Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CITRIC ACID PRODUCTION BY THE YEASTS

CANDIDA GUILLIERMONDII AND *YARROWIA LIPOLYTICA*

A thesis presented in partial fulfilment of
the requirements for the degree of
Master of Technology
in Biotechnology and Bioprocess Engineering
at Massey University

KAREN ROBERTS THOMSON

1993
ABSTRACT

The aim of this thesis was to investigate the relationships, for a citric acid-producing strain of yeast, among the growth rate, sugar uptake rate and the citric acid production rate, and to investigate the hypothesis that citric acid production occurs when the growth rate slows, but the sugar uptake rate is maintained. As previous experimental work in the Department of Process and Environmental Technology (formerly Biotechnology Department) of Massey University had been performed in shake flask cultures only, it was desired to scale-up the culture into a 2l laboratory scale batch culture, and then into a chemostat culture. The first yeast investigated, *Yarrowia lipolytica* IMK2, failed to successfully scale-up, so further investigations were performed using the yeast *Candida guilliermondii* IMK1.

Experiments were performed in shake flask culture to investigate the effect of using mixed carbon sources to adjust the carbon uptake rate, and hence the citric acid production rate, but no effect was noticed with the mixtures tested.

Batch fermenter experiments were performed to investigate the effect of the culture pH, and the aeration rate, on citric acid production. The aeration rate was not observed to have an effect on the culture in the range tested (0.06 - 0.333 vvm), but the culture pH was observed to have an effect, with the maximum production occurring at pH 4.3, and no citric acid production occurring below pH 3.5.

Chemostat culture experiments were performed to investigate the effect of culture pH and the specific growth rate on citric acid production. The specific
growth rate was observed to have a significant effect, with the specific citric acid production rate increasing as the growth rate decreased. The effect of the culture pH was found to vary with the growth rate, with the maximum production rate and yield occurring at pH 3.8, and a growth rate of 0.02 h\(^{-1}\). From cultures where the glucose was exhausted from the medium, and therefore glucose was a limiting nutrient, the specific citric acid production rate was observed to decrease as the glucose uptake rate decreased. Thus, it could be concluded that the specific citric acid production rate increased as the growth rate decreased, provided that the sugar uptake rate remained high.
ACKNOWLEDGEMENTS

I wish to acknowledge and thank the following people:

Dr. I.S. Maddox for his guidance, supervision, and encouragement during the course of this study.

Mrs A. Jackson, Mr J. Sykes, Mr M. Sahayam, Mrs J. Collins, Mrs J. Naulivou, Mr M. Stevens, Mr J. Alger, and Mr B. Collins for their excellent technical and laboratory assistance.

Mr W. Mallet for his help with all computing problems.

Dr J. Brooks, Dr I. McKay, Dr W. Cambourne, Dr G. Manderson, Professor R. Earle, and Dr A. Patterson for their willingness to answer questions and offer advice when problems occurred.

My family, for their constant support throughout this project.
TABLE OF CONTENTS

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

Abbreviations

CHAPTER 1

Introduction

CHAPTER 2

Literature Review

2.1 Citric acid

2.2 Uses of citric acid

2.3 Production of citric acid
 - 2.3.1 History of production
 - 2.3.2 Production using filamentous fungi
 - 2.3.3 Production using yeasts

2.4 Biochemistry of citric acid production by yeasts

2.5 Factors affecting citric acid production by yeasts
 - 2.5.1 Carbon source
 - 2.5.2 Oxygen
 - 2.5.3 pH
CHAPTER 3 Materials and Methods

3.1 Materials

3.1.1 Microbiological media

3.1.2 Gases

3.1.3 Chemicals

3.1.4 Organisms

3.2 Media sterilization

3.3 Cleaning of glassware

3.4 Analytical methods

3.4.1 pH measurement

3.4.2 Determination of cell biomass
3.4.3 Citric acid determination
3.4.4 Carbon sources determination
3.4.5 Polyol determination
3.4.6 Determination of nitrogen limitation

