Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
ANTIMICROBIAL PEPTIDES ISOLATED FROM OVINE BLOOD NEUTROPHILS

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Biotechnology

at Massey University, Palmerston North, New Zealand.

Rachel C Anderson

2005
The aim of the research presented in this thesis was to investigate the properties of the antimicrobial peptides found in ovine blood, in order to assess their potential as a high-value product. Due to the large number of lambs and sheep that are slaughtered New Zealand (approximately 25 million lamb and 5 million sheep per year), there are considerable volumes of ovine blood available for processing (approximately 40 million litres per year). Currently this blood is dried and sold as a low value product. The first objective of this research was to purify and characterise the antimicrobial peptides isolated from ovine neutrophils. A number of proline/arginine-rich peptides, as well as two small fragments of larger proteins, that displayed antimicrobial activity were identified. The second objective of this research was to investigate the mechanism of action of ovine antimicrobial peptides. For this investigation, three ovine peptides, α-helical SMAP29 and proline/arginine-rich OaBac5mini and OaBac7.5mini, were synthesised. Of these, SMAP29 was the most potent. The three peptides all bound Gram-negative bacterial LPS and caused the outer membrane to be permeabilised. SMAP29 caused significant depolarisation of the cytoplasmic membrane that led to cell lysis. However, the other two peptides only caused slight depolarisation of the cytoplasmic membrane, which indicates that they probably passed through the membrane to interact with the inner cellular contents. The third objective of this research was to investigate the morphological changes to bacterial cells induced by the ovine antimicrobial peptides. Transmission electron microscopy and atomic force microscopy confirmed that SMAP29 caused significant damage to the membranes of bacterial cells and induced cell lysis; whereas, OaBac5mini caused minor alterations to the bacterial membranes but did not induce cell lysis. The fourth objective of this research was to determine the effect of the environmental conditions on the activity of the peptides. The peptides were very stable over a range of pH values and when heated to temperatures up to 80°C. The activity of the peptides decreased slightly in the presence of monovalent cations and was inhibited by the presence of divalent cations. The peptides were significantly more active in combination than individually, and they were strongly synergistic with polymyxin B, a peptide antibiotic. The final objective of this research was to develop a pilot-scale extraction process for the isolation of antimicrobial peptides from ovine blood. The laboratory-scale process was simplified and adapted to design a process that could be used industrially. The crude pilot-plant extract was active against a broad-range of food pathogens and disease causing organisms. The antimicrobial peptides found in ovine blood have the potential to be used as biopreservatives for chilled lamb products, or in a topical cream for cuts and grazes; therefore it is recommended that further research is carried out to investigate the above applications and, if successful, the feasibility of commercialising the technology.
ACKNOWLEDGEMENTS

First and foremost I would like to thank my supervisors. Dr Pak-Lam Yu, thank you for taking a keen interest in my project and for teaching me all I need to know to be a successful researcher. Dr Brian Wilkinson, thank you for being around when I needed that extra bit of help or advice. Professor Ian Maddox, thank you for joining the team to help me with the preparation of this manuscript.

I would also like to thank Professor Robert Hancock and his team for allowing me to visit their laboratory at the Department of Microbiology and Immunology, University of British Columbia, for three months, and for supervising and assisting with my bacterial membrane interaction experiments.

This work was made possible by the financial support I received from Meat and Wool New Zealand (formerly MeatNZ), in the form of both a doctoral scholarship and project funding. The project was also partially funded by the Massey University Research Fund (MURF), and my research trip to UBC was funded by the C. Alma Baker Trust.

This work was made easier by help I received from numerous people including the ITE technical staff, especially Anne-Marie Jackson and Mike Sahayam, and the staff of Feilding Lamb Packers, who collected the sheep blood for my experiments. I also received valuable help from the undergraduate and foreign-intern students that assisted on various parts of this project, including David Houlding (laboratory extraction process), Adi Sugiarto (RP-HPLC), Marie Bourin (crude extract MICs) and Andrew Lister (pilot-scale extractions). I received assistance from Aaron Hicks (Institute of Veterinary, Animal and Biomedical Sciences) to prepare the TEM samples, HortResearch to image the TEM samples, and Associate Professor Richard Haverkamp to image the AFM samples.

