Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Discovering Food Product Design
By Shaping Sheep’s Cheese Perception in New Zealand

An exegesis presented in partial fulfilment of the requirements for the degree of Masters of Design at Massey University, Wellington, New Zealand.

Pilar Fallas, 2018
Figure 1. Meyer sheep cheese produced in Hamilton, New Zealand. Original, 2017.
KEYWORDS

Food
Product
Design
Cheese
Sheep
Experience
Perception
Emotion
Industry
Stereotype
Glossary

Formulation: This a combination of raw materials in specific proportion. To make a formulation the product qualities must be defined previously, data about raw materials must be collected (qualities and cost), quantitative techniques are used to control the tests (linear programming, experimental design and mixture designs) as well as product profile tests and technical tests related to the product qualities (Earle & Earle, 2009).

Prototype: A prototype from the food science perspective is a preliminary version of the product; after several iterations the product is perfected into a final product. From the perspective of design, a prototype is “anything that takes an idea out of your head and makes it visible for others” (McElroy, 2016, p.1). For this project, prototype is understood as the materialization of an idea which is made with the real materials that would be used in the final product.

Model: For this project, a model is understood as a “mock up”. It is the materialization of an idea which is made out of materials which are not the real ones. The goal is just to create a quick representation of the ideas.

Process: A series of ordered steps.

Optimization: The act of achieving standardized quality with efficiency (least time possible) for a particular task.

Experience: A meaningful moment in someone’s life.
ABSTRACT

The Food Industry is more interested than ever in creating value through differentiation and innovation, but often overlooks creativity as key factor in generating returns from food product experiences.

This project is an exploration into how design; as a creative discipline, and food science, as a technical discipline, can more closely align and collaborate to create valuable food product experiences. To explore this nexus, I exposed myself, a food scientist, to the creative research practices of design in order to develop a new cheese product.

The project is a contribution to the development of New Zealand’s fledgling sheep dairy industry. I first examined New Zealanders’ traditional perceptions and hidden desires in relation to sheep milk products. I then explored the different dimensions of the food object (Bassi, 2015) by developing a range of sheep’s cheese products to help New Zealanders become more adventurous sheep milk product consumers.
ACKNOWLEDGMENTS

I am deeply grateful to the New Zealand Government and the NZAid program for giving me the opportunity of completing this Master’s degree and presenting this project. This challenge is possibly the biggest I have ever undertaken, and the most enriching experience I have ever had on my way for becoming a better professional.

Thanks to my supervisors, Matthijs Siljee, Craig Prichard and Alistair Carr for pushing me to overcome my limits and for their support during this project.

To my friends at the studio, you guys don’t now know much you helped me. Thank you so much for every piece of advice you gave me and for your support.

To my Costarican family and my Kiwi family: Shirley, Ruth, Dorian, and dear Ruby. Thank you for always being here. Pura vida! Sweet as!

Finally, special thanks to Rolo and Magda for their unconditional friendship, photography and editing assistance.
As food product developer, I would like to create food product experiences. The reason is simple: food is a powerful material; it has not only physiological functionality, it has emotional and cultural power (Catterall, 1999).

Humans look for more than nutrients in their foods. There are several motivations for people to eat. A study carried out in Germany in 2012 have found a total of 331 motives for eating behaviour, where the five most common were (1)-liking, (2)-habits, (3)-hunger, (4)-health and (5)-convenience (Renner et al, 2012). It is interesting that liking, and not hunger, is the first reason for eating, an aspect related to emotion. I believe food is more than nutrients, and we must design it considering human needs, desires and emotions.

I am a Costarican food scientist with a strong interest in food product development. My research involves finding answers to the following questions: How can I create food products to fulfill human requirements? How can I create food products people love? How can I create food that stimulates emotional reactions? How can I create food product experiences? How can I add value to food products through creativity? How can I bring together design and food science to create meaningful food products?
LIST OF FIGURES