3.5 Preparation of samples
3.5.1 Sample preparation for HPLC analysis
3.5.2 Sample preparation for glucose analysis

3.6 Culture conditions
3.6.1 Inoculum preparation
3.6.2 Shake-flask culture
3.6.3 Batch fermenter culture
3.6.4 Chemostat culture
3.6.5 Sterilization
3.6.6 Avoidance of wall build-up

3.7 Discussion of methods
3.7.1 Foaming
3.7.2 Aeration

CHAPTER 4 Studies using Yarrowia lipolytica IMK2

4.1 Introduction
4.2 Effect of mixed carbon sources
4.3 Effect of aeration
4.4 Studies in fermenter culture
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusions</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 5 Batch culture studies using Candida guilliermondii IMK1</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of mixed carbon sources</td>
<td>81</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of pH</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of aeration</td>
<td>94</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>107</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 6 Chemostat studies using Candida guilliermondii IMK1</td>
<td>114</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>Results of chemostat cultures</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>Discussion</td>
<td>131</td>
</tr>
<tr>
<td>6.4</td>
<td>Conclusions</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 7 Final discussion and conclusions</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>137</td>
</tr>
</tbody>
</table>
APPENDIX I Proof that steady state order is not significant 145

APPENDIX II Comparison of the yeasts growth and citric acid production pattern 147

APPENDIX III Results of glucose-exhausted chemostat experiments 148
LIST OF FIGURES

3.1 Proof that nitrogen is the growth limiting nutrient

3.2 The batch fermenter

3.3 The batch fermenter head

3.4 The chemostat fermenter

3.5 The chemostat fermenter head

4.1 Citric acid production on glucose, fructose, and 1 : 1 glucose : fructose carbon sources

4.2 Citric acid production on glucose and 1 : 1 glucose : succinate carbon sources

4.3 Growth curve of Y. lipolytica on mixed carbon sources

4.4 Growth curve of Y. lipolytica during normal (high) and low oxygen shake flask experiments

5.1 Citric acid production and substrate utilization of C. guilliermondii during growth on glucose (2M)

5.2 Citric acid production and substrate utilization of C. guilliermondii during growth on a 1 : 1 glucose : fructose mixture

5.3 Citric acid production and substrate utilization of C. guilliermondii during growth on a 1 : 1 glucose : glycerol mixture

5.4 Comparison of citric acid production during growth of C. guilliermondii in glucose, 1 : 1 glucose : fructose and 1 : 1 glucose : glycerol
5.5 Growth curves of *C. guilliermondii* during growth on mixed carbon sources

5.6 Growth curves of *C. guilliermondii* during cultivation for the pH experiments

5.7 Citric acid production by *C. guilliermondii* as a function of the pH value of the culture

5.8 Glucose consumption by *C. guilliermondii* as a function of the pH value of the culture

5.9 Polyol production by *C. guilliermondii* during cultivation at different pH values

5.10 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.333 vvm, and an agitation rate of 500 rpm

5.11 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.200 vvm, and an agitation rate of 500 rpm

5.12 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.133 vvm, and an agitation rate of 500 rpm

5.13 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.067 vvm, and an agitation rate of 500 rpm

5.14 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.040 vvm,
and an agitation rate of 500 rpm

5.15 Citric acid production and glucose consumption by *C. guilliermondii* when grown at an aeration rate of 0.133 vvm, and an agitation rate of 800 rpm

5.16 Citric acid production and glucose consumption by *C. guilliermondii* when grown in shake flask culture

5.17 The effect of aeration on citric acid production and glucose consumption rates during growth of *C. guilliermondii* at pH 4.3, and an agitation rate of 500 rpm

5.18 Growth curves of *C. guilliermondii* during cultivation at different aeration rates

6.1 Predicted specific citric acid production rate \((g/g_N \cdot h)\) at steady state during nitrogen-limited chemostat culture

6.2 Predicted glucose consumption rate \((g/g_{bio} \cdot h)\) at steady state during nitrogen-limited chemostat culture

6.3 Predicted citric acid yield at steady state during nitrogen-limited chemostat culture

6.4 Predicted biomass concentration at steady state during nitrogen-limited chemostat culture

6.5 Predicted % of nitrogen in biomass at steady state during nitrogen-limited chemostat culture

A1 Comparison of typical growth and citric acid production by *C. guilliermondii* IMK1 and *Y. lipolytica* IMK2
LIST OF TABLES