Finally, I would like to thank family and friends who helped keep me sane throughout this whole process. Other postgrads, especially Craig, Stephen, Roland and Anna, it always helped to know that there were others who shared the same, or worse, difficulties – Good luck to you all. Regan, thank you for caring enough to wade through this thesis to find the spelling and grammatical mistakes – a best friend who doubles as a proof-reader, what more could I ask for? Dad, I would never have made it this far without the support of you and “The Anderson Trust” – I think I was the best fed undergraduate student in town. And finally, Peter, there are not words to describe how much I appreciate you – I look forward to the future we will spend together.

I dedicate this thesis to my mother, who I know would have been proud. Her encouragement, support and love will be with me always.
Table of Contents

Abstract .. iii

Acknowledgements .. v

Table of contents .. vi

List of figures .. xii

List of tables ... xvi

List of abbreviations .. xviii

List of publications ... xx

Chapter 1
Project Introduction

1.1 Reason for the research .. 1

1.2 Project objectives ... 2

Chapter 2
Antimicrobial Peptides Literature Review

2.1 Introduction .. 4

2.2 Antimicrobial peptides ... 5

2.2.1 Animal antimicrobial peptides ... 5

2.2.2 Plant antimicrobial peptides ... 11

2.2.3 Microbial antimicrobial peptides ... 15

2.3 The animal immune system ... 18

2.3.1 Innate immunity .. 19

2.3.2 Adaptive immunity .. 24

2.3.3 Role of antimicrobial peptides in animal immune systems .. 26

2.4 Potential applications of antimicrobial peptides ... 28

2.4.1 Applications for antimicrobial peptides .. 29

2.4.2 Possible applications for ovine blood antimicrobial peptides .. 31

2.5 Purification and characterisation of animal antimicrobial peptides ... 35

2.5.1 Techniques to purify and characterise antimicrobial peptides ... 36

2.5.2 Livestock blood antimicrobial peptides .. 39

2.5.3 Ovine antimicrobial peptides ... 45

2.6 Mechanism of action of animal antimicrobial peptides ... 46

2.6.1 Techniques to determine mechanisms of action of antimicrobial peptides 47
2.6.2 Mechanisms of action ... 48
2.6.3 Mechanism of action of ovine antimicrobial peptides 51

2.7 Morphological changes to microbial cells induced by animal antimicrobial peptides .. 51
2.7.1 Techniques to investigate morphological changes 52
2.7.2 Morphological changes ... 53
2.7.3 Morphological changes induced by ovine antimicrobial peptides 53

2.8 Effect of environmental conditions on activity of animal antimicrobial peptides 54
2.8.1 Techniques to determine effect of environmental conditions 54
2.8.2 Effects of environmental conditions .. 55
2.8.3 Effects of environmental conditions on ovine antimicrobial peptides ... 56

2.9 Pilot-scale extraction of animal antimicrobial peptides 57

2.10 Conclusions ... 57

CHAPTER 3
MATERIALS AND METHODS

3.1 Materials and methods used for peptide purification.............................. 59
3.1.1 Crude extraction ... 59
3.1.2 Gel electrophoresis ... 60
3.1.3 Gel filtration .. 61
3.1.4 Cationic-exchange chromatography .. 61
3.1.5 Peptide purification using HPLC .. 62
3.1.6 Radial diffusion plate assay .. 62
3.1.7 Radial diffusion plate assay MIC method 63
3.1.8 Mass spectroscopy .. 64
3.1.9 N-terminal sequencing .. 65
3.1.10 Peptide characterisation ... 65
3.1.11 Analysis of proline/arginine-rich sequences 66

3.2 Materials and methods used for mechanism of action tests 66
3.2.1 Peptide synthesis ... 66
3.2.2 Micro-broth dilution MIC method .. 67
3.2.3 Circular dichroism spectroscopy .. 68
3.2.4 LPS binding assay .. 69
3.2.5 Outer membrane permeabilisation ... 69
3.2.6 Cytoplasmic membrane depolarisation .. 70
Table of Contents

