Isolation and Partial Characterisation of a Calcium-dependent Lectin-like Protein from the Flat Oyster, *Ostrea chilensis*

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Veterinary Pathology at Massey University, Palmerston North, New Zealand.

Miho Minamikawa

2006
Abstract

The (Chilean) flat oyster, *Ostrea chilensis*, is native to New Zealand and the west coast of South America. It is a commercially important species in New Zealand because of its exquisite taste that attracts premium prices.

This thesis describes the first isolation and partial characterisation of an oyster haemolymph calcium-dependent carbohydrate-binding protein. This protein ‘chiletin’ was originally isolated from oyster haemolymph by binding to the agarose-galactan matrix of a Sepharose column. Chiletin was predominantly composed of a 24 kilodalton (kDa) band when examined with one-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis under non-reducing conditions and a 12 kDa band with reduction of disulphide bonds. The N-terminal sequence of the 24 kDa band was determined to be ‘IAGPGWEKYN’. This sequence was not homologous to any known protein. Examination of isolated chiletin with two-dimensional protein analysis gel electrophoresis revealed the presence of three (~12 kDa) subunits ranging in isoelectric point from 5.2 to 6.0.

The 24 kDa protein was used to immunise rabbits and a separate antiserum was also raised in rabbits using a synthetic peptide (identical to that above) coupled to keyhole limpet haemocyanin. These antisera were used to confirm the size of the chiletin subunits with Western blots and to examine the elution of chiletin in oyster haemolymph with size exclusion chromatography in phosphate buffered saline (PBS) and 8 M urea. There were four or five different sized conformational aggregates of chiletin present in oyster haemolymph under physiological conditions (PBS). The use of 8 M urea produced two separate aggregates.

A major characteristic of lectins is the ability to agglutinate sheep red blood cells and both whole oyster haemolymph and isolated chiletin had this property. Chiletin was identified by immunohistochemistry to be present in a number of tissues. Staining intensity was most consistent in the auricular myocardial cells, followed by the digestive gland epithelium. Chiletin was not induced in haemolymph in response to temperature (30°C) stress or injection of turpentine into the adductor muscle.

There have been few immunological studies performed with *O. chilensis*. The results of the project contribute to what is known about comparative immunology. Greater
understanding of how oysters respond to stress and deal with pathogens will ultimately be of benefit to the aquaculture industry.
Acknowledgements

Most of this project was supervised by Dr. J. Lumsden. He gave me excellent comments and advice for the project and enormous encouragement to get me through the whole period. I am very thankful for John’s help and enormous patience.

Dr. M. Hine helped me design the oyster stress trials at the early stages of the project. I had superb guidance from him at the National Institute of Water and Atmosphere in Wellington, and gained much from his experience and expertise in this field. I appreciated Mike’s professional advice in dealing with my precious oysters.

Dr. P. Duignan supervised me at the end of my project when Dr. J. Lurnsden returned to his home country. Padraig’s tremendous understanding and kindness encouraged and supported me to finish this thesis.

Dr. H. Hussein, Dr. C. Dupont and Dr. J. Oliaro gave me a lot of skilful help, advice with experimental techniques and friendship in our laboratory. Pat Davey skilfully helped with the processing of the histology samples. Debbie Chesterfield looked after the rabbits used to produce antiserum and helped with blood sampling.

I would like to thank Dr. A. Murray and his TB team for their kind support and for the use of the equipment in their laboratory.

Special thanks go to Prof. K. Milne and Dr. S. Shillington for giving me excellent professional advice on how to review my project. I could not have come this far without Sandy’s patience and skill.
Table of Contents

