Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Pneumonia and pleurisy in sheep: Studies of prevalence, risk factors, vaccine efficacy and economic impact

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Massey University, Palmerston North, New Zealand

Kathryn Anne Goodwin-Ray
2006
The objectives of this thesis were to investigate patterns of lamb pneumonia prevalence of a large sample of New Zealand flocks including an investigation of spatial patterns, to evaluate farm-level risk factors for lamb pneumonia, to determine the efficacy of a commercially available vaccine for the disease and to estimate the likely cost of lamb pneumonia and pleurisy for New Zealand sheep farmers.

Data were collected by ASURE NZ Ltd. meat inspectors at processing plants in Canterbury, Manawatu and Gisborne between December 2000 and September 2001. All lambs processed at these plants were scored for pneumonia (scores: 0, <10% or ≥10% lung surface area affected) involving 1,899,556 lambs from 1,719 farms. Pneumonia prevalence was evaluated for spatial patterns at farm level and for hierarchical patterns at lamb, mob and farm levels (Chapter 3). The average pneumonia prevalence in Canterbury, Feilding and Gisborne was 34.2%, 19.1% and 21.4% respectively. Odds ratios of lambs slaughtered between March and May were vastly higher than those slaughtered in other months indicating longer growth periods due to pneumonia. Since pneumonia scores were more variable between mobs within a flock than between flocks, it was concluded that pneumonia scores were poor indicators for the flock pneumonia level due to their lack of repeatability. There was no statistically significant spatial autocorrelation in pneumonia prevalence for any region, hence lamb pneumonia appeared to be largely independent of topographical and geo-climatic factors.

A questionnaire-based case-control study was conducted investigating farm-level factors from a sample of farms with either high (case) or zero (control) pneumonia prevalence at slaughter (Chapter 4). Significant risk factors for case farms were: (1) shearing lambs on the day of weaning, (2) breeding ewe replacements on-farm (3) number of lambs sold (an indicator of flock size) and (4) increased percentage of lambs sold late in the season (March to May). Significant protective factors included: (1) set stocking lambs after weaning, (2) injecting lambs with Vitamin B12 at the time of tailing, (3) injecting lambs
with Vitamin B12 at weaning. In Canterbury, flocks with Romney ewes and other ewes had a higher risk of pneumonia than those with fine wool type ewes (Merinos, Corriedales or Halfbreds).

In a clinical trial, 8,364 lambs from seven commercial sheep farms with a history of lamb pneumonia were vaccinated with Ovipast Plus® or placebo by systematic random allocation within mob and farm. An assessment of the extent of pneumonic lesions was conducted at slaughter and lamb growth rate was monitored through the growth period (Chapter 5). The vaccination trial showed no statistically significant effect of Ovipast® vaccination on the extent of lung lesions at slaughter or ADG of lambs from the first treatment until slaughter. No significant differences were found between isolation rates of Pasteurella spp and patho-histological classifications from pneumonic lung samples of placebo and vaccinated lambs.

A spreadsheet-based stochastic model was constructed to estimate the cost of lamb pneumonia and pleurisy to New Zealand farmers. The estimate was based on data of the effect of pneumonia on lamb growth rate, distributions of pneumonia severity, prevalence of moderate to severe pneumonia (≥10% lung surface area) and pleurisy prevalence (Chapter 6). The simulated annual average cost of pneumonia was NZ $28.1 million and that of pleurisy NZ $25.1 million. The combined cost of pneumonia and pleurisy to New Zealand farmers had an average of NZ $53.2 million (95% stochastic interval = $32.4–$78.9 million), or US $31.9 million per annum. This would equate to NZ $2.32 per lamb.

In comparison, animal health, shearing expenses and feed expenses cost NZ $2.37, $2.62 and $1.85 per lamb, respectively.