3.2.7 Optical density and viable cell counts over time .. 71
3.2.8 Peptide-DNA binding ... 71
3.3 Materials and methods used to investigate bacterial cell morphological changes 72
 3.3.1 Transmission electron microscopy ... 72
 3.3.2 Atomic force microscopy .. 73
3.4 Materials and methods used to assess the effect of conditions on peptide activity 74
 3.4.1 Salt effects .. 74
 3.4.2 Cation effects .. 74
 3.4.3 pH effects .. 75
 3.4.4 Temperature effects ... 75
 3.4.5 Synergistic effects between test peptides ... 75
 3.4.6 Synergistic effects between test peptides and common antibiotics 76
3.5 Materials and methods used for the pilot-scale extraction of antimicrobial peptides from ovine blood ... 76
 3.5.1 Crude extraction process .. 76
 3.5.2 Minimum inhibitory concentrations .. 78
 3.5.3 Transmission electron microscopy ... 79
 3.5.4 Yield calculations ... 79

CHAPTER 4
ISOLATION AND CHARACTERISATION OF ANTIMICROBIAL PEPTIDES FROM OVINE NEUTROPHILS

4.1 Introduction ... 80
4.2 Extraction of crude antimicrobial solution ... 81
4.3 Purification of antimicrobial peptides using gel filtration and RP-HPLC 83
4.4 Characterisation of OaBac5 and variants ... 87
4.5 Characterisation of truncated OaBac7.5 ... 89
4.6 Characterisation of OaBac11 and truncates ... 92
4.7 Minimum inhibitory concentrations .. 93
4.8 Sequence analysis of proline/arginine-rich peptides ... 94
4.9 Purification of antimicrobial peptides using cationic exchange chromatography and RP-HPLC .. 98
4.10 Other predicted cathelicidins ... 103
4.11 Conclusions ... 104
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>SPECTRUM OF ACTIVITY AND BACTERIAL MEMBRANE INTERACTIONS OF SYNTHETIC OVINE CATHELICIDINS</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>106</td>
</tr>
<tr>
<td>5.2</td>
<td>Minimum inhibitory concentrations</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Circular dichroism spectroscopy</td>
<td>111</td>
</tr>
<tr>
<td>5.4</td>
<td>LPS binding assay</td>
<td>112</td>
</tr>
<tr>
<td>5.5</td>
<td>Outer membrane permeabilisation</td>
<td>116</td>
</tr>
<tr>
<td>5.6</td>
<td>Cytoplasmic membrane depolarisation</td>
<td>119</td>
</tr>
<tr>
<td>5.7</td>
<td>Kill curves</td>
<td>123</td>
</tr>
<tr>
<td>5.8</td>
<td>DNA binding</td>
<td>124</td>
</tr>
<tr>
<td>5.9</td>
<td>Conclusions</td>
<td>126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>MORPHOLOGY OF BACTERIAL CELLS TREATED WITH SYNTHETIC OVINE CATHELICIDINS</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>128</td>
</tr>
<tr>
<td>6.2</td>
<td>E. coli TEM results</td>
<td>128</td>
</tr>
<tr>
<td>6.3</td>
<td>S. aureus TEM results</td>
<td>129</td>
</tr>
<tr>
<td>6.4</td>
<td>S. aureus AFM method development</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>S. aureus AFM results</td>
<td>135</td>
</tr>
<tr>
<td>6.6</td>
<td>E. coli AFM method development</td>
<td>139</td>
</tr>
<tr>
<td>6.7</td>
<td>Conclusions</td>
<td>141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>FACTORS AFFECTING THE ANTIMICROBIAL ACTIVITY OF SYNTHETIC OVINE CATHELICIDINS AGAINST E. coli O157:H7</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>143</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of salt</td>
<td>144</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of metal ions</td>
<td>145</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of pH</td>
<td>148</td>
</tr>
<tr>
<td>7.5</td>
<td>Effect of temperature</td>
<td>150</td>
</tr>
<tr>
<td>7.6</td>
<td>Synergy between peptides</td>
<td>151</td>
</tr>
<tr>
<td>7.7</td>
<td>Synergy between peptides and known antibiotics</td>
<td>153</td>
</tr>
</tbody>
</table>
Table of Contents

7.8 Conclusions ... 154

CHAPTER 8

PILOT-SCALE EXTRACTION OF ANTIMICROBIAL PEPTIDES FROM OVINE BLOOD

8.1 Introduction ... 157
8.2 Crude extraction ... 158
8.3 Minimum inhibitory concentrations 161
8.4 Transmission electron microscopy 163
8.5 Yield calculation .. 165
8.6 Industrial-scale process ... 166
8.7 Conclusions .. 169

CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

9.1 Summary of research conclusions 171
9.2 Recommendations for future research 174
9.3 Final conclusion ... 176
References ... 177

