The Use of GIS and Remote Sensing
to Identify Areas at Risk from Erosion
in Indonesian Forests:
A Case Study in Central Java

A thesis presented in partial fulfilment of the requirements for the
degree of Doctor of Philosophy
in Natural Resource Management
at Massey University, Palmerston North,
New Zealand

Massey University

Endang Savitri

2006
[Since they have become oblivious of God] corruption has appeared on land and in the sea as an outcome of what men's hands have wrought: and so He will let them taste [the evil of] some of their doings, so that they might return [to the right path]

Ar Ruum 30:41
ABSTRACT

Environmental degradation and soil erosion begins when production forests are harvested. Unfortunately, logging cannot be avoided in plantation forests and since this operation can render the land more susceptible to erosion, any negative impacts need to be addressed properly.

Erosion potential is predicted by evaluating the response of land cover, soil and slope to the impact of rainfall and human activities. The role of remote sensing and geographical information systems (GIS) in erosion prediction is to collect information from images and maps; combine and analyse these data so that it is possible to predict the erosion risk.

The objective of this study was to produce a method to identify areas most susceptible to erosion and predict erosion risk. It is intended that the method be used particularly by forestry planners and decision makers so that they can improve forest management, especially during logging.

The study area was within Kebumen and Banjarnegara districts of Central Java, Indonesia. Imagery used included a Landsat 7 satellite image (28th April 2001) and panchromatic aerial photos (5th July 1993). Other data was derived from topographical, soil, and geological maps, and 10 years of daily rainfall data from 17 rainfall stations.

Predicting erosion in this study was done by combining rainfall, slope, geology, and land cover data. The erosion risk was predicted using land cover and soil type and depth. A rainfall map was generated using a thin plate spline method. A slope map was derived from a DEM which was generated by digitizing contours and spot heights from topographic maps. A geological map was derived from Landsat image classification with assistance from a 1:100000 scale geological map; and a land cover map was produced from an interpretation of the Landsat image and aerial photographs.

A stratified classification technique was used to delineate land covers in the study area with an accuracy of 44%. The low accuracy could be attributed to the complexity of the area and the temporal variation in the data acquisition.
The analysis of erosion risk showed that mixed forests and monotype forest experienced high and moderately high erosion risk. This condition supported the contention that harvest plans must incorporate soil conservation measures.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful. All the praise and thanks to Allah, the Lord of mankind, jinn and all that exists. With His permission, finally, I can finish my work.

I would express my gratitude to all of my supervisors, for all of your supervision, support, encouragements and guidance. To Associate Prof. John D. Holland, thank you so much for sharing your knowledge in “how to do a good research” and managing references, to Mr. Mike P. Tuohy, thank you for your patience, and understanding when it comes to reading my thesis, and last but not least, many warm thanks to Mr. Robert G. Gibb for all of your unexpected questions that help me think for a better solution. Without you all I don’t think any of this would be possible.

My appreciation goes to NZAID who awarded me with this scholarship so I can have the opportunity to study in Massey University pleasantly. Recognition goes to Sylvia Hooker and Sue Flynn from International Student Support Offices who help me with my personal and study problems.

Special thanks go to Matthew Irwin who helps me time and time again with the GIS and Remote Sensing and the special lessons on Vegemite. To Robert Murray, Hayden Lawrence, and Mark Coetzee, you guys have made my life more cheerful and happier. To Dr. Ian Yule thank you for allowing me to have a little “taste” of the life in NZCPA.

Many thanks also go to my Indonesian friends: Yuliana Yosaatmaja who was by my side during those bad days. I would also like to extend my deepest gratitude to Erna and Trie Priantoro, Novia and Cahyo Setyawan, Tiara Parahita and Gusrini Tambunan for all of your support, friendship and kindness.

