Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Water use on pastoral dairy farms in New Zealand:
An analysis of measurements, predictions, and
water footprinting

A thesis presented in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy

in

Environmental Sciences
at the Institute of Agriculture and Environment

Palmerston North, New Zealand.

Caleb David Higham

2017
Abstract

Current water use guidelines for pastoral dairy farms across New Zealand are based on a 1964 study suggesting 70 L per cow per day for stock drinking water (SDW) and 70 L per cow per day for milking parlour water (MPW) use. However, dairy cows and milking parlours have changed significantly over the last half century. This thesis combined detailed monitoring of water use on more than 100 farms in the Waikato, Manawatu, and Canterbury regions with predictive modelling to; set benchmarks for SDW and MPW, analyse temporal and spatial variations of water use for irrigated and non-irrigated dairy farms, and assess the likely impact of climate change on future water demand of pastoral dairy farms across New Zealand. Finally, the thesis applied and evaluated different water footprint methods (the Water Footprint Network method, the Stress-Weighted Water Footprint method, and the Availability WAter REMaining (AWARE) method) to assess the impact of dairy water use on local water resources across different regions of New Zealand. In particular, the effects of varying the accuracy of data sources (local verse global) and the scale of the analysis (regional verse catchment) on the water footprints were investigated.

From this study, in the Waikato region, the mean SDW is 60 L/cow per day and the mean MPW is 49 L/cow per day. In the Manawatu region, the mean SDW is 74 L/cow per day and the mean MPW is 50 L/cow per day. In the Canterbury region, the annual mean SDW is 28 L/cow per day and mean MPW is 64 L/cow per day. For the first time, leakage rates in the supply of SDW were estimated for pastoral dairy farm systems. Average leakage rates were estimated to be approximately 26% in the Waikato region, 47% in the Manawatu region, and 13% in the Canterbury region. Through climate change modelling requirements for
irrigation water were estimated to increase by 17-24%, with the largest increase in Canterbury. Approximately 99% of the volumetric (total volume of water used) water footprint (L/kg fat and protein corrected milk) is associated with the green (from rainfall) and blue (from surface water) water consumed in the growth of pasture and feed at the study farms.

The use of global data sources, as compared to the local data, resulted in underestimation of the volumetric green water footprint (L/kg FPCM) by 12 to 30%, and overestimation of the volumetric blue water footprint (L/kg FPCM) by 3 to 141% in the study regions. Likewise, the water footprint of dairy farming was found to vary markedly with the scale at which this analysis is conducted. The use of local data at a catchment scale gave the most reliable water footprints.

Overall, water use on New Zealand dairy farms has been demonstrated to be much more complex than simple, historic guidelines indicate. The water use values produced in this study can serve as updated industry and policy guidelines, as the industry addresses limits to water availability and future increases in water use requirements for stock drinking water on non-irrigated dairy farms associated with predicted climate change.
Acknowledgements

To my supervisors, co-authors, and guides; Mike Scarsbrook, Dave Horne, Ranvir Singh, Brent Clothier, Barbara Khun-Sherlock, and Sarah McLaren.

My sincere thanks to David Horne, for helping me and having robust discussion. To Mike Scarsbrook for always being there to have a quick chat. To Ranvir Singh, for your help with deciphering water footprinting. To Brent Clothier for your kind input, and sharp knowledge. To Barbara thanks for your help and patience.

Thanks to, Mum and Dad, Julia, Nathan and William, Fraser and Hannah, Nana and Mike, Nan and Grandad, Sue and Brett Cullen, and all my other relatives who offered support.

To the water team: David Burger, Tom Stephens, Justin Kitto, Marc Weeber, Shirley Hayward, and to Rick Pridmore; thank you for your support and banter throughout my thesis.

To other helpful hands and brains: Ben Fisher, Olivia Jordan, Talia Grala, Mallory Crookenden, Jennie Burke, John Roche, Sally-Anne Turner, Hemda Levy, Eric Kolver, Callum Eastwood, Susanne Meier, and Susan Stokes. Thanks for your help with reviewing, problem solving, table formatting, and support, all of which were greatly appreciated.