APPENDIX A1

RAW DATA AND CALCULATIONS FROM CHARACTERISATION STUDIES

A1.1 Mass Spectra of the purified HPLC peaks 197
A1.2 Example calculation of confidence intervals from plate assay raw data 203
A1.3 Raw data, calculated MICs and 95% confidence intervals for the MICs of the purified peptides ... 205

APPENDIX A2

RAW DATA AND CALCULATIONS FROM MECHANISM OF ACTION STUDIES

A2.1 Raw data from the micro-broth dilution MIC method 209
A2.2 Example calculation of the mean MIC and confidence intervals for the mean from the raw data .. 211
A2.3 Raw Data from the LPS binding assay 212
A2.4 Calculation of I_{max} and I_{50} from LPS binding assay raw data 215
A2.5 Raw data from the outer membrane permeabilisation assay 217
A2.6 Analysis of variance of NPN uptake data .. 219
A2.7 Raw data from the outer inner membrane depolarisation assay 220
A2.8 Analysis of variance of DiSC_3 release data ... 222

APPENDIX A3

RAW DATA AND CALCULATIONS FROM EFFECT OF CONDITIONS STUDIES

A3.1 Raw data of MICs at different salt concentrations 223
A3.2 Raw data of MICs at different cation concentrations 224
A3.3 Raw data of MICs at different pH values ... 226
A3.4 Raw data of MICs after heating to different temperatures 227
A3.5 Example calculation of the mean MIC and confidence intervals for the mean from the raw data ... 228
A3.6 Analysis of variance of MIC data from different conditions 229

APPENDIX A4

RAW DATA AND CALCULATIONS FROM PILOT-SCALE EXTRACTION STUDIES

A4.1 Raw data from the micro-broth dilution MIC method 231
A4.2 Example calculation of the mean MIC and confidence intervals for the mean from the raw data ... 232
A4.3 Calculation of the settling velocities of different types of blood cells 233

APPENDIX A5

PEER-REVIEWED PUBLICATIONS

A5.1 Ovine antimicrobial peptides: new products from an age-old industry 236
A5.2 Isolation and characterisation of proline/arginine-rich cathelicidin peptides from ovine neutrophils ... 244
A5.3 Antimicrobial activity and bacterial membrane interaction of ovine-derived cathelicidins ... 254
A5.4 Investigation of morphological changes to *S. aureus* induced by ovine-derived antimicrobial peptides using TEM and AFM 259
A5.5 Factors affecting the antimicrobial activity of ovine-derived cathelicidins against *E. coli* O157:H7 ... 266
LIST OF FIGURES

- **Figure 2.1** - Examples of the four structural classes of cationic antimicrobial peptides 6
- **Figure 2.2** - Examples of the three groups of defensins.. 7
- **Figure 2.3** - Schematic diagram of a cathelicidin.. 9
- **Figure 2.4** - Schematic diagram of the gene for the human cathelicidin LL-37.................. 11
- **Figure 2.5** - Structure of thionins. ‘A’ shows the secondary structures of thionins with six and eight cysteine residues... 12
- **Figure 2.6** - Structure of plant defensins. ‘A’ shows the secondary structures of plant defensins... 13
- **Figure 2.7** - Structure of lipid transfer proteins. ‘A’ shows the secondary structures of lipid transfer proteins... 13
- **Figure 2.8** - Structure of hevein- and knottin-type peptides. ‘A’ shows the secondary structures of hevein- and knottin-type peptides.. 14
- **Figure 2.9** - Structures of four Class I bacteriocins. Nisin A, epidermin and lacticin 481 are class la bacteriocins... 16
- **Figure 2.10** - Schematic diagram showing the principle mechanisms of innate and adaptive immunity... 18
- **Figure 2.11** - Functions of the epithelia in innate immunity.. 19
- **Figure 2.12** - Mechanism of phagocytosis and intracellular killing of microbes. NO is nitric oxide and ROI is reactive oxygen intermediate.. 21
- **Figure 2.13** - Functions of the natural killer (NK) cells. A) NK cells kill infected host cells and B) NK cells activate macrophages to kill phagocytosed microbes. IL-12 in interleukin-12 and IFN-γ is interferon-γ.. 22
- **Figure 2.14** - Pathways of activation of the complement system.. 23
- **Figure 2.15** - Types and mechanisms of adaptive immunity... 24
- **Figure 2.16** - Specificity and memory in adaptive immunity illustrated by primary and secondary immune response.. 25
- **Figure 2.17** - Proposed roles of antimicrobial peptides within the innate immune system... 27
- **Figure 2.18** - Schematic diagram of the proposed mechanisms of permeability change of cytoplasmic membranes caused by antimicrobial peptides.. 49
- **Figure 3.1** - Graph of ln peptide concentration versus clearing size showing the relationship between the line-of-best-fit and the bounds of the 95% confidence intervals for the line.. 64
Figure 3.2 - Graph of Ln peptide concentration versus clearing size showing the relationship between the line-of-best-fit and the bounds of the 95% confidence intervals for the line when the bounds do not cross the x-axis. .. 64