To Prof. Sutikno from Gadjah Mada University in Indonesia, appreciation is given for the brief geological lecture and Mr. Sadhardjo Siswamartana for the information about Perum Perhutani. Many thanks go to Mr. Nugroho S. Priyono and Mr. Irfan B. Pramono for giving the permission to use the secondary data from the study area, Eko Priyanto and other staffs of Watershed Management Technology Center in Solo who
have helped me to collect the data.

To everyone else who were not mentioned here, thank you for everything that you have done for me. It is not that you are unrecognised, but there are too many of you to mention. Without all of your support I will not be like I am today.

Last but not least, I would give my very special thanks to my sister Endang Sasanti who always be by my side in those hard days, who knows how to cheer me up when I am down and laugh with me when I am happy. Thank you for the full supports that are readily given and I would like to dedicate my thesis to you.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>asl</td>
<td>above sea level</td>
</tr>
<tr>
<td>Bakosurtanal</td>
<td>Badan Koordinasi Survey dan Pemetaan Nasional (National Coordinating Agency for Surveys and Mapping)</td>
</tr>
<tr>
<td>CRES</td>
<td>Centre for Resource and Environmental Studies</td>
</tr>
<tr>
<td>DEM</td>
<td>Digital Elevation Model</td>
</tr>
<tr>
<td>DN</td>
<td>Digital Number</td>
</tr>
<tr>
<td>DOS</td>
<td>Dark Object Subtraction</td>
</tr>
<tr>
<td>DPI</td>
<td>Dot per Inch</td>
</tr>
<tr>
<td>ETM</td>
<td>Enhanced Thematic Mapper</td>
</tr>
<tr>
<td>GCP</td>
<td>Ground Control Point</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>IDW</td>
<td>Inverse Distance Weighted</td>
</tr>
<tr>
<td>ISODATA</td>
<td>Iterative Self-Organizing Data Analysis</td>
</tr>
<tr>
<td>ITTO</td>
<td>International Timber Trade Organization</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LIPi</td>
<td>Lembaga Ilmu Pengetahuan Indonesia (Indonesian Institute of Sciences)</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalised Difference Vegetation Index</td>
</tr>
<tr>
<td>RGB</td>
<td>Red – Green – Blue</td>
</tr>
<tr>
<td>RMS Error</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>RTGCV</td>
<td>(Square) Root of Generalised Cross Validation</td>
</tr>
<tr>
<td>RTMSE</td>
<td>(Square) Root of Mean Square Error</td>
</tr>
<tr>
<td>SCS</td>
<td>Sun – Canopy – Sensor</td>
</tr>
<tr>
<td>SFM</td>
<td>Sustainable Forest Management</td>
</tr>
<tr>
<td>SJFCSP</td>
<td>South Java Flood Control Sector Project</td>
</tr>
<tr>
<td>SPOT</td>
<td>Satellite pour l’Observation de la Terre</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>STS</td>
<td>Sun – Terrain – Sensor</td>
</tr>
<tr>
<td>USLE</td>
<td>Universal Soil Loss Equation</td>
</tr>
<tr>
<td>UTM</td>
<td>Universal Transverse Mercator</td>
</tr>
<tr>
<td>WRS</td>
<td>World Reference System</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENT ... v