To Adam, Gemma, and Teika, for housing and entertaining me on my trips to Palmerston North.

Thanks to the DairyNZ academic committee for your help and support. Thanks to everyone in the DairyNZ Palmerston North team for your company and lunchtime banter.

To the dairy farmers who were involved in this research and to DairyNZ for funding this research through the Sustainable Dairying: Water Accord. Thank you to all the people that have helped me through this PhD. Whether directly or indirectly it has been appreciated.
Table of Contents

CHAPTER 1. General Introduction .. 1

1.1 Background and Justification .. 1

1.1.1 Regional Council policy related to water allocation 3

1.2 Research Objectives ... 7

1.3 Thesis Structure ... 8

1.4 References ... 10

CHAPTER 2. Literature Review .. 16

2.1 Literature Review Summary .. 16

2.2 Water Use on New Zealand Pasture-Based Dairy Farms 16

2.3 Cow Welfare and Wellbeing ... 20

2.4 Dairy Cow Drinking Water ... 20

2.4.1 Dairy cow water intake – pasture systems .. 23

2.4.2 Overseas dairy cow water intake .. 26

2.4.3 Drivers of water intake .. 27

2.4.4 Dairy cow water intake predictions for confinement systems 29

2.4.5 Dairy cow water intake predictions for pasture systems 32

2.4.6 Summary .. 39

2.5 Milking Parlour Water Use .. 40

2.5.1 Milking parlour types .. 40

2.5.2 Primary milk cooling .. 41
3.3.1 Farm description... 75
3.3.2 Data collection ... 78
3.3.3 Data management and calculations.. 78
3.3.4 Statistical analyses ... 81
3.3.5 Water use models comparison and evaluation 83
3.4 Results .. 84
3.5 Discussion ... 95
3.6 Conclusions .. 99
3.7 Acknowledgements .. 99
3.8 References ... 100

CHAPTER 4, Water Use on Irrigated Pasture-Based Dairy Farms............. 107

4.1 Abstract .. 107
4.2 Introduction .. 108
4.3 Materials and Methodology ... 110
 4.3.1 Data collection .. 111
 4.3.2 Farm descriptions .. 111
 4.3.3 Data management and calculations .. 114
 4.3.4 Leakage adjustment.. 114
 4.3.5 Statistical analyses ... 115
 4.3.6 Partial least squares modelling ... 115
4.3.7 Evaluation of water use model predictions 122
4.3.8 PLS regression models ... 124

4.4 Discussion .. 132

4.5 Conclusions and Recommendations ... 136

4.6 Acknowledgements ... 136

4.7 References ... 137

CHAPTER 5, Water use accounting for New Zealand dairy farms 141

5.1 Abstract .. 141

5.2 Introduction .. 142

5.3 Materials and Methodology ... 145

5.3.1 Farm systems, data sources, and data management 145

5.3.2 Irrigation water use ... 148

5.3.3 Water use modelling ... 149

5.3.4 Climate change scenarios ... 151

5.4 Results .. 155

5.5 Discussion .. 164

5.5.1 Current-day water use by the NZ dairy industry 164

5.5.2 Estimating irrigation water use .. 165

5.5.3 Water use by the dairy industry under climate change 166

5.6 Conclusions .. 168

5.7 Acknowledgements ... 169

5.8 References ... 169
CHAPTER 6. Quantification of the Water Footprint of Dairy Farming: the Effect of Water Footprint Methods, Data Sources, and Spatial Scale

6.1 Abstract .. 173
6.2 Introduction .. 175
6.3 Materials and Methodology .. 179
 6.3.1 System analysed – location and details of study farms 179
 6.3.2 Water footprint methods ... 185
 6.3.3 Data sources and spatial scale ... 190
 6.3.4 Global data sources ... 194
 6.3.5 Local data sources ... 196
6.4 Results .. 199
 6.4.1 Volumetric WF and its variation on farms .. 199
 6.4.2 Effect of different water footprint methods .. 204
 6.4.3 Effect of local and global data sources .. 209
 6.4.4 Effect of spatial scale ... 216
6.5 Discussion ... 219
 6.5.1 Evaluation of water footprint method ... 219
 6.5.2 Appropriate data sources and spatial scales .. 221
6.6 Conclusion .. 224
6.7 References .. 225

