Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ESTABLISHMENT AND SILVOPASTORAL ASPECTS OF WILLOW AND POPLAR

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

in
Plant Science

Institute of Natural Resources
Massey University
Palmerston North, New Zealand

Zulkefly Sulaiman
2006
Abstract

Willow and poplar are the main trees used for soil erosion control in New Zealand (NZ) with successful establishment critical to greater use of this technology. Five experiments were conducted at the Pasture and Crop Research Unit, Massey University Palmerston North, NZ to examine the ability of willow and poplar to establish as a willow/poplar pasture system in NZ over a period of 3 years from December 2002 to April 2005. With an objective to select the best size for low cost planting, stem diameters (10 mm, 25 mm and 35 mm) were planted vertically and stem lengths (50 mm, 200 mm and 600 mm) were planted horizontally to determine their growth, establishment, biomass production and regrowth after browsing. From December 2002 to March 2003, three management treatments, mowing, herbicide and control (no weed control) treatments, were designed and applied to determine their effects on growth and shoot biomass production. From September 2004 to April 2005, mowing was replaced by sheep browsing and the effect of browsing, herbicide and control treatments on soil and tree water status (soil water content, soil water loss and deficit, and stem water potential) were examined. Longer (600 mm) and thicker stem diameters (35 mm) produced the greatest shoot biomass (edible biomass, total biomass and root biomass) compared to the thin stem cuttings (50 mm length and 10 mm diameter). Higher tree survival was also found for longer (600 mm) and thicker stems diameter (35 mm). The mown treatment produced significantly more edible and total shoot dry matter (DM) than the herbicide and control treatments, with willow clone ‘Kinuyanagi’ producing higher total shoot DM than ‘Tangoio’. Pasture management had no significant effect on soil water content during spring 2004 and late summer/autumn 2005, however, it was significant during early and mid summer. Strong relationships between (i) soil water content and stem water potential (SWP), and (ii) SWP and soil water deficit were found and could help growers to predict the amount of water required during the growing season. The results clearly demonstrated that sheep grazing had negligible damaging effect on willow and poplar (main stem, branch breakage and tree leaning) and tree mortality, and that young trees can be browsed during pasture shortages in summer drought. Cutting size and
understorey control for establishing willow and poplar into pasture have been better defined by this research. It is recommended that farmers establishing willow and poplar for fodder plant thick (vertical planting) and long stems (horizontal planting) for higher growth and biomass production.

Keywords: willow; poplar; stem diameter; stem length; planting depth; understorey management; fodder biomass; soil water; sheep grazing.
Acknowledgements

I would like to express my sincere gratitude to both of my supervisors Associate Professor Peter David Kemp, Institute of Natural Resources (Pasture and Crops), Massey University and Dr. Grant Douglas, AgResearch, Grasslands Research Centre, Palmerston North for their continuous encouragement, support, guidance, and constructive comments on my manuscripts throughout my doctoral study.

My special thanks to the staff of Natural Resources, especially Dr. Cory Matthew for advice and helping my family to settle down on the very first day of our arrival in Palmerston North. Special thanks to Dr. David Scotter (Soil Science Department) and Ian McIlvor (HortResearch, Palmerston North) for valuable advice and encouragement. Thanks are also extended to Dr. Bruce Mackay and Dr. Alasdair Noble for statistical advice. Thanks are due to field staff, Mark A. Osborne, Tom Dodd, Chris. N. Rawlingson and Lesley Paton, Roger S. Levy and administrative staff and computer lab staff in the Institute of Natural Resources for their assistance during my study.

The friendship and encouragement of my fellow graduate students at the Institute of Natural Resources provided an excellent environment, especially Tehseen Aslam, Zulfiqar Butt, Zaker Hussain, Edmundo Viegas, Tri Priantroro, Tara Pande, and others for their helpful discussions on my PhD study. Special thanks to Bhoj Bahadur Kshatri from the start of my experiment to the end for his fruitful discussion. Also special thanks to Entin Daningsih and Baisen Zhang for helping on statistics.

I would like to express my deepest gratitude to the Malaysian Rubber Board for providing me with full financial support and the opportunity to pursue a PhD study at Massey University. Without their support, I would never have completed this PhD study.