CHAPTER 1. GENERAL INTRODUCTION .. 1

1.1. *Ostrea (=Tiostra) chilensis* ... 1

1.2. Disease Prevention and the Aquaculture Industry .. 2

1.3. Comparative Immunology .. 4

CHAPTER 2. LITERATURE REVIEW .. 7

2.1. Taxonomy: Phylum Mollusca- Class Bivalvia- Order Ostreoida 7

2.1.1. Phylum Mollusca .. 7

2.1.2. Class Bivalvia .. 10

2.2. Invertebrate Immunity ... 11

2.2.1. Introduction to Innate Immunity ... 11

2.2.1.1. Haemocytes and Humoral Factors ... 12

2.2.1.2. Implant Reaction: Discrimination against Non-self 12

2.2.1.3. Immunoglobulin Superfamily: Do Invertebrates Have Similar Antigen-binding Molecules? .. 14

2.2.2. Cellular Immunity: Functions of Oyster Haemocytes 15

2.2.2.1. Introduction to Oyster Haemocytes ... 15

2.2.2.2. Functions of Oyster Haemocytes ... 16

2.2.2.3. Phagocytosis .. 17

2.2.2.4. Cellular Recognition Molecules .. 18

2.2.2.5. Bacteriolytic Effector Molecules ... 19

2.2.2.5.1. Lysozyme and Lysosomal Enzymes ... 19

2.2.2.5.2. Reactive Oxygen Intermediates and Reactive Nitrogen Intermediates. 20

2.2.2.5.3. Metallothionein ... 22

2.2.2.5.4. Carbonic Anhydrase ... 23

2.2.2.6. Bactericidal/Antimicrobial Peptides .. 23

2.2.3. Humoral Immunity: Components in Haemolymph 25

2.2.3.1. Introduction to Humoral Components .. 25

2.2.3.2. Acute Phase Proteins ... 25

2.2.3.2.1. Heat Shock Proteins .. 29

2.2.3.2.1.1. Function and Induction of Heat Shock Proteins 29
2.2.3.2. Immunogenic Heat Shock Proteins

- 2.2.3.2.1.2. Immunogenic Heat Shock Proteins .. 30

2.2.3.2. Binding Proteins

- 2.2.3.2.2. Binding Proteins ... 32
 - 2.2.3.2.2.1. Lectin Structure .. 33
 - 2.2.3.2.2.2. C-type Lectins .. 36
 - 2.2.3.2.2.3. Mannose-binding Proteins/Lectins .. 38
 - 2.2.3.2.2.4. S-type Lectins .. 39
 - 2.2.3.2.2.5. Pentraxins, Sialic Acids and Phosphocholines 41
 - 2.2.3.2.2.6. Lipopolysaccharide-binding Proteins ... 44

2.2.3.2. Transport Proteins

- 2.2.3.2.3. Transport Proteins ... 45

2.2.3.2. Protease Inhibitors

- 2.2.3.2.4. Protease Inhibitors .. 47

2.2.3.2. Complement and Coagulants

- 2.2.3.2.5. Complement and Coagulants ... 48

2.2.3.2. Hormones and Cytokines

- 2.2.3.2.6. Hormones and Cytokines ... 50
 - 2.2.3.2.6.1. Hormones of the Digestive System ... 50
 - 2.2.3.2.6.2. Hormones of the Reproductive System 51
 - 2.2.3.2.6.3. Growth Hormones ... 51
 - 2.2.3.2.6.4. Hormones of the Circulatory System ... 52
 - 2.2.3.2.6.5. Hormones Relating to the Autonomic Nervous System 52
 - 2.2.3.2.6.6. Cytokines in Molluscs ... 53

2.3. Defence Mechanisms and Disease

- 2.3.1. Introduction ... 54
- 2.3.2. Interaction between Pathogens and Immunological Factors 56
 - 2.3.2.1. Viral Diseases and Oyster Immune Defence 56
 - 2.3.2.2. Bacterial Diseases and Oyster Immune Defence 56
 - 2.3.2.3. Chlamydial/Rickettsial Diseases and Oyster Immune Defence 58
 - 2.3.2.4. Protozoan Diseases and Oyster Immune Defence 58
 - 2.3.2.5. Metazoan Diseases and Oyster Immune Defence 59

2.4. Summary of Literature Review

- 2.4. Summary of Literature Review ... 60

2.5. Hypothesis

- 2.5. Hypothesis ... 61

2.6. Research Objectives

- 2.6. Research Objectives ... 61

CHAPTER 3. ISOLATION AND PARTIAL CHARACTERISATION OF A CALCIUM-DEPENDENT LECTIN-LIKE PROTEIN (CHILETIN) FROM THE FLAT OYSTER, OSTREA CHILENsis

