Uropathogenic *Escherichia coli* of Dogs and Cats:

Pathotypic Traits and Susceptibility to Bacteriophages

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Veterinary Clinical Sciences

at

Massey University

Turitea - Palmerston North

Aotearoa - New Zealand

Thurid Freitag

2006
Für meine Eltern

Doris und Dr. rer. nat. Karl-Heinz Freitag
Die ich liebe und respektiere
&
For Derek
Whom I love and respect
The History of Medicine

2006 BC
Here, eat this root.

1000 AD
That root is heathen. Here, say this prayer.

1850 AD
That prayer is superstition. Here, drink this potion.

1920 AD
That potion is snake oil. Here, swallow this pill.

1945 AD
That pill is ineffective. Here, take this penicillin.

1955 AD
Oops... bugs mutated. Here, take this tetracycline.

1960–1999 AD
39 more “oops”... Here, take this more powerful antibiotic.

2000 AD
The bugs have won! Here, eat this root.

2006 AD
Or maybe try that pill again?

Modified from Anonymous
Abstract

The purpose of this study was to investigate the feasibility of using bacteriophages - viruses that can lyse bacteria - to control infections caused by uropathogenic *Escherichia coli* (UPEC) in dogs and cats. Prior to phage experiments, UPEC were subjected to virulence factor genotyping by multiplex polymerase chain reaction assay and phylogenetic ‘fingerprinting’ by Pulsed-Field Gel Electrophoresis (PFGE). Twenty-five of 30 assessed virulence factor gene (VFG) markers were detected at least once in 31 UPEC isolated from 20 UK cats and 89 UPEC isolated from dogs (56), cats (22) and people (11) living in New Zealand (NZ). The PFGE banding patterns of UPEC isolates from different individuals were markedly dissimilar unless isolates had been collected at the same hospital within one month of each other. In contrast, ≥2 UPEC strains isolated from each of 3 UK cats diagnosed with multiple UTIs were indistinguishable by PFGE. Antibiograms inaccurately predicted UPEC clonality and, of clinical importance, underestimated the number of relapsing or persistent infections in these cats. A comparison of VFG profiles and PFGE banding patterns of UPEC isolated from NZ and UK cats demonstrated a geographically uneven distribution of pathotypic and phylogenetic traits and indicated that, among other factors, the source of UPEC must be considered when comparing UPEC from different host species. When comparing UPEC isolates from NZ dogs, cats and people, strains with similar VFG profiles were found among the different host species. Other strains, with VFG profiles that differed according to the host species of origin were also detected. The latter finding, which is in contrast to the results of previous studies, may be of interest to researchers aiming to predict the potential zoonotic risk posed by particular UPEC strains sourced from dogs and cats.

Forty bacteriophages (phages for short) were isolated from sewage waters and propagated on UPEC strains. The ability of these phages to cause bacterial lysis was tested on 31 canine UPEC, 22 feline UPEC and 7 faecal *E. coli*. In contrast to faecal *E. coli*, UPEC strains were highly susceptible to phages. Ten phages with a particularly broad host range each lysed ≥27/53 (≥51%) UPEC strains. Used in combination, these 10 phages were predicted to be able to lyse 49/53 (92%) of the UPEC strains in the collection. Morphological and genotypic studies on 5 of these 10 phages demonstrated that 4 of them belonged to the lytic T4-like genus, while one phage showed similarity to the temperate phage P2. Overall, results of this project indicate that the majority of canine and feline UPEC - with very diverse PFGE banding patterns and VFG profiles - are susceptible to lysis by naturally occurring phages. Hence, phages show promise as therapeutic agents for treatment of canine and feline UTI and, perhaps, for other infections caused by UPEC.
Acknowledgements

Too few are the opportunities that present to thank those people who have helped me to achieve my goals publicly. This thesis would not have been possible without the help and support of following faculty members, friends and family.

I must start by thanking my chief supervisor, Associate Professor Richard A Squires, who has the great ability to excite people for a cause. Throughout the entire study, Richard had faith in my abilities. He has helped me to set and achieve personal goals and has contributed immensely to shaping me as a person and as a professional. Thank you, Richard, for your guidance and friendship. Without your help, this work and my registration as a veterinarian in New Zealand would not have been possible.

I would also like to express my gratitude to my co-supervisors, Professor W Grant Guilford, Dr Jan Schmid and Associate Professor Mary F Nulsen, for providing excellent mentorship, for helping me to shape my approach to research and for inspiring me to achieve ‘The Greater’. I also sincerely thank Professor W Grant Guilford for his career guidance and support throughout the last years. Furthermore, thanks are extended to Dr Mike Matz for his mentorship during the early years of my PhD.

