Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE INFLUENCE OF CULTURAL PRACTICES ON
SOIL ORGANIC MATTER, SOIL BIOMASS SIZE
AND NITROGEN LEACHING

A thesis presented
in partial fulfilment of the requirements for the Degree of
Master of Agricultural Science (Environmental Science)
at
Massey University, New Zealand

P. MAPFUMO

1994
ABSTRACT

The effects of bare fallow, cultivation and nitrogen application on soil organic matter, soil biomass and nitrogen leaching were compared against the backgrounds of permanent grass pasture and grass/clover pasture. Cultivated plots were dug annually to a depth of 15 cm. All plots received an annual dressing of 300 kg ha\(^{-1}\) of Potassic Super. The Nitrogen treatment was applied as two equal applications of 100 kg ha\(^{-1}\) Calcium Ammonium Nitrate in November and December each year.

The results indicated that both bare fallowing and cultivation reduced soil organic matter and soil microbial biomass. The use of N-fertilizer did not promote either the soil organic matter or soil microbial biomass; this is contrary to the general finding.

Legume nitrogen was found to leach as readily as the applied nitrogen and hence posed an environmental threat to groundwater quality. In all cultural practices the largest concentration of nitrate nitrogen (NO\(_3\)-N) was observed at the 50 - 100 m depth, below the root zone. Vertical movement of groundwater was estimated at 1 m year\(^{-1}\). This confirmed the concern of possible groundwater pollution by nitrate nitrogen from agricultural activities.
ACKNOWLEDGEMENTS

My sincere gratitude goes to the following people:

(a) Dr. I. Valentine - I am forever greatly indebted to him for the role he played as my chief supervisor. He, like patient and understanding Noah, guided me in my research work and compilation of this thesis. I wish to express my heartfelt gratitude to him for his warm encouragement, constructive criticisms and patience in reading and discussing my manuscripts.

(b) Dr. P.R. Ball - My sincere thanks are also extended to Dr. Ball, my second supervisor. I found him to be a sincere and easy going person with whom it was good to work. My thanks to him go beyond academic realms. I thank him for the leisure time; lunches we shared and finally, I thank him for the adding an extra dimension to my taste of music.

(c) Dr R.A. Carran and Dr D.R. Scotter: My sincere thanks to you for your professional advice and views.

(d) Messrs M.R. Ghannadha and H. Mirzaie-Nodoushan of Iran - for helping me in overcoming my computer-illiteracy and for helping with the analytical work.

(e) Mr and Mrs J.S. Tichagwa - I appreciate the role you played during the humble beginning of my academic career. Without your assistance I would not have been able to transform my ambitions into reality. I just don't have enough words to express my gratitude. Thank you so much. May God bless you.

(f) To my mother: Thank you so much for the parental role you have executed single-handedly with the advent of the untimely death of our father. Things have not been easy for you but you never faltered. It's a gift from God to have a mother of such sublime qualities as yours.
(g) Last but not least my sincere thanks go to Miss J. Ghezimati, and Messrs A. Waungana and E. Rushizha from Zimbabwe for their encouragement and support when I was in hospital and when misfortune put me on the wrong side of the law.
TABLE OF CONTENTS

CHAPTER 1 ... 1
1 General Introduction ... 1
 1.1 Introduction .. 1
 1.2 Nitrate problem in the Environment 3

CHAPTER 2 ... 6
2 Literature Review ... 6
 2.1 Introduction .. 6
 2.2 The Nitrogen Cycle .. 6
 2.2.1 Biological Fixation ... 8
 2.2.1.1 Fixation by Free-living microorganisms 8
 2.2.1.2 Symbiotic N-fixation 8
 2.2.2 Mineralization and immobilization 9
 2.3 The Fate of Nitrogen in the soil .. 9
 2.4 Cultural practices and implication on soil N dynamics 11
 2.5 Nitrogen fertilizers in New Zealand Agriculture 12
 2.6 Indexing Soil N Availability and leaching Potential 13
 2.6.1 Biological Methods .. 14
 2.6.1.1 Aerobic Incubation 14
 2.6.1.2 Anaerobic Incubation 14
 2.6.2 Bioassay or Exhaustive Cropping 14
 2.6.3 Chemical methods .. 15
 2.7 Soil Microbial Biomass ... 15
 2.8 Soil Organic Matter ... 16