Figure 4.1 - Flowchart showing the process used to extract the crude antimicrobial solution from ovine blood... 81

Figure 4.2 - Images of typical stained blood samples during the extraction process. 82

Figure 4.3 - Images of typical plate assay results of neutrophil crude extract against three test organisms... 83

Figure 4.4 - Typical gel filtration chromatograph resulting from the addition of an ovine neutrophil crude extract into a P10 gel filtration column. 84

Figure 4.5 - Image of a typical SDS-PAGE gel of ovine neutrophil extract gel filtration fractions. ... 85

Figure 4.6 - RP-HPLC chromatograph of the second gel filtration fraction (F2) of the ovine neutrophil crude extract. ... 86

Figure 4.7 - Hydrophobicity plots of the proline/arginine-rich cathelicidin peptides. 96

Figure 4.8 - Polarity plots of the proline/arginine-rich cathelicidin peptides. 97

Figure 4.9 - Ion-exchange chromatograph for the addition of the ovine neutrophil crude extract to a weak cationic exchange column. .. 99

Figure 4.10 - RP-HPLC chromatograph of the cationic fraction (F3 and F4) of the ovine crude extract. ... 100

Figure 5.1 - Schematic diagram showing the proposed mechanism of action of antimicrobial peptides against Gram-negative bacteria.. 108

Figure 5.2 - Circular dichroism spectra of 25mM synthetic ovine antimicrobial peptides.. 111

Figure 5.3 - Schematic diagram showing the mechanism involved in the lipopolysaccharide binding assay. ... 112

Figure 5.4 - A typical run showing the changes in the fluorescence of dansyl polymyxin B due to the addition of SMAP29... 113

Figure 5.5 - Lineweaver-Burke plot for a typical run of the SMAP29-LPS binding assay. 114

Figure 5.6 - Schematic diagram showing the mechanism involved in the 1-N-phenyl-naphthylamine (NPN) uptake assay. ... 116

Figure 5.7 - Uptake of 1-N-phenyl-naphthylamine (NPN) by E. coli UB1005 cells caused by synthetic ovine peptides... 118

Figure 5.8 - Schematic diagram showing the mechanism involved in the 3,3-dipropylthiacarbocyanine (DiSC₃₋₅) assay. ... 120
Figure 5.9 - Release of 3,3-dipropylthiacarbocyanine (DiSC\textsubscript{3}5) dye from the cytoplasmic membrane of \textit{E. coli} DC2 cells caused by synthetic ovine peptides......................... 122

Figure 5.10 - Optical density and viable cell count over time for \textit{E. coli} O111 treated with synthetic ovine peptides... 124

Figure 5.11 - DNA gel showing the running pattern of different ratios of DNA and synthetic ovine peptides... 125

Figure 6.1 - Transmission electron microscope images taken of \textit{E. coli} O111 cells treated with SMAP29 and OaBac5mini for one hour......................... 130

Figure 6.2 - Transmission electron microscope images taken of \textit{S. aureus} 4163 NCTC cells treated with SMAP29 and OaBac5mini for one hour......................... 131

Figure 6.3 - AFM images of \textit{S. aureus} NCTC 4163 cells trapped on a polycarbonate membrane... 133

Figure 6.4 - AFM images of \textit{S. aureus} NCTC 4163 cells grouped together on a polycarbonate membrane... 133

Figure 6.5 - AFM 3D representation of \textit{S. aureus} NCTC 4163 cells grouped together on a polycarbonate membrane... 133

Figure 6.6 - AFM images of \textit{S. aureus} NCTC 4163 treated with 25\textmu g/mL nisin... 135