Finally, very special thanks to my lovely wife Nor’ Ashkin Yusof and my three beloved children, M. Fakharuddin, M. Fauzi and Nur Farzana for their love, patience, understanding and support during my four years of study. Special thanks to my parents, my sister and brother for their love and encouragement.
Table of Contents

Abstract .. i

Acknowledgements ... iii

Table of Contents .. iv

List of Tables .. vii

List of Figures .. xii

List of Photos .. xiv

1 General introduction .. 1
 1.1 Introduction and objectives ... 2
 1.2 References .. 5

2 Literature review .. 7
 2.1 Introduction ... 9
 2.2 Willow (Salix spp.) ... 9
 2.3 Poplar (Populus spp.) .. 20
 2.4 Agroforestry .. 25
 2.5 Conclusions .. 38
 2.6 References .. 39

3. Growth and yield of willow (Salix spp.), as influenced by clone and understorey pasture management in a willow-pasture agroforestry system ... 47
 3.1 Introduction .. 49
 3.2 Materials and methods .. 50
 3.3 Results ... 55
 3.4 Discussion ... 69
 3.5 Conclusions .. 72
 3.6 References .. 74
4. Effects of stem diameter and planting depth on survival and early growth of field-planted willow and poplar

4.1 Introduction

4.2 Materials and methods

4.3 Results

4.4 Discussion

4.5 Conclusions

4.6 References

5. Effect of horizontal planting of willow and poplar of various stem lengths and planting depths on survival, growth and biomass production

5.1 Introduction

5.2 Material and methods

5.3 Results

5.4 Discussion

5.5 Conclusion

5.6 References

6. Effect of pasture management on soil water and stem water potential of willow in a willow-pasture system

6.1 Introduction

6.2 Materials and methods

6.3 Results

6.4 Discussion

6.5 Conclusion

6.6 References
7 Effect of sheep grazing on newly planted willow and poplar 188
7.1 Introduction .. 189
7.2 Material and methods .. 190
7.3 Results .. 193
7.4 Discussion .. 199
7.5 Conclusion ... 203
7.6 References ... 204

8 General discussion and conclusions .. 206
8.1 Introduction ... 207
8.2 Tree establishment ... 207
8.3 Growth and biomass production of willow and poplar 208
8.4 Understory pasture management and its effect on soil water content and stem water potential .. 212
8.5 Effect of grazing on establishment of newly planted willow and poplar ... 213
8.6 Future research need ... 214
8.7 Proposed post-establishment of willow and poplar 215
8.8 Conclusion .. 216
8.9 References ... 218
List of Tables

Chapter 2

Table 2.1 Soil characteristics suitable for growing willow biomass crops. .. 14
Table 2.2 New Zealand Poplar Cultivars. ... 20
Table 2.3 Summary of the effects of tree-crop integration on soil water balance compared with a sole crop. 37

Chapter 3

Table 3.1 Herbage mass of various managed pasture beneath spaced willows. ... 57
Table 3.2 Effect of pasture management and willow clone on volumetric soil water content (%) at 0-150 mm depth 58
Table 3.3 Effect of pasture management and willow clone on volumetric soil water content (%) at 0-300 mm depth 59
Table 3.4 Willow tree survival (%) in a willow-pasture intercrop at three levels of pasture management. 60
Table 3.5 Effect of pasture management and clone on willow height extension. ... 61
Table 3.6 Effect of pasture management and clone on willow shoot number. ... 62
Table 3.7 Effect of pasture management and clone on willow shoot length extension. ... 63
Table 3.8 Effect of pasture management and clone on willow shoot diameter extension. ... 64
Table 3.9 Effect of pasture management and clone on in-row canopy diameter extension. ... 65
Table 3.10 Effect of pasture management and clone on inter-row canopy diameter extension. ... 66
Table 3.11 The effect of pasture management and clone on willow biomass. ... 67
Chapter 4

Table 4.1 Effects of stem diameter and planting depth on survival of willow and poplar trees established using 600 mm long stem cuttings. ... 85

Table 4.2 Effects of stem diameter and planting depth of willow and poplar on shoot number. ... 86

Table 4.3 Effects of stem diameter and planting depth of willow and poplar on shoot length. ... 88

Table 4.4 Effects of stem diameter and planting depth of willow and poplar on shoot diameter. ... 89

Table 4.5 Effects of stem diameter and planting depth of willow and poplar on tree height. ... 90

Table 4.6 Effects of stem diameter and planting depth of willow and poplar on canopy diameter. ... 92

Table 4.7 Effects of stem diameter and planting depth on edible OM of willow and poplar. ... 93

Table 4.8 Effects of stem diameter and planting depth on total OM for willow and poplar. ... 94

Table 4.9 Effects of stem diameter and planting depth of 600 mm stakes of willow and poplar on root number per tree. 95