ABBREVIATIONS ... vii

TABLE OF CONTENTS .. ix

LIST OF FIGURES .. xiv

LIST OF TABLES ... xxii

Introduction ... 1

 1.1 Background .. 1

 1.2 Problem Statement .. 3

 1.3 Aim and Objectives .. 4

 1.4 Limitations of the Study Area .. 5

 1.5 Contribution of the Research ... 5

 1.6 Structure of the Thesis ... 5

Description of Study Area ... 9

 2.1 Introduction ... 9

 2.2 Population ... 10

 2.3 Climate ... 11

 2.3.1 Precipitation ... 11

 2.4 Study Area Catchment .. 14

 2.5 Land Use/Land Cover ... 17

 2.6 Soils ... 23

 2.7 Soil Erosion ... 26

Data Collection .. 29

 3.1 Topographic Maps .. 29

 3.2 Geological Map .. 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.2</td>
<td>Recommendations for Soil Data</td>
<td>217</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Recommendations for Land Cover Data</td>
<td>217</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Recommendations for DEM</td>
<td>217</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Recommendations for Imagery</td>
<td>218</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Recommendation for Data Management</td>
<td>218</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Recommendation for Hardware and Software</td>
<td>218</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Recommendation for Personnel</td>
<td>218</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Recommendations for Agencies Involved</td>
<td>219</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Recommendation for Policy</td>
<td>219</td>
</tr>
<tr>
<td>7.2.11</td>
<td>Recommendation for Funding</td>
<td>219</td>
</tr>
<tr>
<td>7.2.12</td>
<td>Recommendation for Networking</td>
<td>219</td>
</tr>
<tr>
<td>7.3</td>
<td>Recommendations for Future Research</td>
<td>220</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Recovery Time</td>
<td>220</td>
</tr>
<tr>
<td>7.3.2</td>
<td>The Use of Heavy Rain Data</td>
<td>220</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Valuation of Biodiversity Factor</td>
<td>221</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Readjustment of Land Cover Classification Method</td>
<td>221</td>
</tr>
</tbody>
</table>

References 223

Appendix A. Description of the Geological Unit 235

Appendix B. Daily Rainfall (mm) from 17 Stations During 1991 – 2000 241

Appendix C. Rainfall Surfaces for Three Years (1992, 1995 and 1998) 251

Appendix D. SPLINA and LAPGRD Commands of ANUSPLIN 271

Appendix E. Results of ANUSPLIN for Each Rainfall Surface 277
LIST OF FIGURES

Figure 1-1 The Structure of the Thesis .. 6

Figure 2-1 Location of the study area .. 9

Figure 2-2 The correlation between rainfall and altitude for each rainfall station in the study area ... 13

Figure 2-3 Rainfall pattern of the study area for the whole year .. 14

Figure 2-4 The main rivers of the study area are Telomoyo (left) and Luk Ulo (right) ... 15

Figure 2-5 The comparison between manual and automatic watershed delineation ... 16

Figure 2-6 Wet season rice fields in the study area. In hilly areas, people make terraces to conserve the rain water ... 18

Figure 2-7 Cassava is a common crop in the study area during the dry season 18

Figure 2-8 Typical hutan rakyat in the study area. Sometimes people build their houses in the middle of this land as well ... 19

Figure 2-9 Another example of mixed land use .. 20

Figure 2-10 Pine forest belonging to the State Forest Company (Perum Perhutani) ... 20

Figure 2-11 Mature pine trees showing scars from gum extraction 21

Figure 2-12 Young pine trees with and without perennial crops 21

Figure 2-13 Land use map of the study area. Source: SJFCS Project 24

Figure 2-14 Soils of the study area. Source: SJFCS Project ... 25

Figure 2-15 Cassava planted on a steep slope without terraces 26
Figure 2-16 Dry-land cultivation on steep slopes ... 27
Figure 2-17 Small land slide on the roadside ... 27
Figure 2-18 Erosion in the pine forest ... 28
Figure 2-19 Erosion on a dry, steep slope .. 28
Figure 3-1 The topographic map mosaic used for this study. The name and number of each sheet is shown in the top-left corner ... 30
Figure 3-2 The geological map of the study area (digitised from a 1:100000 scale geological map) ... 31
Figure 3-3 The geological map derived from classification of the Landsat7 image 32
Figure 3-4 The location of the study area displayed in the Landsat7 imagery 35
Figure 3-5 Contour lines used for building the DEM. The 50m contour interval is shown as darker lines in the inset ... 37
Figure 3-6 The spot heights used for building the DEM ... 38
Figure 3-7 The 30 metre resolution DEM built from digitised contours and spot heights .. 39
Figure 3-8 The location of rainfall stations used in this study. Location with names are actual stations, while those denoted ‘ST’ are simulated stations 48
Figure 3-9 The January 1998 rainfall surface for the study area 50
Figure 3-10 A comparison of the surfaces built using ANUSPLIN (left) and co-kriging (right) during March 1992 (upper) and September 1995 (lower). The red shaded area shows the lowest value and the shaded area blue indicates the highest value. The numbers show monthly rainfall .. 55
Figure 3-1 Stations that recorded heavy rains (> 180 mm/day) during 10 years data (1991 – 2000) ... 58

