treatment (c) as compared to saline. (d-e) The concentration-effect curves for ketamine for 60 min (d) and 180 min post-treatment (e) were not significantly different to zero. Data are the mean ± s.e.m. of 6 sheep................................. 154

Figure 8.10 (a) Time course showing the effect of intrathecal administration of
ketoprofen : ketamine (0.955 : 0.045; 837.695-3350.78 μM, 100 μl) and saline (0.9%, 100 μl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given (a). (b-c) Ketoprofen : ketamine had no significant effect on the area under the curve (AUC) for 60 min (b) and 180 min post-treatment (c) as compared to saline. (d-e) The concentration-effect curves for ketoprofen : ketamine for 60 min (d) and 180 min post-treatment (e) were not significantly different to zero. * Represents significant difference between ketoprofen : ketamine concentrations (P < 0.05). Data are the mean ± s.e.m. of 4 sheep... 155

Figure 8.11 (a) Time course showing the effect of intrathecal administration of NMDA (2 mM, 100 μl) and saline (0.9%, 100 μl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given. (b) NMDA significantly reduced the area under the curve (AUC) for 30 min post-treatment as compared to saline. * Represents significant difference between NMDA and saline (P < 0.0001). Data are the mean ± s.e.m. of 7 sheep... 156

Figure 8.12 (a) Time course showing the effect of intrathecal administration of saline (0.9%, 100 μl), ketoprofen (3200 μM, 100 μl), ketamine (400 μM, 100 μl), and ketoprofen : ketamine (0.955 : 0.045; 3350.78 μM, 100 μl) followed by NMDA (2 mM, 100 μl) on mechanical nociceptive thresholds in sheep. The arrow represents the time treatments were given before administering NMDA (time 0). (b) NMDA significantly reduced the area under the curve (AUC) for 30 min post-treatment as compared to saline, and this enhanced pain sensitivity was prevented by ketoprofen, ketamine, and a combination of both. * and † Represent significant differences between treatment and saline + NMDA (P < 0.05 and P < 0.01, respectively), ‡ represents significant difference between treatment and saline + saline (P < 0.001). Data are the mean ± s.e.m. of 5 sheep; s.e.m. are not shown in (a) for clarity... 157

XXI
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-pCPT-cGMP</td>
<td>8-para-clorophenylthio cGMP, a membrane-permeable cGMP analogue</td>
</tr>
<tr>
<td>[Ca^{2+}]_i</td>
<td>intracellular calcium concentration</td>
</tr>
<tr>
<td>AA</td>
<td>arachidonic acid</td>
</tr>
<tr>
<td>AACOCF₃</td>
<td>arachydonyl trifluoromethylketone, a type-unspecific PLA₂ inhibitor</td>
</tr>
<tr>
<td>aCSF</td>
<td>artificial cerebrospinal fluid</td>
</tr>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>C5</td>
<td>fifth cervical vertebra</td>
</tr>
<tr>
<td>CaM</td>
<td>Ca^{2+}-calmodulin complex</td>
</tr>
<tr>
<td>cAMP</td>
<td>3',5'-cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CB</td>
<td>cannabinoid</td>
</tr>
<tr>
<td>cGMP</td>
<td>3',5'-cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gen-related peptide</td>
</tr>
<tr>
<td>CI</td>
<td>confidence intervals</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>COX</td>
<td>cyclo-oxygenases</td>
</tr>
<tr>
<td>cPLA₂</td>
<td>cytosolic Ca^{2+}-dependent PLA₂</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>DAG</td>
<td>diacylglycerol</td>
</tr>
<tr>
<td>DRCAP</td>
<td>dorsal root compound action potential</td>
</tr>
<tr>
<td>DRG</td>
<td>dorsal root ganglion</td>
</tr>
<tr>
<td>DR-VRP</td>
<td>dorsal root evoked population ventral root potential</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial NOS</td>
</tr>
<tr>
<td>epsp</td>
<td>excitatory postsynaptic potential</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>i.t.</td>
<td>intrathecal</td>
</tr>
<tr>
<td>IC_{40}</td>
<td>inhibitory concentration at 40% depression of maximum possible effect</td>
</tr>
<tr>
<td>IC_{50}</td>
<td>inhibitory concentration at 50% depression of maximum effect, median inhibitory concentration</td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible NOS</td>
</tr>
<tr>
<td>InsP₃</td>
<td>inositol-(1,4,5) triphosphate</td>
</tr>
<tr>
<td>iPLA₂</td>
<td>cytosolic Ca^{2+}-independent PLA₂</td>
</tr>
</tbody>
</table>
L-NAME \(\Lambda^\text{N}\)-nitro-L-arginine methyl ester
L-PGDS lipocalin-type PGD synthase
MAFP methyl arachidonoyl fluorophosphonate, a type-unspecific PLA\(_2\) inhibitor
MPE maximum possible effect
mPGS\(_1\) microsomal PGE synthase 1
mPGS\(_2\) microsomal PGE synthase 2
MSR monosynaptic compound action potential
N Newtons
NF-kB nuclear factor-kB
NK\(_1\) neurokinin\(_1\) receptor
NMDA \(N\)-methyl-D-aspartate
nNOS neuronal NOS
NO nitric oxide
NOS nitric oxide synthase
NSAIDs non-steroidal anti-inflammatory drugs
ODQ 1H-[1,2,4]oxadiazo[4,3-\(\alpha\)]qinoxalin-1-one, a guanylate cyclase blocker
PCOX-1a partial COX-1a
PCOX-1b PCOX-1a
PGDS PGD synthases
PGES PGE synthase
PGFS PGF synthase
PGs prostaglandins
PKA protein kinase A
PKC protein kinase C
PKG cGMP-dependent protein kinases
PLA\(_2\) phospholipase A\(_2\)
PS phosphatidylserine
PSD-93 postsynaptic density-93
PSD-95 postsynaptic density-95
Rp-8-p-CPT-cGMPS Rp-8-p[(4-Chlorophenyl)thiol]-cGMPS triethylamine, a selective PKG-1\(\alpha\) inhibitor
SP substance P
sPLA\(_2\) secretory PLA\(_2\)