- 2.6. Research Objectives ... 61
3.1. Introduction ... 62

3.2. Isolation and Characterisation of Chiletin from the Flat Oyster, *Ostrea chilensis* ... 63

3.2.1. Chiletin Isolation ... 63
 3.2.1.1. Materials and Methods .. 63
 3.2.1.1.1. Oyster Haemolymph ... 63
 3.2.1.1.2. Purification with Sepharose 6B .. 64
 3.2.1.1.3. Protein Determination .. 64
 3.2.1.1.4. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 65
 3.2.1.1.5. High Performance Liquid Chromatography Purification (HPLC) 66
 3.2.1.1.5.1. Size Exclusion Column (Superose® 6HR10/30) .. 67
 3.2.1.1.5.2. Size Exclusion Column (Superdex® Peptide HR 10/30) 68
 3.2.1.1.5.3. Size Exclusion Column (Macrosphere GPC 100, 300, 500 7μ) 68
 3.2.1.1.5.4. Reversed Phase Column (proRPC™ HR5/2) ... 69
 3.2.1.1.5.5. Reversed Phase Columns (Jupiter™ 5μ C4, C18 300Å) 69
 3.2.1.1.5.6. Hydrophobic Interaction Column (Phenyl-Superose™ HR5/5) 70
 3.2.1.1.5.7. Anion Exchange Column (MonoQ® HR5/5) .. 70
 3.2.1.1.5.8. Cation Exchange Column (Resource S) .. 71
 3.2.1.1.5.9. Desalting Column (Fast Desalting Column HR 10/10) 71
 3.2.1.2. Results ... 72
 3.2.1.2.1. Purification with Sepharose 6B ... 72
 3.2.1.2.2. Protein Determination ... 76
 3.2.1.2.3. High Performance Liquid Chromatography Purification and Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis .. 76
 3.2.1.2.3.1. Size Exclusion Column (Superose® 6HR10/30) 76
 3.2.1.2.3.2. Size Exclusion Column (Superdex® Peptide HR 10/30) 79
 3.2.1.2.3.3. Size Exclusion Columns (Macrosphere GPC 100, 300, 500 7μ) 79
 3.2.1.2.3.4. Reversed Phase Column (proRPC™ HR5/2) .. 81
 3.2.1.2.3.5. Reversed Phase Columns (Jupiter™ 5μ C4, C18 300Å) 82
 3.2.1.2.3.6. Hydrophobic Interaction Column (Phenyl-Superose™ HR5/5) 83
 3.2.1.2.3.7. Anion Exchange Column (MonoQ® HR5/5) .. 83
 3.2.1.2.3.8. Cation Exchange Column (Resource S) .. 85
 3.2.1.2.3.9. Desalting Column (Fast Desalting Column HR 10/10) 85
3.2.2. N-terminal Sequences of Non-reduced Proteins Derived from the Mannose Elution ... 86
 3.2.2.1. Materials and Methods ... 86
 3.2.2.2. NH$_2$-terminal Sequencing .. 87
3.2.3. Haemagglutination Assay .. 87
 3.2.3.1. Materials and Methods ... 87
 3.2.3.1.1. Red Blood Cell Preparation ... 87
 3.2.3.1.2. Samples .. 87
 3.2.3.1.3. Haemagglutination Assay ... 87
 3.2.3.2. Results .. 88
3.2.4. Haemagglutination Inhibition Assay .. 89
 3.2.4.1. Materials and Methods ... 89
 3.2.4.1.1. Red Blood Cell Preparation ... 89
 3.2.4.1.2. Samples and Sugars ... 89
 3.2.4.1.3. Haemagglutination Inhibition Assay .. 89
 3.2.4.2. Results .. 90
 3.2.4.2.1. Haemagglutination Inhibition Assay with 8 HA Units of Oyster Haemolymph ... 90
 3.2.4.2.2. Haemagglutination Inhibition Assay with 32 HA Units of Chilentin 90
 3.2.4.2.3. Haemagglutination Inhibition Assay with 128 HA Units of Chilentin 91
 3.2.4.2.4. Haemagglutination Inhibition Assay with 256 HA Units of Chilentin 91
3.2.5. Isoelectric Point of Chilentin .. 93
 3.2.5.1. Materials and Methods ... 93
 3.2.5.1.1. Samples .. 93
 3.2.5.1.2. Apparatus Preparation .. 93
 3.2.5.2. Results .. 94

3.3. Immunological Approach to Characterise Chilentin from Ostrea chilensis 95
 3.3.1. Polyclonal Antibody Production using Proteins Resolved with Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis ... 95
 3.3.1.1. Materials and Methods ... 95
 3.3.1.1.1. Antigen Preparation .. 95
 3.3.1.1.2. Rabbit Immunisation .. 96
 3.3.1.1.3. Samples for Immunoblotting ... 96
3.3.1.4. Immunoblotting ... 97
3.3.1.2. Results: Detection of Chiletin using Rabbit Antisera to the 24 and 19 kDa Bands Resolved with Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis ... 97
3.3.2. Polyclonal Antibody Production using Synthetic Peptides 102
3.3.2.1. Materials and Methods .. 102
3.3.2.1.1. Antigen Preparation .. 102
3.3.2.1.2. Rabbit Immunisation .. 102
3.3.2.1.3. Samples for Immunoblotting with Chemiluminescent Development 103
3.3.2.1.4. Immunoblotting with Chemiluminescent Development 103
3.3.2.2. Results: Detection of Chiletin using Rabbit Antisera to Synthetic Peptides ... 105
3.3.2.2.1. Immunoblotting of Oyster Haemolymph with IAG and ANK Rabbit Antisera ... 105
3.3.2.2.2. Immunoblotting of Oyster Haemolymph with the IAG Rabbit Antiserum on Two-dimensional Polyacrylamide Gel Electrophoresis 105
3.3.2.2.3. Immunoblotting of Oyster Haemolymph Fractionated with Size Exclusion Chromatography in Phosphate Buffered Saline using the IAG Rabbit Antiserum ... 106
3.3.2.2.4. Immunoblotting of Oyster Haemolymph Fractionated with Size Exclusion Chromatography in 8 M Urea using the IAG Rabbit Antiserum 108
3.3.2.2.5. Immunoblotting of Oyster Haemolymph Fractionated with Anion Exchange Chromatography (MonoQ) using the IAG Rabbit Antiserum 109