CHAPTER 7. Conclusions and Recommendations ... 234

7.1 Implications and Future Research .. 241
List of Tables

Table 2-1 New Zealand Dairy Production System Types (Ramsbottom et al., 2015) ... 18
Table 2-2 metabolic water volumes (Houpt, 1970) .. 22
Table 2-3. Published Dairy Cow Water Consumption Volumes (L/cow per d) in New Zealand ... 25
Table 2-4. Review of models for variables\(^1\) voluntary water intake (VWI) prediction in dairy farms. ... 30
Table 2-5 Water Use in the Milking Parlour .. 47
Table 2-6 Annual water allocation by region and primary use (Aqualinc, 2010). 51
Table 3-1. Characteristics of dairy farms used for water-use analysis. 77
Table 3-2. List of farm variables used for water use modelling. 82
Table 3-3. Average monthly stock drinking water (SDW), corrected stock drinking water (cSDW\(^1\)), leakage, milking parlour water use (MPW), and total water use (TW) on pasture-based dairy farms (n).. 85
Table 3-4. Partial least squared regression model\(^1\) equations (raw coefficients) for predicting corrected stock drinking water use (log\(_{10}\) cSDW) on pasture-based dairy farms (n = 22). ... 88
Table 3-5. Partial least squared regression models\(^1\) and polynomial regression model equations (raw coefficients) for predicting milking parlour water use (log\(_{10}\) MPW) on pasture-based dairy farms .. 89
Table 3-6. Partial least squared regression models\(^1\) and polynomial regression model equations (raw coefficients) for predicting total water use (log\(_{10}\) TW) on pasture-based dairy farms. ... 90
Table 3-7. Evaluation of models to predict corrected stock drinking water [cSDW1; cSDW Model 3, Castle and Thomas (1975), Dahlborn et al. (1998)], milking parlour water (MPW; MPW Model 3), and total water (TW; TW Model 3). ... 94

Table 4-1. Characteristics (SD in parentheses) of the dairy farms used for water use analysis. ... 113

Table 4-2. List of different farm variables used in the water use analysis........ 117

Table 4-3. Average 365-d and peak water use measurements (L/cow per day) for stock drinking water (SDW), corrected stock drinking water (cSDW), leakage, milking parlour water (MPW), total water (TW), and irrigation water (IW). 119

Table 4-4. Corrected stock drinking water1 (cSDW), milking parlour water (MPW), and total water2 (TW) model predictions compared with the measured or derived water use volumes on the irrigated and nonirrigated pasture-based dairy farms... 123

Table 4-5. Partial least squared regression model equations (raw coefficients) for predicting corrected stock drinking water use (log\textsubscript{10} cSDW) on irrigated pasture-based dairy farms (n = 4)1. .. 126

Table 4-6. Partial least squared regression model equations (raw coefficients) for predicting milking parlour water use (log\textsubscript{10} MPW) on irrigated pasture-based dairy farms (n = 12). .. 127

Table 4-7. Partial least squared regression model equations (raw coefficients) for predicting total water use (log\textsubscript{10} TW) on irrigated pasture-based dairy farms (n = 6). .. 128

Table 4-8. Partial least square regression model evaluation for irrigated farms. 130
Table 5-1. Average farm and climate variables\(^1\) by region for non-irrigating dairy farms... 146

Table 5-2. Average farm and average climate variables\(^1\) for irrigating dairy farms. ... 147

Table 5-3. Average annual temperature change (°C) above the base average temperature for 1986-2005 under four different RCP\(^1\) climate change pathways (Ministry for the Environment, 2016). .. 153

Table 5-4. Average annual rainfall change (%) from the base average rainfall for 1986-2005 under four different RCP\(^1\) climate change pathways (Ministry for the Environment, 2016). .. 154

Table 5-5. Total number of cows on irrigating and non-irrigating farms, average water uses\(^1\) (L/cow per d) for irrigating and non-irrigating farms, and the amount of data collected in farm-years\(^2\) .. 156