I would like to gratefully acknowledge Professor Jonathan Elliott and Dr Andrew Rycroft from the Royal Veterinary College in London who not only provided a large number of feline UPEC strains that have been instrumental to this study, but also significantly influenced this work with their scientific advice and support.

I would also like to extend my thanks to Professor JR Johnson MD, who kindly provided details to the multiplex PCR method and E. coli reference strains. I will never forget the day when I had the pleasure to meet ‘The Great Man of extraintestinal E. coli’ and his family in person. It was truly inspirational and enjoyable at the same time!
Liz Burrows (Gribbles Veterinary Pathology Laboratories, Palmerston North), Karen Cooper (Gribbles Veterinary Pathology Laboratories, Auckland), Graham Young (Gribbles Veterinary Pathology Laboratories, Hamilton), Lynn Rogers and Hamish Mack (IVABS Microbiological lab, Palmerston North) and Dr Jane Parker (Medlab Central Ltd., Palmerston North) deserve considerable thanks for providing the many New Zealand UPEC strains, without which this study would not have been possible.

Sincere thanks are given to Dr Jasna Rakonjac and Dr Alex Grinberg for their interest in my project and for their technical and scientific advice. Furthermore, I would like to acknowledge Dr Alasdair Noble, who has been a great adviser in ‘all things statistical’ throughout my study.

Without the assistance of the “Microlab” staff at IVABS, completion of this PhD would have been far more difficult. I would sincerely like to thank Lynn Rogers for providing technical support and for helping with the antimicrobial susceptibility profiles. My thanks are also extended to Megan Leyland for her advice in regards to PFGE of *E. coli*. Dianne Knight kindly helped with the phage lysis experiment and DNA sequencing of phage tail sequences. Rukhshana Akhter and Jan Schrama kindly ‘cooked my media’. Thanks also to Barbara Asmundson, Rebecca Pattison, Hamish Mack, Vicky Scott and Anne Midwinter for making me laugh and feel welcome.

Special thanks are also extended to Doug Hopcroft and Raymond Bennett for their technical support with electron microscopy of bacteriophages. It was very exciting to see some of my “little beasts”!

I also sincerely thank Allain Scott for her invaluable help with organisational and administrative matters throughout my PhD study. I wish to thank Professor Hugh Blair and Professor Kevin Stafford for their guidance during the course of my PhD studies.

I am very grateful to have received project funds from Massey University, the ECVIM-CA and the Waltham Foundation. I am also grateful to have received a Doctoral scholarship from Massey University, a Joan Berry Fellowship in Veterinary Science and a Phyllis Irene Grey Fellowship in Veterinary Science.
Acknowledgements

Thanks to my many New Zealand and German friends who have made me laugh on numerous occasions, who have listened to my sorrows and who have kept and eye out for me during the last years.

I also wish to thank the Johnstones for welcoming me into their family with open minds and open hearts.

Derek, thank you - for being patient and for showing me that there is a life after work and studies.

Finally, I thank the people who deserve the most acknowledgements - my parents. Ohne Eure Unterstützung und Euren Glauben an meine Fähigkeiten hätte ich es nie so weit gebracht. Ich habe Euch unsagbar lieb.
It has been almost a century since Felix d’Hérelle first applied bacteriophages, viruses that can infect and kill bacteria, to combat bacterial infections in animals and people (reviewed in Summers, 1999). In the first half of last century, bacteriophages (phages for short) were used enthusiastically to treat various bacterial infections (Carlton, 1999; Sulakvelidze et al., 2001; Summers, 2001). However, with the introduction of antibiotics in the early 1940s, interest in phage therapy waned dramatically (Carlton, 1999; Sulakvelidze et al., 2001; Summers, 2001). In recent decades, antimicrobial resistance has become increasingly apparent, generating fear of an impending ‘post-antibiotic era’ (Alanis, 2005). With the emergence of bacteria that are resistant to multiple antimicrobials, interest in phage therapy has been renewed (Barrow and Soothill, 1997; Merril et al., 2003; Sulakvelidze et al., 2001).