Figure 1. Meyer sheep cheese produced in Hamilton, New Zealand. Original, 2017. 3
Figure 2. Design process chart. Sanders & Stappers, 2012. 6
Figure 3. Data chart for obtaining insight. Original, 2017. 12
Figure 4. Maori farm. New Zealand Geographic. 13
Figure 5. Milk at school. New Zealand Geographic. 14
Figure 6. New Zealand cultural identity tattoo, unknown author. 15
Figure 7. Maturation cave of traditional sheep's milk Roquefort cheese with Denomination of Origin. Société Roquefort. 16
Figure 8. Cow's milk cheeses (left) vs sheep's milk cheeses (right), Moore Wilson's. Original, 2017 17
Figure 9. Common sheep's cheese brand in New Zealand's supermarkets. Original, 2017. 18
Figure 10. Cow's milk price: $1.75/L (left) vs sheep's milk price: $8/L (right). Original, 2017. 19
Figure 11. Sheep gouda is back. Original, 2017. 20
Figure 12. Goat's cheese as sheep's cheese. Original, 2017. 22
Figure 13. National Field Days Hamilton. Unknown author, 2017. 25
Figure 14. Sheep's milk mozzarella cheese tasting at National Field Days Hamilton. Unknown author, 2017. 25
Figure 15. Tasting sheep's cheese workshop setup, Biz Dojo. Karasinska, 2017. 28
Figure 16. Plate made during sheep's cheese-tasting workshop, Biz Dojo. Karasinska, 2017. 28
Figure 17. Sheep's cheese for tasting workshop, Biz Dojo Karasinska, 2017. 28
Figure 18. Participants working in sheep's cheese-tasting workshop, Biz Dojo. Karasinska, 2017. 28
Figure 19. Sheep cheese plate making, Biz Dojo. Karasinska, 2017. 28
Figure 20. Participants' reaction during sheep's cheese tasting workshop, Biz Dojo. Karasinska, 2017. 29
Figure 21. Sheep's cheese tasting workshop tweet caption. Swift, 2017. 30
Figure 22. Observing form and texture of Gouda, Camembert, and basil green cheese. Original, 2017. 33
Figure 23. Sheep's cheese micro balls model. Original, 2017. 35
Figure 24. Sheep's cheese caviar preserve model. Original, 2017. 35
Figure 25. Sheep's cheese cheesecake model. Original, 2017. 35
Figure 26. Sheep's cheese bliss balls model. Original, 2017. 35
Figure 27. Sheep's cheese fruit paste lollie model. Original, 2017. 35
Figure 28. Sheep's cheese into fruit paste. Original, 2017. 35
Figure 29. Sheep's cheese popsicle sketch. Original, 2017. 36
Figure 30. Cheese form exploration using clay. Original, 2017. 37
Figure 31. oscypek cheese. Paty photography. https://fineartamerica.com/featured/oscypki-pati-photography.html 38
Figure 32. Rock shape exploration. Cheese mould and pattern making. Original, 2017. 39
Figure 33. Rock-shaped cheese product sketch. Original, 2017. 40
Figure 34. Modular rock-shaped cheese product sketch. Original, 2017. 41
Figure 35. Modular-rock shaped cheese product model. Original, 2017. 41
Figure 36. Bite-sized, rock-shaped cheese product model. Original, 2017. 42
Figure 37. Flat rock-shaped cheese product model. Original, 2017. 43
Figure 38. Bite-sized, sequential cheese shapes. Original, 2017. 44
Figure 39. Bite-sized, modular cheese shapes. Original, 2017. 45
Figure 40. Simple bite-sized cheese shapes. Original, 2017. 45
Figure 41. Example of required installations for food product development. PDLab. Massey University Palmerston North. Original, 2017.

Figure 42. pH meter. Essential laboratory equipment for cheese making. Original, 2017.

Figure 43. Equipment used to produce cheese at home for this project. Original, 2017.

Figure 44. Common quality problems in cheese samples prepared for this project due to the lack of access to equipment to control temperature and humidity parameters during the maturation process. Original, 2017.

Figure 45. Processed sheep’s cheese. Original, 2017.

Figure 46. Sheep’s milk fresh cheese. Original, 2017.

Figure 47. Sheep’s milk fresh mozzarella. Original, 2017.

Figure 48. Sheep’s milk cheddar cheese. Original, 2017.

Figure 49. Soft sheep’s milk white mold cheese. Original, 2017.

Figure 50. Blue cheese. Original, 2017.

Figure 51. Hard sheep’s milk white mold cheese. Original, 2017.

Figure 52. Sheep’s milk Spanish-style cheese with red wine rind. Original, 2017.

Figure 53. Manchego cheese rind pattern. Unknown.

https://patanegrorestaurante.com/manchego-cheese-don-juan

Figure 54. Parmigiano Reggiano rind pattern. Liguori. https://www.flickr.com/explore/2017/12/16

Figure 55. Pattern carving for cheese mould-making using MDF material. Original, 2017.