Table 5-6. Water use estimates (1000 × m³/yr) for regions in New Zealand on dairy farms for milking parlour water use (MPW), corrected stock drinking water (cSDW), stock drinking water (SDW), irrigation water, total abstracted water, and the total consumed (evapotranspired) fraction of water.. 157

Table 5-7. Current (2010-2015) corrected stock drinking water volumes (1000 × m³/year) and under different climate change scenarios (RCP 2.6, 4.5, 6.0, and 8.5\(^1\)) at three time periods (2031-2050, 2081-2100, and 2101-2120). 159

Table 5-8. Current (2010-2015) milking parlour water use volumes (1000 × m³/year) and under different climate change scenarios (RCP 2.6, 4.5, 6.0, and 8.5\(^1\)) at three time periods (2031-2050, 2081-2100, and 2101-2120). 162
Table 5-9. Estimated current irrigation water requirements and future requirements under climate change scenario RCP 4.5 at for the period 2031-2050.

Table 6-1. Characteristics of selected dairy farms across different regions of New Zealand.

Table 6-2. Summary of global and local data sources used in quantification of water footprints of study dairy farms across different regions of New Zealand.

Table 6-3. Estimates of green and blue consumptive water footprints (L/kg FPCM)1) on the study dairy farms across different regions of New Zealand.

Table 6-4. Estimates of water footprint characterization factors (CFs) for the blue water scarcity index WS_{blue} (Hoekstra et al., 2011), the water stress index WSI (Ridoutt et al., 2010), and available minus water demand CF_{AWARE} (Boulay et al., 2017) for the study regions in New Zealand. Note relative ranks indicated in parentheses (1 representing the lowest).

Table 6-5. Estimates of water footprint characterization factors (CFs) for the blue water scarcity index WS_{blue} (Hoekstra et al., 2011), water stress index WSI (Ridoutt et al., 2010), and available minus water demand CF_{AWARE} (Boulay et al., 2017) for study catchment or water management zones in New Zealand. Note relative ranks indicated in parentheses (1 representing the lowest).

Table 6-6. Estimates of characterized blue water footprint of irrigated dairy farms across different regions of New Zealand. Note relative ranks indicated in parentheses (1 representing the lowest).

Table 6-7. Characterized blue water footprints on catchments of irrigated dairy farms. Note relative ranks indicated in parentheses (1 representing the lowest).
Table 6-8. Sensitivity of W_{blue} (Hoekstra et al., 2011) and CF$_{AWARE}$ (Boulay et al., 2017) and characterised blue water footprints of irrigated dairy farms to different environmental flow requirements (EFR) in different regions of New Zealand. 215

Table 7-1. Annual mean, peak, and the average milking day demand (AMDD2) water use values for the Waikato, Manawatu, and Canterbury regions. 235
List of Figures

Figure 2-1. Monthly dry matter % of pasture at Scott Farm, a research farm in the Waikato region of New Zealand from 2006-2015 (C. Roach, DairyNZ, Hamilton, New Zealand, personal communication). ... 34

Figure 2-2. Dry matter % of pasture at research farms in the Waikato (weekly measurements, diamonds), Manawatu (a range of intervals, circles), and Canterbury (fortnightly measurements; squares) regions of New Zealand from 1/06/2013 to 31/5/2015 (C. Roach, DairyNZ, Hamilton, New Zealand, personal communication; A. Clement, DairyNZ, Lincoln, New Zealand, personal communication; I. Tait, Massey University, Palmerston North, New Zealand, personal communication). ... 35

Figure 2-3. Dry matter % in Moorepark, Ireland over two trial periods in the spring and summer of 2009 and 2010 (C. Wims, DairyNZ, Hamilton, New Zealand, personal communication). ... 36

Figure 2-4. Expected water intake through pasture eaten in a simplistic model of 14.7 kg of dry matter eaten per day... 38

Figure 2-5. Schematic showing direct and indirect water use (Hoekstra et al., 2011) ... 54