The principal intention of this PhD project was to carry out a preliminary investigation on the feasibility of using phages for treatment or prevention of bacterial infections in dogs and cats. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) were chosen for study. This was because E. coli UTI in dogs and cats constitute one of the main infectious disease processes experienced in daily clinical practice (Ling, 2000). E. coli UTI can be readily diagnosed by cystocentesis and culture. Thus, it was expected that an adequate number of canine and feline UPEC could be collected in a short time frame. A further reason for focusing on E. coli UTI was that these pathogenic E. coli have been shown to spread from the urinary tract to other organs (Ling, 2000). There, they may cause serious, intractable infections, such as prostatitis and discospondylitis. These infections and E. coli UTI may become increasingly difficult to treat with conventional antimicrobials if the resistance of UPEC to current antimicrobials continues to increase as it has over the last decades (Cohn et al., 2003; Cooke et al., 2002; Mammeri et al., 2005; Sanchez et al., 2002; Warren et al., 2001).

UPEC isolated from dogs and cats were also considered an interesting study, because their role in the pathogenesis of canine and feline UTI is incompletely understood. In particular, few studies have focused on investigating pathotypic traits of feline UPEC in detail (Feria et al., 2000a; Feria et al., 2001a; Feria et al., 2001b; Johnson et al., 2001a; Wilson et al., 1988; Yuri et al., 1998).
Preface

In chapter 1, the reader will find a detailed review of the history of phage therapy and current therapeutic applications of phage. Related research areas, such as morphological studies of phage, have been reviewed in brief. The reader will also find a review of the current knowledge concerning canine and feline *E. coli* UTI. Special attention has been given to reporting knowledge of the pathotypic traits studied in detail in this project. This was done because published reviews of pathotypic traits of UPEC do not focus on canine or feline UPEC or do not include a detailed description of all pathotypic traits assessed here (Beutin, 1999; Emody et al., 2003; Hacker and Heesemann, 2000a; Johnson, 1991, 2003; Johnson and Russo, 2005; Mühldorfer et al., 2001).

The materials and methods used to establish the results presented in this thesis are described in detail in chapter 2. The reader will find additional information, such as supplemental information about *E. coli* strains, recipes, primer sequences and suppliers of materials, in the appendix 8.4.

In chapter 3, the first results chapter, pathotypic traits of UPEC that were to become targets of phage were investigated. The work presented in that chapter was seen as an important preparation for the intended *in vitro* phage trials of this project, because a review of the phage therapy literature had shown that (i) lack of knowledge about the targeted bacteria had been associated with phage therapy failure (Carlton, 1999; Summers, 2001); and (ii) a characterisation of pathotypic traits of bacteria may contribute to an understanding of why lysis occurred (Smith and Huggins, 1982). In addition, results presented in chapter 3 complement previous studies that compared canine, feline and human UPEC.

In the early stages of this PhD project, it became apparent that UPEC isolated from New Zealand cats would accumulate more rapidly than anticipated. In addition, the opportunity arose to obtain UPEC from London cats that were concurrently affected by chronic renal failure (CRF). Thus, it was possible to investigate, for the first time, the presence of virulence factor genes (VFGs) in a reasonably large number of feline UPEC isolates. Moreover, by acquisition of feline UPEC from 2 different countries it was possible to assess the possible geographic variation of VFG profiles in feline UPEC. The results of these evaluations are reported in chapter 4.
Among the 31 feline UPEC obtained from the Royal Veterinary College in London were 17 *E. coli* isolates that had been collected from 5 CRF-affected cats that had suffered from multiple UTI during a 2-year period. Much could be learned about recurring UTI in cats from a study of these 17 *E. coli* isolates. Thus, at the time I received these isolates, I was highly enthusiastic about the opportunity to explore the clonal relatedness and antimicrobial resistance patterns of these 17 UPEC isolates. The results of this investigation are reported in chapter 5.

Having characterised the pathotypic traits of “future targets” of phage, it was timely to investigate whether phages able to infect and kill canine and feline UPEC exist in the environment. Chapter 6 describes the results of this investigation and further *in vitro* trials that aimed to determine whether phage therapy could potentially become a useful substitute or supplement to conventional antimicrobial therapy of *E. coli* UTI in dogs and cats.

In chapter 7, the reader will find the general discussion of this thesis. There, important findings of this project have been emphasised and are discussed in detail. Furthermore, strengths and weaknesses of this project have been evaluated. A recommendation for future research that may result out of this project has also been given.