Figure 6.7 - Far away AFM images of \textit{S. aureus} NCTC 4163 cells on a glass slide treated with SMAP29 and OaBac5mini for 30 minutes... 136

Figure 6.8 - Close up AFM images of \textit{S. aureus} NCTC 4163 cells on a glass slide treated with SMAP29 and OaBac5mini for 30 minutes... 137

Figure 6.9 - AFM images of \textit{E. coli} O111 debris after being suspended in distilled water. 139

Figure 6.10 - AFM images of \textit{E. coli} O111 cells covered with dried Mueller-Hinton broth. 140

Figure 6.11 - AFM images of crystals that formed when \textit{E. coli} O111 was suspended in phosphate buffer and dried on a glass slide... 140

Figure 7.1 - The effect of salt concentration on the minimum inhibitory concentration (MIC) of synthetic ovine peptides against \textit{E. coli} O157:H7................................. 144

Figure 7.2 - The effect of metal ion concentrations on the minimum inhibitory concentration (MIC) of synthetic ovine peptides against \textit{E. coli} O157:H7... 146

Figure 7.3 - The effect of media pH on the minimum inhibitory concentration (MIC) of synthetic ovine peptides against \textit{E. coli} O157:H7... 149

Figure 7.4 - The effect of heating on the minimum inhibitory concentration (MIC) of synthetic ovine peptides against \textit{E. coli} O157:H7... 150

Figure 7.5 - Diagram of a microtitre plate for a typical synergy test for OaBac5mini and OaBac7.5mini... 152
Figure 8.1 - Flow diagram showing the pilot-scale process used to extract antimicrobial peptides from ovine blood. ... 159

Figure 8.2 - Photograph of the pilot-scale disk-stack centrifuge used to separate white blood cells from plasma and red blood cells. ... 160

Figure 8.3 - Transmission electron microscopy images of control cells treated with 0.01% acetic acid (left) and cells treated with ovine neutrophil crude extract (right). 164

Figure 8.4 - Steps in an industrial process to produce a crude antimicrobial extract from ovine blood. ... 167
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Amino acid sequences of the β-defensins found in livestock blood.</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Amino acid sequences of cathelicidins rich in one or more amino acids found in livestock blood.</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Amino acid sequences of α-helical cathelicidins found in livestock blood.</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Amino acid sequences of cathelicidins containing disulphide bonds found in livestock blood.</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Sequences of ovine antimicrobial peptides used for this research.</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>Microorganisms used for micro-broth dilution minimum inhibitory concentration tests and their sources.</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Microorganisms used for crude extract minimum inhibitory concentration tests and their sources.</td>
<td>78</td>
</tr>
<tr>
<td>4.1</td>
<td>Antimicrobial activity of typical ovine neutrophil extract gel filtration fractions against test organisms.</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Antimicrobial activity of RP-HPLC peaks from the second gel filtration fraction of the ovine neutrophil crude extract against test organisms.</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of masses and N-terminal sequences of Pa and Pc purified from the ovine neutrophil crude extract to known Bac5 peptides.</td>
<td>88</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of mass and N-terminal sequence of Pb purified from the ovine neutrophil crude extract to OaBac7.5.</td>
<td>91</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of masses and N-terminal sequences of Pd and Pf purified from the ovine neutrophil crude extract to Bac11.</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Minimum inhibitory concentrations of peptides purified from ovine neutrophil extract.</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Identification of repeats in the sequences of the proline/arginine-rich cathelicidin peptides.</td>
<td>95</td>
</tr>
<tr>
<td>4.8</td>
<td>Antimicrobial activity of typical ovine neutrophil extract cationic-exchange chromatography fractions against test organisms.</td>
<td>99</td>
</tr>
<tr>
<td>4.9</td>
<td>Plate assay results and molecular weights of antimicrobial peptides isolated from the cationic fraction of ovine neutrophil extract.</td>
<td>101</td>
</tr>
<tr>
<td>4.10</td>
<td>Comparison of the N-terminus of cationic Peak 18 to the cathelin-like precursor of SMAP29.</td>
<td>102</td>
</tr>
<tr>
<td>4.11</td>
<td>Comparison of the N-terminus of cationic Peak 24 to the signal peptide of T-cell surface glycoprotein CD4.</td>
<td>102</td>
</tr>
</tbody>
</table>
Table 5.1 - Sequences of synthetic ovine antimicrobial peptides used for this research...