Figure 3-1. Mean daily water use (●, circles) ± 1 SD (error bars) and count of farms contributing to the data (solid line, secondary axis) for (a) total water use (TW), (b) milking parlour water use (MPW), (c) stock drinking water (SDW), and (d) corrected stock drinking water (cSDW). ... 86

Figure 3-2. Measured or derived mean water use (number of farms ≥5) versus predicted water use (dashed line of best fit) and solid 1:1 line for (a) corrected stock drinking water (cSDW) model 3 (R² = 0.84), (b) milking parlour water use
(MPW) model 3 (R² = 0.90) (c) the model of Castle and Thomas (1975; R² = 0.41), and (d) the model of Dahlborn et al. (1998; R² = 0.46). WVI = voluntary water intake. .. 92

Figure 4-1. Average daily water use (L/cow per d; ± SD), and the count of farms contributing to the data (solid line) for (a) stock drinking water (SDW) on nonirrigated farms, (b) SDW on irrigated farms, (c) corrected stock drinking water (cSDW) on nonirrigated farms and d) cSDW on irrigated farms. 120

Figure 4-2. Average daily water (L/cow per day; ± SD), and the count of farms contributing to the data (solid line) for (a) milking parlour water use (MPW) on nonirrigated farms, (b) MPW on irrigated farms, (c) total water use (TW) on nonirrigated farms and (d) TW use on irrigated farms (error bars up to 1285 L/cow per d due to leaks truncated at 600 L/cow per day). 121

Figure 4-3. Partial Least Square regression loading plots (variables defined in Table 4-2) for (a) corrected stock drinking water (cSDW) model 2, (b) milking parlour water use (MPW) model 3 and (c) total water use (TW) model 3. 129

Figure 4-4. Measured or derived water use (number of farms ≥ 5) versus predicted water use (dashed line of best fit) and solid 1:1 line for (a) corrected stock drinking water (cSDW) model 3 (R² = 0.77), (b) milking parlour water use (MPW) model 3 (R² = 0.90), and (c) total water use (TW) model 3 (R² = 0.72).131

Figure 5-1. Corrected stock drinking water use percent increases compared with current use (2010-2015; dots) for climate change scenario RCP 4.5 with three time periods; 2031-2050 (solid fill); 2081-2100 (diagonal stripes); and 2101-2120 (gridlines), and with total cow numbers (♦) on the second axis. 160
Figure 6-1. Map of New Zealand, showing location of the study regions as the Canterbury region (diagonal lines), Manawatu region (squares), and Waikato region (solid fill). ... 181

Figure 6-2. Schematic of blue and green water flows on a pastoral dairy farm system.. 182

Figure 6-3. Local data volumetric blue water footprints (L/kg fat and protein corrected milk (FPCM)) for New Zealand (weighted average), Canterbury (irrigated), Manawatu (irrigated), Waikato (irrigated), Manawatu (non-irrigated), and Waikato (non-irrigated)... 217