Figure 56. Pattern carving for cheese mould-making using acrylic material. Original, 2017.

Figure 57. Making patterns over cheese rind using metal tools. Original, 2017.

Figure 58. Stamping patterns and colouring cheese rinds. Original, 2017.

Figure 59. Stamping patterns over cheese rinds using colour. Original, 2017.

Figure 60. Sketching top view of product concepts, Massey University, Wellington. Original, 2017.

Figure 61. Product concept 1 diagram and materials. Original, 2017.

Figure 62. Spherical stones in Guayabo, Costa Rica. http://www.icomoscr.org/content/index.php/patrim-arqueol/272-arqueologico-2012-07-27

Figure 63. Product concept 1, model 1. Original, 2017.

Figure 64. Product concept 1, model 2. Original, 2017.

Figure 65. Product concept 2 diagram and materials. Original, 2017.

Figure 66. Product concept 2 model. Original, 2017.

Figure 67. Product concept 3 diagram and materials. Original, 2017.

Figure 68. Product concept 3 model. Original, 2017.

Figure 69. Product concept 4 diagram and materials. Original, 2017.

Figure 70. Product concept 4, model 1. Original, 2017.

Figure 71. Product concept 4, model 2. Original, 2017.

Figure 72. Product concept 4, model 3. Original, 2017.

Figure 73. Product concept 4, model 4. Original, 2017.

Figure 74. Product concept 4 model 5. Original, 2017.

Figure 75. Product concept 4 model 6. Original, 2017.

Figure 76. Product concept 4 model 7. Original, 2017.

Figure 77. Product concept 5 model. Original, 2017.

Figure 78. Product concept 5 model with paper shell. Original, 2017.

Figure 79. Product concept assessment. Original, 2017.

Figure 80. Product concept to be refined. Original, 2017.

Figure 81. Cheddar cheese for final prototype. Original, 2017.

Figure 82. White mould cheese for final prototype. Original, 2017.

Figure 83. Red wine cheese for final prototype. Original, 2017.

Figure 84. MDF triangular moulds for making cheese prototypes. Original, 2017.

Figure 85. Acrylic triangular moulds for making cheese prototypes. Original, 2017.

Figure 86. Sharp vertices acrylic triangular mould (left) and round vertices acrylic triangular mould (right) for making cheese prototypes. Original, 2017.

Figure 87. Cardboard cheese boxes iterations. Original, 2017.

Figure 88. Cheese-wrapping paper embossing. Original, 2017.

Figure 89. Paper shell design iteration. Original, 2017.

Figure 90. Paper shell colour refinement. Original, 2017.

Figure 91. Information printed on paper shell. Original, 2017.

Figure 92. Cheese boxes colour and design iteration. Part 1. Original, 2017.

Figure 93. Combination of cheese boxes colour and paper shell colour iteration. Original, 2017.

Figure 94. Painting final prototype boxes. Original, 2017.

Figure 95. Final cheese product prototype. Box closed. Karasinska, 2017.

Figure 96. Final cheese product prototype sharing space with other cheese products. Karasinska, 2017.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Creativity in food production</td>
<td>2</td>
</tr>
<tr>
<td>Reading guide</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER I. METHODS</td>
<td>5</td>
</tr>
<tr>
<td>General methods</td>
<td>6</td>
</tr>
<tr>
<td>To consider</td>
<td>7</td>
</tr>
<tr>
<td>CHAPTER II. THE KEYPOINT</td>
<td>8</td>
</tr>
<tr>
<td>The food product experience</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER II. INSIGHT COLLECTION</td>
<td>11</td>
</tr>
<tr>
<td>Identifying observational statements</td>
<td>13</td>
</tr>
<tr>
<td>Identifying insight statements</td>
<td>23</td>
</tr>
<tr>
<td>Defining product requirements</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER IV. DESIGN PROCESS</td>
<td>32</td>
</tr>
<tr>
<td>Exploration</td>
<td>33</td>
</tr>
<tr>
<td>Ideation</td>
<td>66</td>
</tr>
<tr>
<td>Refinement</td>
<td>87</td>
</tr>
<tr>
<td>Final design</td>
<td>94</td>
</tr>
<tr>
<td>CHAPTER V. FINDINGS</td>
<td>118</td>
</tr>
<tr>
<td>Summary of the findings</td>
<td>119</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>121</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>128</td>
</tr>
</tbody>
</table>