This research has demonstrated sub-clinical pneumonia to be a widespread disease in the New Zealand sheep farming population while previous research has focussed on case studies of affected farms. The estimated costs of pneumonia and pleurisy to New Zealand farmers ($53.2 million) highlight the financial effects of these diseases and the need for further research. We also found that the commercially available vaccine could neither prevent sub-clinical effects (lamb growth rate) nor clinical manifestations (pneumonic lung lesions) of lamb pneumonia. The case-control study has revealed farm-level factors which, in the absence of effective vaccines, indicated management practices that farmers might perceive as opportunities to control lamb pneumonia. However, it is advisable to evaluate the efficiency of such management changes.
Pneumonia is aetiological complex disease involving the interplay of many environmental, host and pathogen factors. It is also a difficult disease to study in the absence of diagnostic tests in live animals. However, further research should focus on the development of management changes until effective vaccines are available. A starting point for this research would be to evaluate the impact of such management changes in reducing the incidence of lamb pneumonia. More specifically, the roles of stress during crowding of lambs for extended periods warrants further investigation. The development of efficient vaccines requires an analysis of pathogens, especially *Pasteurella (Mannheimia) haemolytica* and *Mycoplasma* species, the sources of infection, their strain diversity and transmission dynamics.
There are several people to whom I am grateful for their various contributions to this research work and thesis. Firstly, I would like to express my gratification to my supervisors Dr. Cord Heuer and Dr. Mark Stevenson for their invaluable knowledge, input and time into this study. They both have been very approachable and willing to help. I’d also like to extend my appreciation to Colin Brown, Tony Rhodes, Sam McIvor and Mark Aspin for the management of funding, facilitating various industry meetings and overall support. I would like to acknowledge the support of Meat New Zealand who funded this project. Julie Dunlop, Colleen Blair and Simon Verschaffelt have provided valued administrative and computer support. Thank you to Dr. Ron Jackson who provided input through various stimulating discussions, support at industry meetings and encouragement throughout the course of my study. Other EpiCentre staff and students, although not directly involved in my studies have also provided support and friendship throughout my PhD. I thank you all too. Not only does the EpiCentre have a world-renowned reputation professionally, it also has a warm, friendly and supportive atmosphere in which to study.

For data collection, I am indebted to ASURE NZ Ltd. meat inspectors at Canterbury Meat Packers, Lamb Packers Feilding Ltd. and Gisborne Progressive Ltd. lamb processing plants for their efforts outside of regular duties without financial reward. This data has provided most of basis for this thesis. I would also like to thank the lamb suppliers to these processing plants who gave up their time to fill in the extensive questionnaire that was mailed to them. I would like to thank the farmers involved in the vaccination trial for their time, co-operation and enthusiasm. Thanks to Maurice Alley who performed the histopathology of lung samples for the vaccination trial and Anne Midwinter and Lynn Rogers who performed the bacteriology. There were various people who assisted in ear tagging, administering treatments and weighing lambs. These people include: Diane Richardson, Annette Sutherland, Ema Tocker, Andrew Goodwin, Jason McMurray, Andre Sutherland, Tim Heuer, Steven Ray and Stuart Field. Data collection at the processing plants was also very labour intensive and I would like to thank: Diane Richardson, Annette
Sutherland, Mike, Troy Sutherland, Ema Tocker, Andre Sutherland, Steven Ray, Stuart Field and Esther Richardson for their help. I would like to extend particular thanks to Annette Sutherland for her involvement throughout the trial with weighing, vaccination, ear tagging, processing plant data collection, sample processing and data entry and last but not least, friendship and support.

I would like to thank my friends and family for their continued support. I dedicate this thesis to the memory of my late father John who passed away in April 2006 and my late mother Betty who passed away in December 1997. Mum and Dad were sheep farmers in South Canterbury. Dad was especially proud that sheep were the focus of my studies. I would like to thank my husband Steve for his help with the vaccination trial but mostly for his tremendous support, love and encouragement.
Contents