3.4. Discussion ... 113
3.4.1. Chiletin Isolation .. 113
3.4.2. Chiletin Characterisation .. 118
3.4.3. Immunoblotting ... 121
3.4.4. The Nature of Lectins ... 124

CHAPTER 4. CHILETIN INDUCTION TRIAL AND IMMUNOHISTOCHEMICAL LOCALISATION .. 126

4.1. Temperature and Turpentine Stress Trials .. 126
4.1.1. General Introduction ... 126
4.1.2. Temperature Stress Trial .. 127
4.1.3. Turpentine Stress Trial ... 129

4.2. Determination of Temperature and Turpentine Dose for Chiletin Induction Trials ... 133

4.2.1. Determination of a Sub-lethal Temperature for Flat Oysters, Ostrea chilensis 133

4.2.1.1. Materials and Methods .. 133

4.2.1.2. Results .. 134

4.2.2. Determination of a Sub-lethal Volume of Turpentine for Ostrea chilensis..... 134

4.2.2.1. Materials and Methods .. 134

4.2.2.2. Results .. 135

4.3. Chiletin Induction Trials using Exposure to 30°C and 0.1 ml Turpentine 136

4.3.1. Materials and Methods for Temperature Stress Trial 136

4.3.2. Materials and Methods for Turpentine Stress Trial 137

4.3.3. Materials and Methods for Quantification of Chiletin 138

4.3.3.1. Oyster Haemolymph .. 138

4.3.3.2. Antibody ... 138

4.3.3.3. Quantification using Densitometry ... 138

4.3.4. Results from Quantification of Chiletin .. 139

4.4. Immunohistochemical Localisation of Chiletin in Flat Oysters, Ostrea chilensis ... 141

4.4.1. Introduction ... 141

4.4.2. Materials and Methods .. 142

4.4.2.1. Histological Sections .. 142

4.4.2.2. Immunostaining of Oyster Tissues ... 142

4.4.2.3. Scoring System ... 143

4.4.2.4. Photographs .. 144

4.4.2.5. Statistical Analysis .. 144

4.4.3. Results ... 144

4.4.3.1. Histological Assessment and Qualitative Description of Staining 144

4.4.3.2. Scoring Results ... 154

4.5. Discussion .. 163

4.5.1. Chiletin Induction Trials .. 163

4.5.2. Chiletin Quantification ... 163
4.5.2.1. Temperature and Turpentine Stress Trials 163
4.5.2.2. Experimental Design .. 165
4.5.3. Histological Assessment and Scoring System 167
4.5.4. Lectin Production .. 170

CHAPTER 5. GENERAL DISCUSSION/CONCLUSIONS 172

REFERENCES .. 178

APPENDICES .. 249

Appendix 1. Slot Blot Data for Temperature and Turpentine Stress Trials 249
Appendix 2. Scoring of Immunohistochemical Staining of the Auricle and Digestive Gland .. 251
List of Tables