Figure 4-1 Flow diagram of land cover classification ... 78

Figure 4-2 Flow diagram of detailed land cover classification using supervised classification ... 79

Figure 4-3 Flow diagram of unsupervised classification to capture cloud and shadow from the image ... 80

Figure 4-4 Locations of the photos used to test the accuracy of the classified image ... 82

Figure 4-5 The histogram of Band 1 shows the zero value that shifted in the spectral value ... 84

Figure 4-6 Colour composites created from the original pixel values and after applying the three topographic correction methods ... 88

Figure 4-7 A comparison of the topographic correction methods used, specifically in a hilly area. The arrow highlights where the different methods appear to have the most effect ... 88

Figure 4-8 Classified image of village (red) and non village (white) area filtered using majority (3x3) ... 91

Figure 4-9 A supervised classification of the RGB-532 composite showing trees (green), rice fields (cyan) and water bodies (blue) after filtering using majority (3x3) kernel ... 92

Figure 4-10 The result of NDVI classification: open land (brown), mixed forest (light green), and forest (dark green). The rest of the area (white) was masked (rice field, village, and water bodies) ... 93

Figure 4-11 Result of the unsupervised classifications for the clouds (cyan) and shadows (black) ... 95
Figure 4-12 Final classified image after overlaying four preliminary classification images: 1= cloud (white), 2= water (blue), 3= village (red), 4= rice field (cyan), 5= open land (brown), 6= mixed forest (light green), 7= forest (dark green), 8= shadow of clouds (black) .. 96

Figure 4-13 A comparison between classified image of mixed forest (light green) with some patches of open land (brown) and forest (green) with a photograph of the same location. The photo was taken from a coordinate of 343347.30 mE, 9159587.74 mN .. 98

Figure 4-14 The image shows mixed forest (light green) with a row of rice field (cyan), open land (brown) and villages (red). The photo was taken from a coordinate of 343346.34 mE, 9161201.61 mN (Karang Mojo) 99

Figure 4-15 The image shows the mixed forest (light green) with forest (green) in the upper part and a mixture of rice field (cyan), villages (red) and open land (brown) in the middle. The photo was taken from a coordinate of 358510.24 mE, 9169182.02 mN (Kedung Legok) 100

Figure 4-16 A comparison between classified image of mixed forest (light green) and forest (green) with a photograph of the same location. The photo was taken from a coordinate of 360867.86 mE, 9172090.21 mN .. 101

Figure 4-17 A comparison between classified image and a photograph of forestry dominated area. The photo was taken from a coordinate of 332901.63 mE, 9163141.40 mN .. 103

Figure 4-18 The classified image shows a mixture of villages and open land (red and brown) surrounded by forest and mixed forest (green and light green). The photo was taken from a coordinate of 337945.74 mE, 9168018.68 mN .. 104
Figure 4-19 The image shows forest area (green) in the upper part of the image with mixed forest (light green) and a mixture of open land (brown) and villages (red). The photo was taken from a coordinate of 355032.17 mE, 9168201.40 mN.

Figure 4-20 Rice fields which could be classed as open land during the dry season. Photo was taken on January 4th, 2004.

Figure 5-1 Schematic representation of components of risk.

Figure 5-2 Flow diagram of erosion likelihood assessment.

Figure 5-3 Flow diagram of erosion risk assessment.

Figure 5-4 The 2-D relationship used to determine level of risk.

Figure 5-5 The 2-D relationship of factors with five classes. 1 = low, 2 = moderately low, 3 = moderate, 4 = moderately high, and 5 = high.