Abstract...v

Acknowledgements ...ix

List of Figures..xv

List of Tables..xix

Chapter 1: Introduction..1

Chapter 2: Review of the literature on pneumonia and pleurisy in lambs ...3

2.1: Introduction...3

2.2: Sheep farming in New Zealand...4

2.2.1: Sheep breeds..4

2.2.2: Sheep products and markets...5

2.2.3: Structure of the industry..6

2.2.4: Timing of farm management events ...7

2.2.5: Farming systems...8

2.2.6: Disease status...9

2.2.7: Pasture growth and climate...9

2.3: Respiratory disease in sheep...10

2.3.1: Clinical and patho-physiological classification ...11

2.3.2: Diagnosis..14

2.3.3: Treatment..15

2.4: Pneumonia in New Zealand...21

2.4.1: Prevalence..21

2.4.2: Feedback to farmers from processing plants..23
2.4.3: Discussion ... 24

2.5: Economic loss due to pneumonia and pleurisy ... 24

2.5.1: The effect of pneumonia on growth rate ... 24

2.5.2: Pleurisy ... 26

2.5.3: Mortality .. 27

2.5.4: Economic losses at the industry level .. 27

2.6: Causes ... 29

2.6.1: Pathogens of pneumonia ... 29

2.6.2: Host .. 36

2.6.3: Environment .. 41

2.6.4: Summary .. 42

2.7: Epidemiology of chronic non-progressive pneumonia and pleurisy 43

2.7.1: Prevalence, distribution and seasonality ... 43

2.7.2: Disease dynamics within and between flocks .. 51

2.7.3: Risk factors for pneumonia and pleurisy ... 52

2.8: Control of pneumonia .. 55

2.8.1: Vaccination .. 55

2.8.2: Antimicrobial peptides ... 63

2.8.3: Management ... 64

2.9: Outline and aims of thesis ... 66

Chapter 3: Hierarchical model of pneumonic lesions in lambs at slaughter and investigation of spatial patterns of pneumonia prevalence ... 69

3.1: Introduction ... 69

3.2: Materials and Methods .. 70

3.3: Results ... 76

3.4: Discussion .. 87

3.5: Conclusions ... 91
<table>
<thead>
<tr>
<th>Chapter 4: Case-control study of lamb pneumonia</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1: Introduction</td>
<td>93</td>
</tr>
<tr>
<td>4.2: Materials and Methods</td>
<td>94</td>
</tr>
<tr>
<td>4.3: Results</td>
<td>97</td>
</tr>
<tr>
<td>4.4: Discussion</td>
<td>108</td>
</tr>
<tr>
<td>4.5: Conclusions</td>
<td>113</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5: Efficacy of Ovipast Plus® vaccine for pneumonia of lambs under field conditions in New Zealand</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1: Introduction</td>
<td>115</td>
</tr>
<tr>
<td>5.2: Materials and Methods</td>
<td>117</td>
</tr>
<tr>
<td>5.3: Results</td>
<td>121</td>
</tr>
<tr>
<td>5.4: Discussion</td>
<td>131</td>
</tr>
<tr>
<td>5.5: Conclusions</td>
<td>135</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6: Economic effect of chronic non-progressive pneumonia and pleurisy in New Zealand lambs</th>
<th>137</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1: Introduction</td>
<td>137</td>
</tr>
<tr>
<td>6.2: Materials and Methods</td>
<td>138</td>
</tr>
<tr>
<td>6.3: Results</td>
<td>145</td>
</tr>
<tr>
<td>6.4: Discussion</td>
<td>152</td>
</tr>
<tr>
<td>6.5: Conclusions</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7: General Discussion</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1: Introduction</td>
<td>157</td>
</tr>
<tr>
<td>7.2: Prevalence of pneumonia</td>
<td>158</td>
</tr>
<tr>
<td>7.3: Spatial patterns of pneumonia</td>
<td>159</td>
</tr>
</tbody>
</table>
7.4: Risk factors for lamb pneumonia .. 159

7.5: Path model ... 161

7.6: Vaccination against pneumonia .. 162

7.7: Economic effects of pneumonia and pleurisy 164

7.8: Gaps in findings .. 164

7.9: Recommendation for further studies 166

7.10: Conclusions ... 167

Bibliography .. 169

Appendix .. 191
List of Figures

Figure 2.1: Average daily pasture growth rates for 50 North Island (●) and 24 South Island (■) farms per month and 95% confidence intervals (adapted from Dexcel Limited (2005)) ...10