Table 1 Acute phase proteins: tentative categorisation ... 26
Table 2 Lectin types ... 33
Table 3 Ratio of protein content of Sepharose 6B fractions 76
Table 4 Determination of the sub-lethal temperature in O. chilensis 134
Table 5 Determination of the sub-lethal dose of turpentine in O. chilensis 135
Table 6 A list of groups used for the temperature stress trial 136
Table 7 Groups used, number dead and survival in the turpentine stress trial (10 oysters/group) ... 137
Table 8 Mean and standard deviation of chiletin levels in oysters from the temperature stress trial ... 140
Table 9 Mean and standard deviation of chiletin levels in oysters from the turpentine stress trial ... 140
Table 10 Least square means and their standard errors for auricular staining intensity in oysters from the sub-lethal temperature trial (ST) 155
Table 11 Least square means and their standard errors for auricular staining intensity in oysters from the 30°C temperature stress trial (TES) 156
Table 12 Least square means and their standard errors for staining intensity of the digestive gland epithelium in oysters from the 30°C temperature stress trial (TES) ... 157
Table 13 Least square means and their standard errors for auricular staining intensity in oysters from the sub-lethal turpentine trial (SD) 158
Table 14 Least square means and their standard errors for staining intensity of the digestive gland epithelium in oysters from the sub-lethal turpentine trial (SD) 159
Table 15 Least square means and their standard errors for auricular staining intensity in oysters from the 0.1 ml turpentine stress trial (TS) 160
Table 16 Least square means and their standard errors for staining intensity of the digestive gland epithelium in oysters from the 0.1 ml turpentine stress trial (TS) ... 161
Table 17 Least square means and their standard errors for auricular staining intensity in oysters from the South Island (SI) and those with Bonamia 162
Table 18 Least square means and their standard errors for staining intensity of the digestive gland epithelium in oysters from the South Island (SI) and those with Bonamia... 162
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phylogenetic classification of molluscs</td>
</tr>
<tr>
<td>2</td>
<td>Classes in the phylum Mollusca, and sub-classes and orders in Bivalvia</td>
</tr>
<tr>
<td>3</td>
<td>Role of the major transport proteins identified in different animal species</td>
</tr>
<tr>
<td>4</td>
<td>Ostrea chilensis</td>
</tr>
<tr>
<td>5</td>
<td>Non-reducing 12% SDS-PAGE of the Sepharose 6B mannose elution (a, left: Coomassie blue stain; b, right: silver stain)</td>
</tr>
<tr>
<td>6</td>
<td>Reducing and non-reducing 12% SDS-PAGE of Sepharose 6B elutions stained with silver</td>
</tr>
<tr>
<td>7</td>
<td>Non-reducing 12% SDS-PAGE of Sepharose 6B elutions stained with SYPRO Ruby</td>
</tr>
<tr>
<td>8</td>
<td>Reducing 12% SDS-PAGE of Sepharose 6B elutions stained with SYPRO Ruby</td>
</tr>
<tr>
<td>9</td>
<td>Chromatography of the mannose elution (a, top: 280 nm; b, middle: 210 nm) and the MW standards (c, bottom) using the Superose6</td>
</tr>
<tr>
<td>10</td>
<td>Chromatography of the mannose elution using the Superose6 (a, top: 280 nm) and reducing 12% SDS-PAGE of Superose6 fractions stained with SYPRO Ruby (b, bottom)</td>
</tr>
<tr>
<td>11</td>
<td>Chromatography of the mannose elution using the Superdex Peptide, designed for low MW peptides</td>
</tr>
<tr>
<td>12</td>
<td>Chromatography of the mannose elution using a high pressure size exclusion column Macrosphere GPC 300 (a, top) and non-reducing 12% SDS-PAGE of Macrosphere GPC fractions stained with SYPRO Ruby (b, bottom)</td>
</tr>
<tr>
<td>13</td>
<td>Chromatography of the mannose elution using the proRPC</td>
</tr>
<tr>
<td>14</td>
<td>Chromatography of the mannose elution using the Jupiter C18 (a, top) and C4 (b, bottom)</td>
</tr>
<tr>
<td>15</td>
<td>Chromatography of the mannose elution using the HIC (a, left top) and the MonoQ (b, right top); and 12% SDS-PAGE: peak fractions stained with SYPRO Ruby (c, bottom)</td>
</tr>
<tr>
<td>16</td>
<td>Chromatography of the mannose elution using the CEC</td>
</tr>
<tr>
<td>17</td>
<td>Chromatography of the mannose elution using the DSC</td>
</tr>
<tr>
<td>18</td>
<td>Haemagglutination assay of oyster haemolymph and chiletin</td>
</tr>
<tr>
<td>19</td>
<td>Haemagglutination inhibition assay with 8 HA units of oyster haemolymph</td>
</tr>
</tbody>
</table>
Figure 20 Haemagglutination inhibition assay with 32 HA units of chiletin 91
Figure 21 Haemagglutination inhibition assay of 128 HA units of chiletin.......................... 92
Figure 22 Haemagglutination inhibition assay of 256 HA units of chiletin.......................... 92
Figure 23 2D-PAGE: a, left: oyster haemolymph; b, right: the mannose elution 95
Figure 24 Reducing and non-reducing SDS-PAGE (15%) of the mannose elution and immunoblotting with the anti-24 kDa rabbit antiserum .. 98
Figure 25 Reducing SDS-PAGE (15%) and immunoblotting with the anti-24 kDa rabbit antiserum (a, left: immunoblotting of Macrosphere GPC 300 fractions; b, right: Macrosphere GPC 300 chromatograph of chiletin in 8 M urea) 99
Figure 26 Chiletin immunoblotting with the anti-24 kDa rabbit antiserum; fractions from the Superose6 (a, top: immunoblotting of Superose6 fractions in reducing conditions; b, middle: immunoblotting of Superose6 fractions in non-reducing conditions; c, bottom: Superose6 chromatographs of chiletin in 8 M urea) .. 100
Figure 27 Immunoblotting of Oyster haemolymph with the anti-24 kDa rabbit antiserum (a, top: immunoblotting of Superose6 fractions in reducing conditions; b, middle: immunoblotting of Superose6 fractions in non-reducing conditions; c, bottom: Superose6 chromatographs of oyster haemolymph in PBS) 101
Figure 28 Immunoblotting with post-3rd immunisation IAG and ANK rabbit antisera 105
Figure 29 Immunoblotting of oyster haemolymph separated by 2D-PAGE using the IAG rabbit antiserum .. 106
Figure 30 Superose6 size exclusion chromatography of oyster haemolymph in PBS 107
Figure 31 Superose6 fractionation of oyster haemolymph in PBS: slot blot with the IAG antiserum .. 108
Figure 32 Superose6 size exclusion chromatography of oyster haemolymph in 8 M urea .. 110
Figure 33 Superose6 fractionation of oyster haemolymph in 8 M urea: slot blot with the IAG antiserum .. 111
Figure 34 MonoQ fractionation of oyster haemolymph: slot blot with the IAG antiserum .. 112
Figure 35 Schematic of the putative mechanism for turpentine-induced acute phase response .. 132
Figure 36 A water bath set used in the experiment and O. chilensis 133
Figure 37 Survival of oysters with variable volumes of turpentine injected into the adductor muscle sinus... 135