CHAPTER 3 ... 17
3 Experimental Design ... 17
 3.1 Experimental Site .. 17
 3.2 Treatments ... 17
3.3 Management of the Experiment 18
3.4 Experimental Design ... 19
3.5 Data Collection ... 19

CHAPTER 4 ... 22

4 Indexing Soil Mineral N: Incubation Technique 22
 4.1 Introduction .. 22
 4.2 Objectives ... 22
 4.3 Methods and Materials .. 23
 4.4 Mineral N Determination in Samples 23
 4.5 Results and Discussion 24
 4.5.1 Available Soil N ... 24
 4.5.2 Incubations ... 26
 4.6 Conclusion ... 30

CHAPTER 5 ... 31

5 Exhaustive Cropping .. 31
 5.1 Introduction .. 31
 5.2 Objectives of the study 31
 5.3 Methods and Materials 31
 5.3.1 Watering .. 32
 5.3.2 Planting ... 32
 5.3.3 Pest Control ... 32
 5.3.4 Harvesting .. 32
 5.3.5 Herbage Chemical Analysis 33
 5.4 Results and Discussion 33
 5.5 Conclusion ... 37

CHAPTER 6 ... 38

6 Soil Microbial Biomass Assessment 38
 6.1 Introduction .. 38
 6.2 Objective ... 38
6.3 Methods and Materials ... 38
 6.3.1 Calculations .. 40
6.4 Results and Discussion ... 41
6.5 Conclusion ... 44

CHAPTER 7 .. 45
7 Nitrate Leaching ... 45
 7.1 Introduction ... 45
 7.2 Objectives ... 46
 7.3 Methods and Materials ... 46
 7.3.1 Monthly Drainage Estimation 47
 7.3.2 Soil Water in the Deep Cores at Sampling Time 48
 7.3.3 Calculation of NO₃⁻-N leached per m² 48
 7.4 Results and Discussion .. 49
 7.5 Conclusion .. 54

CHAPTER 8 .. 55
8 General Discussion ... 55

BIBLIOGRAPHY ... 58

APPENDICES ... 74
LIST OF TABLES

Table 3.1: pH, organic matter and bulk density measured within the top 15cm of the soil ... 20

Table 4.1: Initially available soil nitrogen (mg N Kg⁻¹ dry soil) 24

Table 4.2: Potentially available soil nitrogen levels under aerobic incubation (mg N Kg⁻¹ dry soil) 27

Table 4.3: Potentially available soil nitrogen levels under anaerobic incubation (mg N Kg⁻¹ dry soil) 28

Table 5.1: Data from the four successive cuts, root dry matter (RDM) and total dry matter (TDM) of the ryegrass plants in the greenhouse experiment (g⁻¹ pot) .. 34

Table 5.2: Nitrogen taken up by ryegrass expressed both in terms of total N uptake per pot (mg) and N uptake per kilogram of pot soil (mg) ... 35

Table 6.1: CO₂-C flushes following the inoculation and incubation of the fumigated soil samples (µg C g⁻¹ dry soil) 43

Table 7.1: Soil nitrogen levels down the soil profile in the sampled cores (mg NO₃⁻N Kg⁻¹ dry soil) ... 49

Table 7.2: Nitrate levels in deep cores averaged across depths and expressed as mg NO₃⁻N Kg⁻¹ of dry soil and mg NO₃⁻N L⁻¹ of soil solution 50

Table 7.3: Amounts of nitrate nitrogen leached into the 50 - 200cm soil depth (g NO₃⁻N/m²) ... 51
LIST OF FIGURES

Figure 2.1: The relationship between some N transformations and their role in agricultural production and environmental pollution 7
APPENDICES

Appendix 1: Analysis of variance for the soil physical properties 74

Appendix 2a: Analysis of variance for the initially available NH₄-N and NO₃-N and that potentially available under incubation conditions ... 74

Appendix 2b: Analysis of variance for total N (NH₄-N + NO₃-N) in field moist soil and the incubated soils 75