Figure 2.2: Map of New Zealand ...22

Figure 2.3: Isolation of adenovirus (WV 757/75, WV 419/75) and parainfluenza type 3 virus (PL3) in the surveillance group of lambs, nasal isolation of Mycoplasma spp. (Nasal Myco.) and P. haemolytica (Nasal P. haem), average haemaglutinating antibody titres to P. haemolytica (titre to P. haem) and pneumonia prevalence (prevalence) at slaughter in random groups of lambs (adapted from (Pfeffer et al., 1983) ..34

Figure 2.4: Prevalence of lambs with pneumonia lesions classified as Category 3 or 4 (≥ 10.0% lung surface affected) that were randomly selected for slaughter at monthly intervals (Group I) from Southland (■), King Country (□) and Northland (■) in December (D) 2000; and January (J), February (F), March (M), April (A) and May (My) 2001 (Goodwin et al., 2004) ...46

Figure 2.5: Percentage of lambs with pleurisy at slaughter between December and July 2002/2003 in five regions of New Zealand (ASURE New Zealand Ltd., P.O.Box 1141, Christchurch) ..49

Figure 2.6: Percentage prevalence of major pleurisy at slaughterhouses in Timaru (South Canterbury), Bluff (Southland), Wairoa (Northern Hawkes Bay) and Moerewa (Northland) (Van der Logt, 1996) ..50

Figure 3.1: Map of New Zealand with shaded areas indicating the selected study areas: (a) Canterbury, (b) Manawatu, and (c) Gisborne. Circles represent areas where farms were selected for the spatial analyses described in the text ...71

Figure 3.2: Pneumonic lesions in lambs slaughtered in three regions of New Zealand, December 2000 to September 2001. Number of lambs slaughtered per month at the Canterbury, Manawatu, and Gisborne plants ..76

Figure 3.3: Pneumonic lesions in lambs slaughtered in three regions of New Zealand, December 2000 to September 2001. Mean monthly true pneumonia prevalence (with 95% confidence intervals) for lambs slaughtered at the Canterbury, Manawatu, and Gisborne plants ..80

Figure 3.4: Pneumonic lesions in lambs slaughtered in three regions of New Zealand, December 2000 to September 2001. Point maps showing the location of case and control flocks in: (a) Canterbury, (b) the Manawatu, and (c) Gisborne ...83

Figure 3.5: Pneumonic lesions in lambs slaughtered in three regions of New Zealand, December 2000 to September 2001. Contour plots showing the spatial
incidence risk of moderate to severe pneumonia for flocks in: (a) Canterbury, (b) the Manawatu, and (c) Gisborne. In (a) the shaded circular area identifies the location of the significant cluster of case flocks, identified using the spatial scan statistic

Figure 3.6: Pneumonic lesions in lambs slaughtered in three regions of New Zealand, December 2000 to September 2001. Binned omnidirectional variograms computed using the standardised residuals from the multilevel model for flocks in: (a) Canterbury, (b) the Manawatu, and (c) Gisborne.

Figure 4.1: Case-control study of lamb pneumonia in three regions of New Zealand, December 2000 to May 2001. Path model showing inter-relationships between variables listed in chronological order with significant direct or indirect paths to case or control flock.

Figure 5.1: Clinical trial of Ovi past Plus® vaccine in seven commercial lamb flocks in the lower North Island of New Zealand, 2002/2003. Least square means of ADG (g/day) of lambs in the first growth period (W1 to W2: 0–11 weeks post vaccination 1) by flock and vaccination group (error bars show 95% confidence intervals).

Figure 5.2: Clinical trial of Ovi past Plus® vaccine in seven commercial lamb flocks in the lower North Island of New Zealand, 2002/2003. Least square means of ADG (g/day) of lambs in the second growth period (W2 to W3: 11–23 weeks post vaccination 1) by flock and vaccination group (error bars show 95% confidence intervals).

Figure 5.3: Clinical trial of Ovi past Plus® vaccine in seven commercial lamb flocks in the lower North Island of New Zealand, 2002/2003. Least square means of ADG (g/day) of lambs in the overall growth period (W1 to WS: vaccination 1–slaughter) by flock and vaccination group (error bars show 95% confidence intervals).