Figure 38 Mean and standard deviation of chiletin levels in oysters from the temperature stress trial... 140

Figure 39 Mean and standard deviation of chiletin levels in oysters from the turpentine stress trial... 141

Figure 40 Light microscopy of adductor muscles: a, top: control oyster (x 100); b, bottom left: 24 hrs post-injection of 0.1 ml turpentine (x 25); c, bottom right: 0.4 ml turpentine injection (x 25) (H&E).. 146

Figure 41 Light microscopy of the auricle and digestive gland from control oysters (the South Island): a, top: auricle (x 400); b, bottom: digestive gland (x 200) (H&E) ... 147

Figure 42 Immunohistochemistry of the auricle (x 400): a, top: score 1; b, bottom: score 4 ... 148

Figure 43 Immunohistochemistry of the digestive glands (x 400): a, top: score 0; b, bottom: score 1... 149

Figure 44 Immunohistochemistry of the digestive glands (x 400): a, top & b, bottom: score 4 .. 150

Figure 45 Immunohistochemistry of the digestive glands (x 200): a, top: score 4; b, bottom: score 4 (with stained cilia).................................. 151

Figure 46 Immunohistochemistry of the stomach (x 400): a, top left: H&E-stained slide in a control oyster; b, top right: stained stomach epithelium; c, bottom: stained stomach epithelium and cilia.. 152

Figure 47 Immunohistochemistry of cells in visceral connective tissue (C) (x 400): a, top: near reproductive follicles (R); b, bottom: near digestive gland (D).... 153
<table>
<thead>
<tr>
<th>Taxon</th>
<th>Species/Abbreviation</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. papillata</td>
<td>Aaptos papillata</td>
<td>sponge</td>
</tr>
<tr>
<td>A. fulica</td>
<td>Achatina fulica</td>
<td>snail</td>
</tr>
<tr>
<td>A. crassispina</td>
<td>Anthocidaris crassispina</td>
<td>sea urchin</td>
</tr>
<tr>
<td>A. pectinifera</td>
<td>Asterina pectinifera</td>
<td>starfish</td>
</tr>
<tr>
<td>B. glabrata</td>
<td>Biomphalaria glabrata</td>
<td>snail</td>
</tr>
<tr>
<td>B. exitiosus</td>
<td>Bonamia exitiosus sp. nov</td>
<td>Haplosporidian parasite</td>
</tr>
<tr>
<td>B. ostreae</td>
<td>Bonamia ostreae</td>
<td>Haplosporidian parasite</td>
</tr>
<tr>
<td>B. leachii</td>
<td>Botrylloides leachii</td>
<td>tunicate (ascidian, urochordate)</td>
</tr>
<tr>
<td>B. schlosseri</td>
<td>Botryllus schlosseri</td>
<td>tunicate (ascidian, urochordate)</td>
</tr>
<tr>
<td>B. belcheri</td>
<td>Branchiostoma belcheri</td>
<td>amphioxus (cephalochordates)</td>
</tr>
<tr>
<td>C. hortensis</td>
<td>Cepaea hortensis</td>
<td>garden snail</td>
</tr>
<tr>
<td>C. picta</td>
<td>Clavelina picta</td>
<td>colonial tunicate (urochordate)</td>
</tr>
<tr>
<td>C. gigas</td>
<td>Crassostrea gigas</td>
<td>Pacific oyster</td>
</tr>
<tr>
<td>C. virginica</td>
<td>Crassostrea virginica</td>