Publications arising from this research are listed in the appendix. Furthermore, the appendices contain useful supplemental information concerning current knowledge of the subject of this thesis, including references to historical publications on phage therapy of UTI. These references are not cited in current search engines and have been very cumbersome to obtain. In addition, the appendices contain raw data concerning experiments described in this thesis and supplemental information to chapter 2 (Materials and Methods).
Table of Contents

Abstract	iv
Acknowledgements	v
Preface	ix

Chapter 1

Introduction and Review of the Current Literature

1.1. **Introduction** 3

1.2. **Bacteriophage Therapy** 7

1.2.1. Discovery of Phage 8

1.2.2. The Nature of the Phage Phenomenon 9

1.2.3. Non-therapeutic Phage Research 11

1.2.3.1. Phage as a Model Organism 11

1.2.3.2. The Study of the Phage Morphology 12

1.2.3.3. Phages as Diagnostic Tools in Bacteriology 14

1.2.4. Phage Therapy 15

1.2.4.1. History 15

1.2.4.2. Therapeutic Considerations 29

1.2.4.3. Revival of Phage Therapy in Western Europe and America 46

1.2.4.4. Phage Therapy after its Revival 48

1.2.4.5. UTI Studies 56

1.3. **Urinary Tract Infections in Dogs and Cats Caused by Uropathogenic Escherichia coli** 59

1.3.1. Urinary Tract Infections in Dogs and Cats 60

1.3.1.1. Bacterial UTI in Dogs 62

1.3.1.2. Bacterial UTI in Cats 63

1.3.2. Commensals and Pathogens – The Diversity of E. coli 65

1.3.3. E. coli – The Major Infectious Uropathogen 67

1.3.3.1. Aetiopathogenesis of E. coli UTI in Dogs and Cats 68

1.3.3.2. Virulence Factors of UPEC 69

1.3.3.3. Regulation of Urovirulence Genes & Phase Variation of Virulence Factors 97

1.3.3.4. Comparison of UPEC from Different Host Species 98

1.3.3.5. Reservoirs 99

1.3.3.6. Current Therapy of E. coli UTI in Dogs and Cats 103

xlvii
Table of Contents

Chapter 2

Materials and Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Escherichia coli Strain Collection</td>
<td></td>
</tr>
<tr>
<td>2.1.1. Test Strains</td>
<td>109</td>
</tr>
<tr>
<td>2.1.2. Control Strains</td>
<td>112</td>
</tr>
<tr>
<td>2.2. Virulence Factor Genotyping by Multiplex PCR</td>
<td></td>
</tr>
<tr>
<td>2.2.1. DNA Isolation</td>
<td>113</td>
</tr>
<tr>
<td>2.2.2. Evaluation of the DNA Concentration</td>
<td>114</td>
</tr>
<tr>
<td>2.2.3. Assessment of the Quality of Extracted DNA</td>
<td>114</td>
</tr>
<tr>
<td>2.2.4. Multiplex PCR</td>
<td>114</td>
</tr>
<tr>
<td>2.2.5. PCR Conditions</td>
<td>116</td>
</tr>
<tr>
<td>2.2.6. Gel Electrophoresis of PCR Samples</td>
<td>117</td>
</tr>
<tr>
<td>2.3. Macrorestriction Analysis by Pulsed Field Gel Electrophoresis</td>
<td>118</td>
</tr>
<tr>
<td>2.4. Antimicrobial susceptibility Testing</td>
<td>120</td>
</tr>
<tr>
<td>2.5. Preparation of Phage Stocks</td>
<td>122</td>
</tr>
<tr>
<td>2.6. Bacteriophage Lysis Experiment</td>
<td>123</td>
</tr>
<tr>
<td>2.7. Electron Microscopy</td>
<td>124</td>
</tr>
<tr>
<td>2.8. DNA Sequencing of Bacteriophage DNA Fragments</td>
<td>125</td>
</tr>
<tr>
<td>2.8.1. Nucleotide Sequence Accession Numbers</td>
<td>125</td>
</tr>
<tr>
<td>2.9. Statistics</td>
<td>126</td>
</tr>
<tr>
<td>2.9.1. Studies on VFG profiles of UPEC from Different Species</td>
<td>126</td>
</tr>
<tr>
<td>2.9.2. Investigation of the Genotypic Differences between Feline UPEC from New Zealand and Feline UPEC from Great Britain</td>
<td>128</td>
</tr>
<tr>
<td>2.9.3. Assessment of the Reliability of Antibiograms in Distinguishing Relapsing or Persisting Infections from Reinfections in Cats with Multiple Diagnoses of E. coli UTI</td>
<td>129</td>
</tr>
<tr>
<td>2.9.4. Assessment of the Feasibility of Bacteriophage Therapy for Treating Infections Caused by Canine or Feline UPEC</td>
<td>130</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 3

Studies on the VFG Profiles of Uropathogenic *Escherichia coli* Isolated from Dogs, Cats and People Living in New Zealand 131