Figure 5-6 The 2-D relationship of factors with three classes. 1 = low, 2 = moderately low, 3 = moderate, 4 = moderately high, and 5 = high.

Figure 5-7 The 3-D relationship between slope (red), geology (blue) and land cover (green) leading to erosion susceptibility classes. 1 = low, 2 = moderately low, 3 = moderate, 4 = moderately high, and 5 = high.

Figure 5-8 The number of wet months in the study area, averaged from three years (1992, 1995, and 1998). Dark green is the driest location, and red is the wettest.

Figure 5-9 The number of dry months in the study area, averaged from three years (1992, 1995, and 1998). Green is the driest location, and red is the wettest.

Figure 5-10 The distribution of the rainfall pressure classes.

Figure 5-11 Distribution of the slope contribution to erosion susceptibility.
Figure 5-12 The distribution of the geological contribution to erosion susceptibility ... 142

Figure 5-13 The distribution of land cover contribution to erosion susceptibility 143

Figure 5-14 The distribution of erosion susceptibility classes in the study area 146

Figure 5-15 The distribution of erosion likelihood classes in the study area 148

Figure 5-16 The short- and long-term productivity class distribution within the study area .. 151

Figure 5-17 The distribution of productivity asset classes in the study area 152

Figure 5-18 The distribution of environmental sensitivity to erosion as represented by soil depth .. 154

Figure 5-19 The distribution of productivity consequence classes in the study area .. 156

Figure 5-20 The distribution of biodiversity asset classes in the study area 157

Figure 5-21 The distribution of biodiversity consequence classes in the study area .. 158

Figure 5-22 The distribution of erosion consequence classes in the study area 160

Figure 5-23 The erosion risk class distribution in the study area 162

Figure 6-1 The Binangun and Kedung Tangkil sub-watersheds and their location in the Luk Ulo – Telomoyo watershed. The different watershed boundaries (in the upper part of the map) are because of different resolution of DEMs. .. 175

Figure 6-2 The combination of slope and altitude to model soil depth 179

Figure 6-3 The new soil depth modelled from slope and altitude 180

Figure 6-4 DEM generated from 12.5 metre contour data (a) and 50 metre contour data (b) .. 182
Figure 6-5 The rectified aerial photo (a) Run 23F/16 with Binangun watershed's boundary and (b) Run 22N/29 with Kedung Tangkil watershed's boundary. ... 183

Figure 6-6 A typical village (whitish colour) showing how it is built among trees for shelter. The darkest colour in the upper part of the photo is pine forest... 184

Figure 6-7 The land cover classification derived from aerial photos. They are Run 23F (Binangun) (a) and Run 22N (Kedung Tangkil) (b). Black straight lines in the photos show the overlapped photos 185

Figure 6-8 The distribution of land cover classification mosaicked from Runs 23F/16 and 22N/29. .. 186

Figure 6-9 The erosion susceptibility class derived from (a) slope class, (b) geology class, and (c) land cover class... 189

Figure 6-10 The erosion likelihood class derived from (a) erosion susceptibility and (b) rainfall pressure ... 191

Figure 6-11 The short- and long-term productivity classes in the study area............. 192

Figure 6-12 The distribution of productivity asset class in the study area 194

Figure 6-13 The contour lines and slope classes, to differentiate soil depths according to their hillslope position. ... 195

Figure 6-14 Soil erosion sensitivity class modelled from slope and elevation (a) and soil depth (b) of the study area. The colours indicate the sensitivity to erosion. Red is high and green is low. 196

Figure 6-15 Distribution of productivity consequence classes in the study area...... 197

Figure 6-16 The distribution of biodiversity consequence in the study area........... 199

Figure 6-17 The distribution of erosion consequence class in the study area 200
Figure 6-18 Distribution of erosion risk class of the study area .. 202

Figure 6-19 The difference between land cover derived from (a) panchromatic aerial photo and (b) Landsat image ... 203