2.1 Citric acid imports into New Zealand from 1982 to 1992 4
2.2 Final citric acid concentrations obtained during growth of yeasts on hydrocarbons and glucose 14
2.3 Yields of citric acid obtained from various carbon sources 16 - 17
2.4 Affect of carbon source on the relative amounts of citric and isocitric acid accumulated 19
2.5 Optimum metal salt concentrations for citric acid production by yeast strains grown on n-paraffin 32
2.6 Maximum specific citric acid production rates reported for batch, chemostat, cell recycle and immobilized cell fermentations by yeasts growing on glucose 40
3.1 Medium for batch culture and inoculum preparation 42
3.2 Medium for chemostat fermentation 43
3.3 Medium for shake flask cultures 44
3.4 Medium for agar plates used in inoculum preparation (for Yarrowia lipolytica IMK2) 45
4.1 Results of the mixed carbon sources shake-flask experiments for Yarrowia lipolytica IMK2. 69
4.2 Batch fermentations of Yarrowia lipolytica IMK2. (In chronological order) 74 - 75
4.3 Citric acid production in shake-flask cultures investigating the effect of metallic steel and antifoam addition on Yarrowia lipolytica IMK2. 77
5.1 Results of the mixed carbon source shake-flask experiments for *Candida guilliermondii* IMK1.

5.2 Results of pH experiments.

5.3 Results of aeration experiments.

5.4 Relationship between specific citric acid production and substrate utilization rates for all *C. guilliermondii* IMK1 experiments.

6.1 Experimental design of chemostat experiments, and allocation of coded variables to pH, specific growth rate (µ) and steady state order.

6.2 Steady state concentrations during nitrogen-limited chemostat cultures.

6.3 Specific rates of substrate uptake (q_{glc}) and product formation (q_{ci}) at steady states in nitrogen limited chemostat cultures.

6.4 Full regression models for nitrogen-limited chemostat cultures.

6.5 Correlation coefficients of data from a nitrogen-limited chemostat culture.

A1 Affect of steady state order on the nitrogen limited chemostat culture.

A2 Results of the low growth rate experiments and the experiments where glucose was exhausted from the medium.
ABBREVIATIONS

ABBREVIATIONS OF UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>kPa</td>
<td>kilopascal</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>M</td>
<td>mole</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>millimole</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>vvm</td>
<td>volume per volume per minute</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>
OTHER ABBREVIATIONS

AMP Adenosine monophosphate
ATP Adenosine triphosphate
bio biomass (dry weight)
D Dilution rate
DO Dissolved oxygen
EDTA Ethylenediaminetetraacetic acid
HPLC High Performance Liquid Chromatography
N Nitrogen
NAD Nicotinamide Adenine Dinucleotide
q specific growth rate
TCA Tricarboxylic acid
µ Specific growth rate
YNB Yeast nitrogen base
CHAPTER 1
INTRODUCTION

Citric acid is an organic acid produced naturally by most living organisms. Its low toxicity, palatability and ease of assimilation mean that it has many uses, particularly in the food and pharmaceutical industries. It is produced commercially by fermentation of glucose or molasses syrups by strains of the fungus *Aspergillus niger*, or by various yeasts.

Yeast fermentation has some advantages over the fungal fermentation: yeasts are easier to handle in a fermenter as they do not grow on probes or block ports; the form of the growth is usually as a homogenous suspension, rather than in the form of pellets or large aggregates; and they do not require a metal ion deficiency, thus eliminating an expensive medium pre-treatment step. Unfortunately, a side-effect of the yeast fermentation is the occasional by-production of isocitric acid.

Strains of yeast have been developed that can produce citric acid in a nitrogen limited medium containing an appropriate carbon source. The work described in this thesis was undertaken to investigate the relationship between growth rate, sugar uptake rate and citric acid production rate for a strain of yeast grown on glucose, and to test the hypothesis that citric acid production occurs when growth rate slows but the sugar uptake rate is maintained.