Table 5.2 - Minimum inhibitory concentrations (MIC) of synthetic ovine antimicrobial peptides against various microorganisms.

Table 5.3 - Data collected and calculated for the change in dansyl polymyxin B fluorescence due to the addition of SMAP29 in a typical run.

Table 5.4 - The ability of synthetic ovine peptides to bind to E. coli lipopolysaccharide (LPS) using the dansyl polymyxin B (DPX) displacement assay.

Table 5.5 - Data collected and calculated for change in 1-N-phenylnaphthylamine (NPN) fluorescence due to the addition of SMAP29 for a typical run.

Table 5.6 - Data collected and calculated for change in 3,3-dipropylthiacarbocyanine (DiSC35) fluorescence due to the addition of SMAP29 for a typical run.

Table 7.1 - Concentrations of metal ions in lean trimmed, raw lamb meat.

Table 7.2 - Antibiotics used in the synergy tests and their mechanisms of actions.

Table 7.3 - Fractional inhibitory concentrations of synthetic ovine peptides in combination with common antibiotics.

Table 8.1 - Minimum inhibitory concentrations of ovine neutrophil crude extract from the pilot-scale extraction.

Table 8.2 - Yields for pilot-scale extractions of antimicrobial peptides from ovine blood.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>Bac</td>
<td>bactenicin</td>
</tr>
<tr>
<td>BMAP</td>
<td>bovine myeloid antimicrobial peptide</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>ChBac</td>
<td>Capra hircus bactenicin</td>
</tr>
<tr>
<td>DiSC<sub>35</sub></td>
<td>3,3-dipropylthiacarbocyanine</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPX</td>
<td>dansyl polymyxin B</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FIC</td>
<td>fractional inhibitory concentration</td>
</tr>
<tr>
<td>HLPC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>I<sub>50</sub></td>
<td>concentration of peptide required to displace half the of the maximum displacement amount of DPX from LPS</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>interferon-γ</td>
</tr>
<tr>
<td>IL-12</td>
<td>interleukin-12</td>
</tr>
<tr>
<td>I<sub>max</sub></td>
<td>maximum percentage of DPX that could be displaced from LPS by the peptides</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>LTPs</td>
<td>lipid transfer proteins</td>
</tr>
<tr>
<td>MHB</td>
<td>Mueller-Hinton broth</td>
</tr>
<tr>
<td>MIC</td>
<td>minimum inhibitory concentration</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MAP</td>
<td>myeloid antimicrobial peptides</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor κB</td>
</tr>
<tr>
<td>NK cells</td>
<td>natural killer cells</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NPN</td>
<td>1-N-phenyl-naphthylamine</td>
</tr>
<tr>
<td>NCLSS</td>
<td>National Committee of Laboratory Safety Standards</td>
</tr>
</tbody>
</table>
List of Abbreviations

NC PF National Collection of Pathogenic Fungi
NCTC National Collection of Type Cultures
OaBac Ovine aries bactenicin
OaDode Ovine aries dodecapeptide
OD optical density
PBSX phosphate buffered saline plus magnesium chloride
P MAP porcine myeloid antimicrobial peptide
PMN polymorphonuclear leukocytes
RP-HPLC reverse-phase high performance liquid chromatography
SBD sheep β-defensin
SDS sodium dodecyl sulphate
SDS-PAGE sodium dodecyl sulfate - polyacrylamide gel electrophoresis
SEM scanning electron microscopy
SMAP sheep myeloid antimicrobial peptide
TEM transmission electron microscopy
TE MED N,N,N',N'-tetramethylethylenediamine
TFA trifluoroacetic acid
TFE 2,2,2-trifluoroethanol
TLRs Toll-like receptors
TSB tryptic-soy broth
LIST OF PUBLICATIONS

Most of the research presented in this thesis has been peer-reviewed and published in journals and/or presented at conferences. These publications are listed below. The full text of the journal articles are given in Appendix A5.

Journal Articles

Anderson RC and Yu PL. Purification and characterisation of two protein fragments with antimicrobial activity from ovine blood, including part of the cathelicidin precursor. (waiting for Meat and Wool NZ approval to submit)

Anderson RC and Yu PL. Pilot-scale extraction and antimicrobial activity of crude extract from ovine neutrophils. (waiting for Meat and Wool NZ approval to submit)

Conference Proceedings