Figure 6-20 The consequences using sensitivity from a modelled soil depth using altitude and slope to separate the hills into summit, hill-slope and valley (a), and from original soil map (b) ... 205

Figure 6-21 The difference between erosion risks using (a) aerial photo and (b) Landsat image .. 207
LIST OF TABLES

Table 2-1 The data availability in each station, average rainfall (mm/year) and associated elevation values (m) ... 12

Table 2-2 Major land uses in the study area (digitised data) .. 22

Table 3-1 Short description of each geological unit found in the study area and its total area (in ha and %) (from the digitised Geological map) 33

Table 3-2 Three wettest years chosen for each rainfall station followed by the number of months each station can contribute ... 40

Table 3-3 The geographical position (E N), altitude (metres), aspect (°) and direction of each station in the study area .. 45

Table 3-4 The geographical position (E N), altitude (metres), aspect (°) and direction of the simulated stations in the study area ... 47

Table 3-5 Monthly data output from SPLINA and LAPGRD ... 51

Table 3-6 A comparison between the actual rainfall and a prediction using ANUSPLIN and co-kriging (mm) ... 54

Table 3-7 Heavy rainfall events (> 180 mm/day) events, monthly and annual rainfall data within 10 years data of 17 rainfall stations 57

Table 4-1 Landsat ETM+ spectral bands (Lillesand et al., 2004, p. 396 and 415) ... 74

Table 4-2 Comparison between land cover classes from the classified Landsat image and the topographic map ... 81

Table 4-3 The minimum and maximum radiances for each Landsat band 83

Table 4-4 The range of radiances and dark object values for each band 85
Table 4-5 The matrix of confusion of topographic map and the classified image .. 97

Table 5-1 Erosion pressure class assessed in terms of probability of erosion causing by rainfall event .. 127

Table 5-2 Slope contribution to erosion susceptibility .. 128

Table 5-3 Geological contribution to erosion susceptibility .. 129

Table 5-4 Land cover contribution to erosion susceptibility .. 130

Table 5-5 Predicted productivity class (in terms of income) for each land cover .. 131

Table 5-6 Predicted soil productivity class for each soil type .. 132

Table 5-7 Biodiversity asset class of each land cover .. 132

Table 5-8 Soil erosion sensitivity class derivation from soil depth .. 133

Table 5-9 The number of wet and dry months calculated for each pixel in 1992, 1995 and 1998, and their averages .. 134

Table 5-10 Area (ha) and percentage of each slope class (derived from DEM) according to the slope contribution to erosion susceptibility .. 138

Table 5-11 Area (ha) and percentage of each class and each geological type in the study area (derived from classified image) according to the geological contribution to erosion susceptibility .. 140

Table 5-12 Area (ha) and percentage of each land cover type in the study area (derived from classified image) according to land cover contribution to erosion susceptibility .. 144

Table 5-13 Area (ha) and percentage of each erosion susceptibility class (resulting from overlaying slope, geology, and land cover maps) .. 145

Table 5-14 Area (ha) and percentage of each erosion likelihood class .. 147
Table 5-15 Area (ha) and percentage of each productivity class 151

Table 5-16 Total area (ha) and percentage of each erosion consequence class in the study area ... 159

Table 5-17 Erosion risk class for each land cover in hectares (number in the brackets show the percentage) .. 163

Table 6-1 Soil erosion sensitivity class according to the soil depth in response to erosion .. 180

Table 6-2 The land cover classification of Binangun and Kedung Tangkil sub-watersheds .. 187

Table 6-3 Areas (ha) and percentages of each productivity asset value class in the study area .. 193

Table 6-4 Areas (ha) and percentages of each erosion consequence class in the study area ... 198

Table 6-5 Areas (ha) and percentages of each erosion risk class in each land cover ... 201

Table 6-6 Comparison between erosion risk areas predicted from aerial photos and Landsat imagery (numbers in the brackets shows the percentage) ... 206

Table 7-1 Policy, management and operational recommendations 215