<td>American/eastern oyster</td>
</tr>
<tr>
<td>C. grayamus</td>
<td>Crenomytilus grayamus</td>
<td>sea mussel</td>
</tr>
<tr>
<td>D. candidum</td>
<td>Didemnum candidum</td>
<td>tunicate (ascidian, urochordate)</td>
</tr>
<tr>
<td>D. ternatanum</td>
<td>Didemnum ternatanum</td>
<td>tunicate (ascidian, urochordate)</td>
</tr>
<tr>
<td>D. busckii</td>
<td>Drosophila busckii</td>
<td>fruit fly</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>Drosophila melanogaster</td>
<td>fruit fly</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
<td>bacterium</td>
</tr>
<tr>
<td>H. roretzi</td>
<td>Halocynthia roretzi</td>
<td>solitary tunicate</td>
</tr>
<tr>
<td>H. nelsoni</td>
<td>Haplosporidium nelsoni</td>
<td>protozoan parasite</td>
</tr>
<tr>
<td>L. polyphemus</td>
<td>Limulus polyphemus</td>
<td>American horseshoe crab</td>
</tr>
<tr>
<td>L. anguillarum</td>
<td>Listonella anguillarum</td>
<td>bacterium</td>
</tr>
<tr>
<td>L. stagnalis</td>
<td>Lymnaea stagnalis</td>
<td>snail</td>
</tr>
<tr>
<td>M. edulis</td>
<td>Mytilus edulis</td>
<td>blue mussel</td>
</tr>
<tr>
<td>O. chilensis</td>
<td>Ostrea (=Tiostrea) chilensis</td>
<td>(Chilean) flat oyster</td>
</tr>
<tr>
<td>O. edulis</td>
<td>Ostrea edulis</td>
<td>European flat oyster</td>
</tr>
<tr>
<td>P. mamillata</td>
<td>Phallusia mamillata</td>
<td>tunicate (ascidian, urochordate)</td>
</tr>
<tr>
<td>P. martensii</td>
<td>Pinctada fucata martensii</td>
<td>Japanese (akoya) pearl oyster</td>
</tr>
<tr>
<td>P. marinus</td>
<td>Perkinsus marinus</td>
<td>protozoan parasite</td>
</tr>
<tr>
<td>(n/a)</td>
<td>Petromyzon marinus</td>
<td>lamprey</td>
</tr>
<tr>
<td>Species</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>P. maxima</td>
<td>giant hatchery-reared pearl oyster</td>
<td></td>
</tr>
<tr>
<td>P. corneus</td>
<td>freshwater snail</td>
<td></td>
</tr>
<tr>
<td>P. platessa</td>
<td>plaice</td>
<td></td>
</tr>
<tr>
<td>P. papatasi</td>
<td>sandfly</td>
<td></td>
</tr>
<tr>
<td>P. misakiensis</td>
<td>budding tunicate</td>
<td></td>
</tr>
<tr>
<td>P. stolonifera</td>
<td>tunicate (ascidian, urochordate)</td>
<td></td>
</tr>
<tr>
<td>T. tridentatus</td>
<td>Japanese horseshoe crab</td>
<td></td>
</tr>
<tr>
<td>T. gondii</td>
<td>sporozoan parasite</td>
<td></td>
</tr>
<tr>
<td>S. peregrine</td>
<td>flesh fly</td>
<td></td>
</tr>
<tr>
<td>S. mansoni</td>
<td>metazoan parasite</td>
<td></td>
</tr>
<tr>
<td>S. exigua</td>
<td>beet armyworm</td>
<td></td>
</tr>
<tr>
<td>S. clava</td>
<td>tunicate (ascidian, urochordate)</td>
<td></td>
</tr>
<tr>
<td>S. plicata</td>
<td>solitary tunicate</td>
<td></td>
</tr>
<tr>
<td>V. anguillarum</td>
<td>bacterium</td>
<td></td>
</tr>
<tr>
<td>V. splendidus</td>
<td>bacterium</td>
<td></td>
</tr>
</tbody>
</table>