Table 4.10 Effects of stem diameter and planting depth for 600 mm stem cuttings of willow and poplar on total root length and total root length/volume ratio. ... 99

Table 4.11 Effects of stem diameter and planting depth for 600 mm stakes of willow and poplar on root volume. 100

Table 4.12 Effects of stem diameter and planting depth of willow and poplar on root dry matter. ... 101

Chapter 5

Table 5.1 Effect on percentage of shoot emergence of horizontal planting at two depths and three stem lengths for willow and poplar. ... 119

Table 5.2 Effect on tree survival of horizontal planting at two depths and three stem lengths for willow and poplar. 120

Table 5.3 Effect on shoot number of horizontal planting at two depths and three stem lengths for willow and poplar. 121
Table 5.4 Effect on shoot length of horizontal planting at two depths and three stem lengths for willow and poplar. 122

Table 5.5 Effect on shoot diameter of horizontal planting at two depths and three stem lengths for willow and poplar. 124

Table 5.6 Effect of horizontal planting at two depths of willow and poplar of three stem lengths on inter-row canopy diameter. ... 126

Table 5.7 Effect of horizontal planting at two depths of willow and poplar of three stem lengths on in-row canopy diameter. 127

Table 5.8 Effect on edible dry matter of horizontal planting at two depths and three stem lengths for willow and poplar. 128

Table 5.9 Effect on total shoot dry matter (DM) of horizontal planting at two depths and three stem lengths for willow and poplar. 129

Table 5.10 Effect on root number of horizontal planting at two depths and three stem lengths for willow and poplar. 131

Table 5.11 Effect on total root length of horizontal planting at two depths and three stem lengths for willow and poplar. 134

Table 5.12 Effect on root volume of horizontal planting at two depths and three stem lengths for willow and poplar. 135

Table 5.13 Effect on root dry matter of horizontal planting at two depths and three stem lengths for willow and poplar. 136

Chapter 6

Table 6.1 Herbage mass of pasture beneath spaced willows managed in three pastures managements. 155

Table 6.2 Total root density measured at 0 - 150 mm soil depth and 150 mm, 300 mm and 600 mm distances from trees on 16 - 17 February 2005. 156

Table 6.3 Total root density measured at 0 - 150 mm soil depth and 150 mm, 300 mm and 600 mm distances from trees on 16 - 17 February 2005. 156

Table 6.4 Total root density measured at 300-450 mm soil depth and 150 mm, 300 mm and 600 mm distance from tree on 16 -17 February 2005. 157

Table 6.5 Effect of pasture management on soil water loss/recharge per day at 0-150 mm soil depth. 165
Table 6.6	Effect of pasture management on soil water loss/recharge per day at 0-150 mm soil depth	166
Table 6.7	Effect of pasture management on soil water loss/recharge per day at 0-450 mm soil depth	167
Table 6.8	Effect of pasture management on soil water deficit from field capacity at 0-150 mm soil depth	168
Table 6.9	Effect of pasture management on soil water deficit from field capacity at 0-300 mm soil	169
Table 6.10	Effect of pasture management on soil water deficit from field capacity at 0-450 mm soil depth	171
Table 6.11	Effect of under story pasture management on willow stem water potential in spring, 2004	172
Table 6.12	Effect of under story pasture management willow on stem water potential in summer/Autumn 2004/2005	172
Table 6.13	Predicted water requirement for field capacity, using either SWC (300 mm from willow tree at 0-150 mm soil depth) or stem water potential	174
Table 6.14	Predicted water requirement for field capacity, using either SWC (300 mm from willow tree at 0-300 mm soil depth) or stem water potential	176
Table 6.15	Predicted water requirement for field capacity, using either SWC (300 mm from willow tree at 0-450 mm soil depth) or stem water potential	177

Chapter 7

Table 7.1	Effect of grazing and stem size on tree damage	193
Table 7.2	Effect of sheep grazing and stem diameter on mortality of trees 18 months after field planting	195
Table 7.3	Pre- and post- grazing edible biomass (kg DM/ha) of willow and poplar at Massey University (Moginie) grazed in all treatments with 108 sheep in Autumn 2003 (sample number per treatment = 3; standard deviation in bracket)	197
Table 7.4	Effect of grazing and stem diameter on regrowth of edible biomass after 79 days	199
Table 8.1 Summary of the effect of pasture management on willow growth and biomass production in a willow-pasture agroforestry system. ... 211
List of Figures