Appendix 3a: Analysis of variance for the ryegrass cuts from the greenhouse experiment .. 76

Appendix 3b: Analysis of variance for the N uptake by ryegrass plants 77

Appendix 4a: Microbial biomass size of the studied plots (µg C g⁻¹ dry soil) ... 77

Appendix 4b: Analysis of variance for the microbial biomass 78

Appendix 5a: Monthly rainfall and drainage data for the study site 79

Appendix 5b: Soil nitrate levels across treatments and blocks in mg N₃O-N Kg⁻¹ dry soil .. 80

Appendix 5c: Amounts of N₃O-N Leached per m² - 50cm core section (in grams) 81

Appendix 5d: Estimated soil water depths for the core sections (mm) 82

Appendix 5e: Total NO₃-N leached per m² in 1992 (g) 83

Appendix 5f: Analysis of variance for the NO₃-N levels in the deep cores 83
CHAPTER 1

1 General Introduction

1.1 Introduction

Agriculture manipulates energy fluxes, nutrient dynamics and hydrological cycles. Such manipulation may involve clearing and burning to remove woodland, ploughing, fertilizer application and seeding to create crops and pastures and intensive grazing by domestic animals. Increasingly, farmers, agricultural scientist and environmentalists are turning their attention to considerations of the chemical and biological integrity of the cropping systems. The reasons for this are obvious. When man converts natural ecosystems into agroecosystems, he modifies many specific features of their structure and dynamics. These modifications affect two basic ecosystem characteristics. They tend to reduce the importance of detritus food chains and to increase the importance of nutrient and energy exports from the system (Cox and Atkins, 1979). In particular the nitrogen cycle has captured the interest of both environmentalists and agriculturalists. The environmental concerns stem from the fact that potable water pollution by NO$_3^-$ in run-off or groundwater has been linked to carcinogenic nitrosamines from NO$_2^-$ and the depletion of ozone layer by soil evolved N$_2$O (Crutzen, 1981 and Byrnes, 1990). From the agricultural point of view nitrogen cycling is of paramount importance in that it is one of the most limiting nutrients in crop yields. Furthermore, in economic terms N fertilizer constitutes a large monetary cost of crop production.

For more than a century now mankind has always been keen to know more about the impact of his agricultural activities on the environment since this has a bearing on the long-term sustainability of agricultural systems. Jenkinson (1991) reported on British experiments as old as 150 years in which inorganic nutrients, in various combinations, were compared with farmyard manure - the traditional source of fertility. These experiments provided a wealth of information with regard to long-term effects of inorganic fertilisers and organic manures on soil organic matter levels. Over the years
agricultural research has broaden its focus. Todate several other issues have been incorporated into this historic research thrust. These include research on changes in soil pH over time and nitrogen cycling in these agroecosystems. This kind of research is no longer limited to more conventional cropping systems such as cereals but has been extended to pastoral systems as well. For example in New Zealand there is currently a strong interest in cycling efficiencies of many plant nutrients in grazed pastures. It is believed that the grazing animals aggregate many plant nutrients into dung and urine excretions. These excretions contain concentrated forms of many plant nutrients, with N and potassium (K) levels being potentially high (Hogg, 1981). Once urine has been applied onto the soil much of the organic forms of N are rapidly converted to ammonium (NH$_4^+$) then nitrate (NO$_3^-$) ions which are susceptible to losses through leaching and other soil processes such as volatilisation and denitrification.

Managed agroecosystems generally tend to have greater inputs of N than unmanaged systems. Because of this, greater N losses are incurred under intensively managed systems. The actual extent or severity of the losses of N in such systems will depend on several factors. Allison (1966) and Campbell and Paul (1978) pointed out that the amount of N loss is a function of timing and rate of application, cropping system and moisture regime. With good management, losses could be minimised. However, increased exports of N from disturbed and unmanaged natural ecosystems such as forests have long been appreciated. Likens et al., (1970) noted that clear felling of trees alters the N cycle within the ecosystem, greatly increasing the N leakage from the watersheds and resulting in increases in nitrate levels in river waters. Bormann et al., (1968) reported and stressed that the nutrient cycle in a forest is closely geared to all the components of the ecosystem and the balance between decomposition and the nutrient uptake influences the conservation of nutrients within the ecosystem. In the absence of forest vegetation the bulk of mineralized nutrients, and mainly N, are rapidly flushed out from the watershed-ecosystems.
1.2 Nitrate problem in the Environment