Figure 6-4. Local data characterised water footprints (L/kg fat and protein correct milk (FPCM)) for the Canterbury region and Canterbury management zones for the WFII_{blue} (blue), WF_{Ridoutt} (orange), and WF_{AWARE} (grey) methods. 218
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Average daily demand</td>
</tr>
<tr>
<td>AMD</td>
<td>Availability minus demand</td>
</tr>
<tr>
<td>AWARE</td>
<td>Available WAater REmaining</td>
</tr>
<tr>
<td>Brd</td>
<td>Breed</td>
</tr>
<tr>
<td>CF</td>
<td>Characterisation factor</td>
</tr>
<tr>
<td>CowBail</td>
<td>Cow to bail ratio</td>
</tr>
<tr>
<td>cSDW</td>
<td>Corrected stock drinking water</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter</td>
</tr>
<tr>
<td>DM%</td>
<td>Dry matter %</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>EFR</td>
<td>Environmental flow requirements</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>ETblue</td>
<td>Blue evapotranspiration/irrigation water</td>
</tr>
<tr>
<td>ET$_c$</td>
<td>Crop specific evapotranspiration</td>
</tr>
<tr>
<td>ET$_{green}$</td>
<td>Green evapotranspiration</td>
</tr>
<tr>
<td>ET$_o$</td>
<td>Reference evapotranspiration</td>
</tr>
<tr>
<td>Evap</td>
<td>Potential evapotranspiration</td>
</tr>
<tr>
<td>FPCM</td>
<td>Fat and protein corrected milk</td>
</tr>
<tr>
<td>IW</td>
<td>Irrigation water</td>
</tr>
<tr>
<td>JD</td>
<td>Julian day</td>
</tr>
<tr>
<td>K$_e$</td>
<td>Crop coefficient</td>
</tr>
<tr>
<td>LCA</td>
<td>Life cycle assessment</td>
</tr>
<tr>
<td>MAR</td>
<td>Mean annual runoff</td>
</tr>
<tr>
<td>MeanT</td>
<td>Average daily temperature</td>
</tr>
<tr>
<td>Milking</td>
<td>The number of milkings in a day</td>
</tr>
<tr>
<td>MilkSol</td>
<td>Milksolids</td>
</tr>
<tr>
<td>MilkVol</td>
<td>Milk volume</td>
</tr>
<tr>
<td>MinT</td>
<td>Minimum daily temperature</td>
</tr>
<tr>
<td>MPW</td>
<td>Milking parlour water</td>
</tr>
<tr>
<td>MY</td>
<td>Milk yield</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NPS-FM</td>
<td>National Policy Statement for Freshwater Management</td>
</tr>
<tr>
<td>NSE</td>
<td>Nash-Sutcliffe efficiency</td>
</tr>
<tr>
<td>PBIAS</td>
<td>Percentage bias</td>
</tr>
<tr>
<td>PDD</td>
<td>Peak daily demand</td>
</tr>
<tr>
<td>Peff</td>
<td>Effective precipitation</td>
</tr>
<tr>
<td>PKE</td>
<td>Palm kernel expeller</td>
</tr>
<tr>
<td>PLS</td>
<td>Partial Least Squares</td>
</tr>
<tr>
<td>Rad</td>
<td>Solar radiation</td>
</tr>
<tr>
<td>RCPs</td>
<td>Representative concentration pathways</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RF</td>
<td>Rainfall</td>
</tr>
<tr>
<td>RMA</td>
<td>Resource Management Act</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>R_{nat}</td>
<td>Natural runoff</td>
</tr>
<tr>
<td>RSR</td>
<td>RMSE-observations standard deviation ratio</td>
</tr>
<tr>
<td>SDW</td>
<td>Stock drinking water</td>
</tr>
<tr>
<td>SRF</td>
<td>Strongly regulated flows</td>
</tr>
<tr>
<td>S_{Te1}</td>
<td>Surface time equivalent</td>
</tr>
<tr>
<td>SU</td>
<td>Stock unit</td>
</tr>
<tr>
<td>Tmax</td>
<td>Maximum daily temperature</td>
</tr>
<tr>
<td>Tmin</td>
<td>Minimum daily temperature</td>
</tr>
<tr>
<td>TW</td>
<td>Total water/bore water</td>
</tr>
<tr>
<td>VF</td>
<td>Variation factor</td>
</tr>
<tr>
<td>VWI</td>
<td>Voluntary water intake</td>
</tr>
<tr>
<td>WA</td>
<td>Water availability</td>
</tr>
<tr>
<td>WA_{blue}</td>
<td>Blue water availability</td>
</tr>
<tr>
<td>WF_{blue}</td>
<td>Blue water footprint</td>
</tr>
<tr>
<td>WFII_{blue}</td>
<td>Water footprint impact index</td>
</tr>
<tr>
<td>WFN</td>
<td>Water Footprint Network</td>
</tr>
<tr>
<td>WS_{blue}</td>
<td>Blue water scarcity</td>
</tr>
<tr>
<td>WSI</td>
<td>Water stress index</td>
</tr>
<tr>
<td>WU</td>
<td>Water withdrawal</td>
</tr>
<tr>
<td>WULCA</td>
<td>Water use in Life Cycle Assessment</td>
</tr>
</tbody>
</table>