Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Influence of Dietary Fat Inclusion on the Ileal Digestibility of Amino Acids in Broilers

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Animal Science

at Massey University, Manawatu,

New Zealand

Thomas Harrison Whitehouse

2018
Acknowledgments

This project would not have been completed if not help from the Massey poultry unit. Special thanks to Ed James, Shaun de Malmanche, Elham Ebrazeh, Nipuna Perera, Asnath Mtei, Kaliwyn Pereka, Fifi Zaefarian, Colin Naftel and Naveed Anwar for help with diet preparation, sample collection and other aid with conducting the experiments. Thank you to my supervisors Ravi Ravindran and Reza Abdollahi for advice and aid with my project.

I would also like to thank the Massey University Nutrition Laboratory and Felicity Jackson for analyzing various digesta samples.

I would also like to thank my parents, Patrice and Thomas Whitehouse for their support during my master’s degree studies.
List of Contents

Acknowledgments i
List of Abbreviations: iv
List of Tables iv
Chapter 1: General introduction 1
Chapter 2: Literature review 2
2.1 Introduction 2
2.2 Fats in broiler diets 3
2.3 Endogenous amino acid losses 7
2.3.1 Measurement of basal endogenous losses 7
2.3.1.1 Protein-free diets 8
2.3.1.2 Regression method 9
2.3.1.3 Fasting method 9
2.3.2 Sources of endogenous protein 10
2.3.3 Effects of feed components 11
2.3.3.1 Non-starch polysaccharides 11
2.3.3.2 Phytate 13
2.3.3.3 Fats 14
2.4 Measurement of amino acid digestibility 15
2.5 Influence of fats on amino acid digestibility 15
2.6 Mode of action 20
2.6.1 Increase in gut retention time 20
2.6.2 Effects of fatty acid composition 21
2.6.3 Changes in digestive morphology 23
2.6.4 Bird Age 24
2.6.5 Other factors 24
2.7 Conclusions 27
Chapter 3: Effect of dietary fat on endogenous amino acid losses 28
Chapter 3: The interaction between grain type and dietary fat source on nutrient digestibility in broilers

3.1 Abstract

3.2 Introduction

3.3 Materials and Methods

3.3.1 Birds and housing

3.3.2 Diets

3.3.3 Digesta collection

3.3.4 Chemical analysis

3.3.5 Calculations

3.3.6 Statistical analysis

3.4 Results

3.4.1 Fatty acid composition

3.4.2 Ileal endogenous losses

3.5 Discussion

3.6 Conclusion

Chapter 4: The interaction between grain type and dietary fat source on nutrient digestibility in broilers

4.1 Abstract

4.2 Introduction

4.3 Materials and methods

4.3.1 Diets

4.3.2 Birds and housing

4.3.3 Digesta collection

4.3.4 Chemical analysis

4.3.5 Calculations

4.3.6 Statistical Analysis

4.4 Results

4.4.1 Dry matter digestibility
List of Abbreviations:

AA: Amino acid(s)
CAD: Coefficient of apparent digestibility
DM: Dry matter
EL: Endogenous Loss(es)
GE: Gross energy
NSP: Non-starch polysaccharide(s)
Table 4.3: Influence of grain type and fat source on coefficient of apparent digestibility of nitrogen in different segments of the digestive tract in male broilers at 21 days post-hatch

Table 4.4: Influence of grain type and fat source on coefficient of apparent digestibility of starch in different segments of the digestive tract in male broilers at 21 days post-hatch

Table 4.5: Influence of grain type and fat source on coefficient of apparent digestibility of fat in different segments of the digestive tract in male broilers at 21 days post-hatch

Table 4.6: Influence of grain type and fat source on coefficient of apparent digestibility of gross energy in different segments of the digestive tract in male broilers at 21 days post-hatch

Table 4.7: Influence of grain type and fat source on coefficient of apparent ileal digestibility of indispensable amino acids in male broilers at 21 days post-hatch

Table 4.8: Influence of grain type and fat source on coefficient of apparent ileal digestibility of dispensable amino acids in male broilers at 21 days post-hatch