Å Ångström: one hundred-millionth \((10^{-8})\) of a centimetre
achantininH sialic acid binding lectin of snails (Achatina fulica)
ACTH adrenocorticotropin
AMP antimicrobial peptides
ANK antiserum the rabbit antiserum against ANKNGAYIHI synthetic peptide
ANOVA analysis of variance
ANP atrial natriuretic peptide
APP acute phase protein
AU auricle
BCA bicinchnonic acid
BSA bovine serum albumin
C control group
C(number) complement or reversed phased column
°C degrees centigrade
CaCl2 calcium chloride
cDNA complementary deoxyribonucleic acid
CE cation exchange
CEC cation exchange column
CL chemiluminescence
cm centimetre(s)
CRD carbohydrate recognition domain
CRP C-reactive protein
CTLDcp C-type lectin domain-containing proteins
d day(s)
Da dalton
DAB diaminobenzidine/3,3'-diaminobenzidine peroxidase substrate and urea hydrogen peroxide (Sigma fast™ 3,3'-diaminobenzidine tablet sets, SIGMA, St. Louis, MO, USA)
DGE digestive gland epithelia
dH₂O distilled water
DMSO dimethyl sulfoxide
DSC desalting column
DTT dithiothreitol
echinoidin lectin of the sea urchin, *A. crassispina*
EDTA ethylenediaminetetraacetic acid
e.g. exempli gratia (= for example)
18K-LAF *Limulus* 18 kDa agglutination-aggregation factor
ELISA enzyme-linked immunosorbent assay
etc. et cetera (= and the rest)
Factor-C, -B, -G glycoproteins that are intracellular serine-protease zymogens from horseshoe crab haemocytes/*Limulus* clotting factor
FMRFamide a tetrapeptide amide: Phe-Met-Arg-Phe-NH₂ phenylalanyl-methionyl-arginyl-phenylalanine amide
g gramme
G gauge
Gal-lectin Gal/GalNAc lectin of *Entamoeba histolytica*
GBL glucose-binding lectin
GBP galactose-binding protein
GHR-P63 rat liver anti-protease
gigalins lectin of Pacific oyster, *C. gigas*
GoaRaIg goat anti-rabbit immunoglobulin labelled with peroxidase
GPC Macrosphere GPC size exclusion column
HA haemagglutination
<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>hydrogen chloride/hydrochloric acid</td>
</tr>
<tr>
<td>HI</td>
<td>haemagglutination inhibition</td>
</tr>
<tr>
<td>HIC</td>
<td>hydrophobic interaction column</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HOCl</td>
<td>hypochlorous acid</td>
</tr>
<tr>
<td>hr(s)</td>
<td>hour(s)</td>
</tr>
<tr>
<td>H&E stain</td>
<td>hematoxylin and eosin stain</td>
</tr>
<tr>
<td>HSP</td>
<td>heat shock protein</td>
</tr>
<tr>
<td>IAG antiserum</td>
<td>rabbit antiserum raised against IAGPGWEKYN synthetic peptide</td>
</tr>
<tr>
<td>i.e.</td>
<td>id est (= that is)</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focusing</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulins</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet haemocyanin</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>LBP</td>
<td>lipopolysaccharide (LPS)-binding protein</td>
</tr>
<tr>
<td>limulin</td>
<td>lectin of horseshoe crab</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>m</td>
<td>molar</td>
</tr>
<tr>
<td>MASP</td>
<td>mannose-binding lectin-associated serine proteases</td>
</tr>
<tr>
<td>MBP/MBL</td>
<td>mannose-binding protein/lectin</td>
</tr>
<tr>
<td>MES</td>
<td>(3S,4S)-4β-D-glucopyranosyloxy-3-methyloctanoic acid</td>
</tr>
<tr>
<td>mg</td>
<td>milligramme</td>
</tr>
<tr>
<td>mGDF</td>
<td>molluscan growth and differentiation factor</td>
</tr>
<tr>
<td>min(s)</td>
<td>minute(s)</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>milimolar</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre(s)</td>
</tr>
<tr>
<td>modiolin</td>
<td>lectin of the horse mussel, Modiolus modiolus</td>
</tr>
<tr>
<td>MPA</td>
<td>mega pascal</td>
</tr>
<tr>
<td>MSX</td>
<td>multinucleated spore unknown</td>
</tr>
<tr>
<td>MT</td>
<td>methallothionein</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
</tbody>
</table>
NaCl sodium chloride
NADPH β-nicotinamide adenine dinucleotide phosphate
NaN₃ sodium azide
NaOH sodium hydroxide
Na₂SO₄ sodium sulphate
nm nanometre
NO nitric oxide
O antigen an antigen that occurs in the body of a Gram-negative bacterial cell
also called somatic antigen
O1 antigen *Vibrio cholerae* (Gram-negative bacillus) is differentiated by the
lipopolysaccharide in the outer membrane; strains of *V. cholerae*
that produce cholera belong to serogroup O1 or O139. *V. cholerae*
O1 is divided into two biotypes: classical and El Tor. The A, B
and C factors differentiate O1 antigens.
OH oyster haemolymph
1D one-dimensional
PBS phosphate buffered saline
PCR polymerase chain reaction
PE phosphorylethanolamine
PEG polyethylene glycol
PG prostaglandin (E₂: dinoprostone, F₂α: dinoprost)
PGN (bacterial) peptidoglycan
pH the negative logarithm of hydrogen ion concentration expressed in
molarity
pI isoelectric point
PMSF phenylmethyl sulphonyl fluoride
ppt parts per thousand
psi(g) pounds per square inch (gauge)
RBC red blood cell
ROIs reactive oxygen intermediates
RNIs reactive nitrogen intermediates
RPC reversed phase column
RT-PCR reverse transcriptase-polymerase chain reaction
SAA serum amyloid A component
SAP serum amyloid P component
SCPs small cardioactive peptides
SD sub-lethal dose of turpentine trial group
SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SDX Superdex size exclusion column
sec(s) second(s)
SE standard error
SEC size exclusion column
SI the South Island control group
ST sub-lethal temperature trial group
SYPRO Ruby SYPRO® Ruby protein gel stain (Molecular Probes)
T3 3,5,3'-triiodothyronine
T4 thyroxine
TBS tris buffered saline
TCRP 1-3 Tachypleus C-reactive protein 1-3
TES temperature stress group
TFA trifluoroacetic acid
TGF transforming growth factor
3'AURE AUUUA reiterations in 3’ untranslated regions (AU-rich elements)
TLs-5 tachylectin 5A and 5B
TNF tumour necrosis factor
TS turpentine stress group
TSH thyroid stimulating hormone (thyrotropin)
TTA Tachypleus tridentatus agglutinin
2D-PAGE two-dimensional polyacrylamide gel electrophoresis
V volt(s)
vs. versus
W watt(s)
zymosan inflammatory agent
µg microgramme
µl microlitre
µm micrometre
% percent/ per cent/ percentage

Units in the thesis are written according to the Journal of Invertebrate Pathology.