Figure 5.4: Clinical trial of Ovi past Plus® vaccine in seven commercial lamb flocks in the lower North Island of New Zealand, 2002/2003. Least square means (●) (and 95% CI) of weight gains (g/day) of lambs from vaccination 1 to slaughter according to pneumonia category (Category 0, no pneumonia; Category 1, <5%; Category 2, 5-9.9%; Category 3, 10-19.9%; and Category 4, ≥20% lung surface area affected).

Figure 6.1: Stochastic model to estimate the direct annual cost of pneumonia and pleurisy to New Zealand farmers. Scatter plots, regression equations and the multiple coefficients of determination (R²) of average cost of pneumonia per lamb (AML) for 14 (●) flocks (Goodwin-Ray and Heuer, 2006) and 7 flocks (−) (Goodwin et al., 2005), according to moderate to severe pneumonia (≥ Category 3) prevalence (% of lambs) for (a) January, (b) February, (c) March and (d) April.

Figure 6.2: Least square means (■) (and 95% CI) of average daily weight gains (g/day) of randomly selected lambs in the month prior to slaughter in categories of: 0, no pneumonia; 1, ≤ 5% lung surface area affected; 2, 5-9.9%; 3, 10-19.9%; and 4, ≥ 20% lung surface area affected.

Figure 6.3: Stochastic model to estimate the direct annual cost of pneumonia and pleurisy to New Zealand farmers. Distributions of true moderate to
severe pneumonia (≥ 10% lung affected) prevalence (adjusted according to sensitivity and specificity (Table 6.2) based on 1,719 flocks for January (a), February (b), March (c), April (d), May (e) and June (f) (frequency of flocks with 0 prevalence indicated at top of bar (n = number of flocks in category 0)).

Figure 6.4: Stochastic model to estimate the direct annual cost of pneumonia and pleurisy to New Zealand farmers. Distribution of the estimated annual cost of pneumonia to New Zealand farmers.

Figure 6.5: Stochastic model to estimate the direct annual cost of pneumonia and pleurisy to New Zealand farmers. Distribution of the estimated annual cost of downgraded or condemned carcasses due to pleurisy to New Zealand farmers.

Figure 6.6: Stochastic model to estimate the direct annual cost of pneumonia and pleurisy to New Zealand farmers. Distribution of the estimated annual cost of pleurisy and pneumonia to New Zealand farmers.
List of Tables

Table 2.1: Number of farms with the average and standard deviation of farm size and number of sheep per farm grouped by region (adapted from AgriBase (AgriQuality, 2004)) ... 4

Table 2.2: Average dates of mating, lambing, weaning, ages of lambs at tailing, weaning and slaughter with each standard deviation (SD, days) and number of flocks in the calculation based on a survey of 313 sheep flocks in Gisborne, Manawatu and Canterbury (refer Chapter 4, this thesis) .. 8

Table 2.3: Pathogens of sheep pneumonia and their sensitivity to antibiotics, with study references ... 17

Table 2.4: Bacterial isolations from cases of ovine pneumonia .. 30

Table 2.5: Mycoplasmal isolations from cases of ovine pneumonia 32

Table 2.6: Relationship between virus infections and prevalence of pneumonia (Davies et al., 1980a) .. 33

Table 2.7: Prevalence of enzootic pneumonia and pleurisy on necropsy in lambs less than 3 months of age (below slaughter weight) from three New Zealand sheep farms (McGowan et al., 1978) .. 44

Table 2.8: Prevalence of enzootic pneumonia and pleurisy at time of slaughter in market lambs from three New Zealand sheep farms (McGowan et al., 1978) .. 44

Table 2.9: Prevalence of pleurisy at slaughter in market lambs from 3 farms from the studies of McGowan et al. (1978) and Davies et al. (1980a) 51

Table 2.10: Pasteurella vaccines commercially available throughout the world 56

Table 2.11: Group mean disease scores and percentage protection of iron regulated protein vaccines in SPF lambs challenged with P. haemolytica A2 (Gilmour et al., 1991) .. 58

Table 3.1: Date, duration and number of lungs sampled for validation of pneumonia data from Canterbury, Manawatu and Gisborne between May 1st and June 8th 2001 ... 77

Table 3.2: Validation sensitivity and specificity (with 95% confidence intervals), of inspector diagnosis of minor, moderate to severe and total pneumonia in Canterbury, Manawatu and Gisborne .. 78