Chapter 3
Figure 3.1 Treatment layout in randomised complete block design. 54
Figure 3.2 Rainfall in Palmerston North in 2001-2002 and 2002-2003. 55
Figure 3.3 Mean air temperature in Palmerston North in 2001-2002 and 2002-2003. ... 56
Figure 3.4 Relationship between total shoot length extension (shoot length extension x shoot number) and shoot dry matter............. 68
Figure 3.5 Relationship between shoot volume extension (shoot length extension x shoot diameter) and total shoot dry matter. .. 68

Chapter 4
Figure 4.1 Mean rainfall and temperature at Palmerston North during the 2003/2004 growing season. .. 83
Figure 4.2 Volumetric soil water content (%) at 0-150 mm and 0-300 mm during the growing season at the experimental site. 84
Figure 4.3 Relationship between root DM and edible DM of willow (n=18, P = 0.0001) and poplar (n= 18, P = 0.0001). 102
Figure 4.4 Relationship between root DM and total shoot DM of willow (n=18, P = 0.0001) and poplar (n=18, P = 0.0001). 102

Chapter 5
Figure 5.1 Volumetric soil water content (%) at 0 -150 mm and 0 -300 mm soil depth during the growing season at the experimental site at Massey University, Palmerston North. ... 117
Figure 5.2 Relationship between root DM and total shoot DM for (a) willow (n= 9, P < 0.001) and (b) poplar, (n= 9, p < 0.05) at 50 mm and 100 mm planting depths. ... 137
Chapter 6

Figure 6.1 Mean rainfall and air temperature at Palmerston North during the 2004/2005 growing season. .. 154

Figure 6.2 Effect of pasture management on volumetric soil water content at 0-150 mm soil depth. .. 159

Figure 6.3 Effect of pasture management on volumetric soil water content at 0-300 mm soil depth. .. 161

Figure 6.4 Effect of pasture management on volumetric soil water content at 0-450 mm soil depth. .. 163

Figure 6.5 Relationship between soil water content (300 mm distance from tree at 0-150 mm soil depth) and stem water potential of willow in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 173

Figure 6.6 Relationship between stem water potential and soil water deficit from field capacity (300 mm distance from tree at 0-150 mm soil depth) in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 174

Figure 6.7 Relationship between soil water content (300 mm distance from tree at 0-300 mm soil depth) and stem water potential of willow in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 175

Figure 6.8 Relationship between stem water potential and soil water deficit to field capacity (300 mm distance from tree at 0-300 mm soil depth) in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 175

Figure 6.9 Relationship between soil water content (300 mm distance from tree at 0-450 mm soil depth) and stem water potential of willow in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 176

Figure 6.10 Relationship between stem water potential and soil water deficit to field capacity (300 mm distance from tree at 0-450 mm soil depth) in a willow-pasture agroforestry system (n=107, p < 0.0001). .. 177
List of photos

Chapter 2
Photo 2.1 View of willow clone ‘Kinuyanagi’ at Mогини Масsey University (3 years old)..........................12

Photo 2.2 View of willow clone ‘Kinuyanagi’ at Могини Масsey University (3 years old)..........................13

Chapter 4
Photo 4.1 Harvesting poplar for above and below-ground biomass study...82

Photo 4.2 Root growth at 150 mm depth of a) willow and b) poplar established from stem cuttings of 10 mm (TRT. 4 & 1), 25 mm (TRT. 6 & 2) and 35 mm (TRT. 7 & 5) stem diameter.96

Photo 4.3 Root growth at 300 mm depth of a) willow and b) poplar established from stakes of 10 mm (TRT. 8 & 9), 25 mm (TRT. 11 & 3) and 35 mm (TRT 10 & 12) stem diameter.97

Chapter 5
Photo 5.1 Root growth of willow from stem length of 600 mm (TRT. 7 and 11), 200 mm (TRT. 12 and 5) and 50 mm (TRT. 6 and 1), planting at two depths. ..132

Photo 5.2 Root growth of poplar from stem lengths of 600 mm (TRT. 4 and 2) and 200 mm (TRT. 8 and 10), planting at two depths. ...133

Photo 5.3 Lack of root formation from 50 mm stem length resulted in death during unfavourable weather conditions........140

Chapter 6
Photo 6.1 Soil water content measurement using Time Domain Reflectometry ..151

Photo 6.2 Measurement of stem water potential using a pressure bomb...152

Chapter 7
Photo 7.1 Effect of grazing of willow and poplar on tree damage......... 194