The impact of nitrogen on the environment is now well appreciated and a more responsible attitude to the problem has been adopted. Research in crop production is aiming to provide a basis for acceptable compromise in conflicting goals of maximum yield, maximum profit and zero environmental pollution. Peterson and Russel (1991) gave some of the reasons for increasing studies in nitrogen cycling in agricultural production systems as:

(a) depletion of the atmosphere's protective ozone layer.
(b) high demands of energy required in the production of N fertilizers.
(c) accumulating scientific evidence showing that some agricultural practices deposit N in both surface water and groundwater supplies.

The protection of groundwater quality from which both public and private wells draw drinking water is a high priority in most countries. In New Zealand the concentration of NO$_3^-$ in bore and well waters in many areas exceeds the upper limit for potable water of 10mg per litre suggested by the World Health Organisation (Steele and Judd 1984). This problem of nitrate pollution is not being experienced in this country alone. Other countries, for example, the United Kingdom (Wild and Cameron, 1980a) and U.S.A. (Magette and Shirmohammadi, 1989) are facing a similar problem.

Nitrate leaching is a particular problem on cultivated agricultural lands and it is often the most important channel of N losses from field soils. Wild and Cameron (1980b) reported that such losses range from 2 to 100kg ha$^{-1}$ year$^{-1}$ in the UK. This N originates from mineralisation of soil organic matter and fertilizer N not used by crop plants. Addition of N which is essential for obtaining high crop yields commonly increases leaching losses. When high fertiliser rates are combined with heavy irrigation regimes on light-textured soil, leaching losses of nitrate nitrogen (NO$_3^-$-N) can be large (Weil et al., 1990). The processes involved in NO$_3^-$ leaching and factors influencing losses have been studied extensively because of their economic and environmental significance (Cameron and Haynes 1986). However, data is needed on specific cultural practices and their impact on N leaching from the soils. Such studies could help develop
best management practices for agricultural land to protect groundwater. It has been found that nitrate moves downward through the soil profile at a rate of about 1 to 2 m per year depending on soil type and the underlying rock (Young et al., 1979). This kind of information may not only make it possible to predict when problems in drinking water may arise but may also help identify which cultural practices pose the greatest risk of N pollution to ground water.

The current rising levels of nitrate in groundwater is attributed to application of N-fertilisers by farmers. Because of this, calls for the control, or in some cases a ban, on the use of N-fertilisers by farmers have been put forward, particularly in Europe. Work by Powlson et al. (1986) strongly points to the residual N from previous seasons and from the soil organic N. The work suggests that organically bound N can be a major source of nitrate pollution when it is finally re-mobilised by soil microbes. This microbially produced N is subject to leaching if the re-mobilisation rate is not matched with the plant uptake.

In order to investigate more closely the complexity of this issue, a six-year experiment was set up at DSIR Grassland, Palmerston North. The objective was to assess how cultural practices affect soil's N mineralisation potential and N leaching. In particular, the effect of cultivation, bare fallowing and legume N fixation was investigated. Additional investigation was to assess the impact of these cultural practices on soil microbial populations since the N mineralisation and soil biomass are closely linked. The soil biomass derives its energy and nutrient supplies through the decomposition process. The size of the biomass pool, therefore, reflect the amount of material available for decomposition (Carran 1983) and hence should reflect the long-term amount of C input to the soil (McGill et al., 1986). Because of this close association between biomass and organic matter, biomass assessment can offer an alternative method of assessing the impacts of cultural practices on soil-plant systems. Past scientific work has established that the decline in soil biomass is far more sensitive to measuring effects of cultural practices on any change in organic inputs than is the measuring the total organic matter (Powlson et al., 1987 and Powlson and Jenkinson,
1981). The measurement of microbial biomass could thus be a valuable tool for understanding and predicting the long-term effects of changes in soil conditions.