Table 3.3: Descriptive statistics of number of mobs, number of lambs, means of true minor, true moderate to severe and total pneumonia prevalence per flock, grouped by region with 95% confidence intervals .. 79

Table 3.4: Logistic regression model of the effects of processing plant and month on proportion of moderate to severe pneumonia in lambs at mob and
flock-level from Canterbury, Manawatu and Gisborne between December 2000 and September 2001.................................81

Table 3.5: Number of study flocks selected for spatial analysis supplying lambs to data collection processing plants, mean (standard deviation) number of lambs supplied per flock, true moderate to severe pneumonia prevalence and true total pneumonia prevalence in Canterbury, Manawatu and Gisborne...82

Table 4.1: Summary description of variables from a retrospective questionnaire (for 2000/2001 season) mailed to study flocks in 2002.................................98

Table 4.2: Descriptive and univariate statistics of continuous variables grouped by time period (significant at p ≤ 0.250) for case and control flocks99

Table 4.3a: Control and case flock frequency (n) and odds ratios (OR) with 95% confidence intervals (95% CI) for categorical time independent mating to lambing variables (p ≤ 0.250)..100, 101

Table 4.3b: Control and case flock frequency (n) and odds ratios (OR) with 95% confidence intervals (95% CI) for categorical variables from lambing to slaughter (p ≤ 0.250)..102, 103

Table 4.4: Odds ratios (95% confidence interval, CI) of the final logistic regression model for flock-level management factors on lamb pneumonia (control flock: 0% moderate-severe pneumonia; case flock: ≥ 3% moderate-severe pneumonia)...104

Table 5.1: Frequency of the number of lambs (placebo, vaccinated and total) for the planned sample size, those enlisted in the trial (W1) by flock and region, those present at vaccination 2 (W2), those with average daily weight gain (ADG (g/day)) records and those with pneumonia scores and the number of lung lesions cultured and examined for histopathology122

Table 5.2: Descriptive statistics of average daily gain (ADG,(g/day)) calculated from the difference between the weight taken at vaccination 1 (W1) and the final pre-slaughter weight in vaccinated and placebo lambs from 7 commercial sheep flocks..123

Table 5.3: Number of placebo and vaccinated lamb’s lungs scored at slaughter for pneumonia and weighted average slaughter dates from seven trial sheep flocks..128

Table 5.4: Percentages of placebo (n = 2,596) and vaccinated lambs (n = 2,454) in five pneumonia categories..129

Table 5.5: Adjusted relative risks for the effect of vaccination on moderate to severe pneumonic lesions (≥ 10% lung surface area affected) adjusted for flock of origin and month of slaughter (95% CI = 95% confidence interval)..129

Table 5.6: Prevalence of isolation of P. haemolytica or P. trehalosi from pneumonic lung lesions of placebo and vaccinated lambs from five commercial sheep flocks in New Zealand (p = 0.884).................................130
Table 5.7: Histopathology results from samples of lambs from four commercial sheep flocks in New Zealand grouped by placebo or vaccinated lambs (p = 0.284)

Table 5.8: Histopathological classifications of disease from samples of lambs from four commercial sheep flocks in New Zealand grouped by isolations of *P. haemolytica* or *P. trehalosi* from pneumonic lung lesions (p = 0.649)

Table 6.1: Most likely value, standard deviation (SD), minimum, maximum and assumed distribution of stochastic model variables

Table 6.2: Sensitivity and specificity (with 95% confidence intervals), of inspector diagnosis of moderate to severe pneumonia for Canterbury, Manawatu and Gisborne processing plants

Table 6.3: Mean pleurisy prevalence (95% CI) from January-June 2001 for Canterbury, Manawatu and Gisborne processing plants

Table 6.4: Correlation coefficients between model output (total cost of pneumonia) and sets of sampled input variables (n = 5), ranked according to significance

Table 6.5: Correlation coefficients between model output (total cost of pleurisy) and sets of sampled input variables (n = 5), ranked according to significance

Table 6.6: Correlation coefficients between model output (total cost of pneumonia and pleurisy) and sets of sampled input variables (n = 10), ranked according to significance