3.1. Abstract 133

3.2. Introduction 134

3.3. *E. coli* Strains and Attributes of Infected Patients 136

3.4. Results 137

3.4.1. The Majority of Assessed VFG Markers are Present in UPEC strains isolated from New Zealand dogs and cats 137

3.4.2. Proportions of Individual VFG Markers in Canine, Feline and Human UPEC 137

3.4.3. VFG Profiles of New Zealand UPEC from dogs, cats and people overlap partially 141

3.4.4. Clonal Relatedness of Canine, Feline and Human UPEC 144

3.5. Discussion 147

3.6. Conclusion 150

Chapter 4

Feline Uropathogenic *Escherichia coli* from Great Britain and New Zealand have Dissimilar Virulence Factor Genotypes 151

4.1. Abstract 153

4.2. Introduction 154

4.3. *E. coli* Strains and Attributes of Infected Patients 155

4.3.1. UK Strains 155

4.3.2. NZ Strains 155

4.4. Results 156

4.4.1. Presence of VFG Markers in Isolates from UK and NZ 156

4.4.2. Differences in VFG profiles between UPEC from UK and NZ 159

4.4.3. UK and NZ isolates have dissimilar PFGE banding patterns 161

4.4.4. Minimal Differences in Attributes of Patients from UK and NZ 164

4.5. Discussion 165

4.6. Conclusion 168
Chapter 5

Antimicrobial susceptibility Profiles Do Not Reliably Distinguish Relapsing or Persisting Infections from Reinfections in Cats with Chronic Renal Failure and Multiple Diagnoses of *Escherichia coli* Urinary Tract Infection

5.1. Abstract

5.2. Introduction

5.3. *E. coli* Strains and Attributes of Infected Patients

5.4. Results

5.4.1. Observation of Identical PFGE Banding Patterns in UPEC isolates

5.4.2. UPEC of the same PFGE type have identical VFG profiles

5.4.3. Antimicrobial susceptibility Test Results do not Concur with PFGE Results

5.5. Discussion

5.6. Conclusion

Chapter 6

Naturally-Occurring Bacteriophages Lyse a Large Proportion of Canine and Feline Uropathogenic *Escherichia coli* Isolates *In Vitro*

6.1. Abstract

6.2. Introduction

6.3. Experiments and Results

6.3.1. Phage Isolation

6.3.2. High Susceptibility of UPEC to Phage

6.3.3. Relatively Low Susceptibility of Faecal *E. coli* to Phage

6.3.4. Susceptibility of Canine and Feline UPEC to Phage Lysis

6.3.5. UPEC from Dogs and Cats shows Significant Differences in Surface-molecule Encoding VFG Markers

6.3.6. Species-specific Differences in Susceptibility to Phage Lysis are not Explained by Differences in Surface-molecule Encoding VFG markers

6.3.7. Characterisation of 5 Phages with a Broad Host Range

6.4. Discussion

6.5. Conclusion
Chapter 7

General Discussion

7.1. Exploring the Pathotypic Traits of UPEC

7.2. Exploring the Potential Use of Phages to Combat \textit{E. coli} UTI

7.3. Concluding Remarks

Appendix

8.1. Publications and Presentations Arising from this Project

8.1.1. Publications

8.1.2. Presentations

8.2. Literature Review

8.3. Raw Data of Experiments

8.3.1. Chapter 3

8.3.2. Chapter 5

8.3.3. Chapter 6

8.4. Materials and Methods

8.4.1. \textit{Escherichia coli} Strain Collection

8.4.2. Recipes

8.4.2.1. Basic Reagents

8.4.2.2. Buffer

8.4.2.3. Dyes

8.4.3. Primer sequences

8.4.3.1. Multiplex PCR Assay

8.4.3.2. Bacteriophage Tail Tube Glycoprotein 18

8.4.4. Suppliers

8.4.4.1. Providers of Bacterial Strains

8.4.4.2. Suppliers of Laboratory Material

Bibliography
List of Figures

Figure 1.1 Early antimicrobial therapy .. 16
Figure 1.2 Preventing UTI – accepted host defence mechanisms 60
Figure 1.3 The prevalence of bacterial uropathogens in dogs and cats 63
Figure 1.4 Pathotypes of intestinal pathogenic *E. coli* 66
Figure 2.1 Examples of Kirby Bauer disc diffusion testing 120
Figure 2.2 Etest antimicrobial susceptibility testing 121
Figure 2.3 Isolation of phages from processed sewage 122
Figure 3.1 Multiplex PCR of UPEC isolated from NZ dogs and cats 140
Figure 3.2 Illustration of the inter-species association of UPEC by principal component analysis 143
Figure 3.3 PFGE banding pattern of a subset of UPEC isolates subjected to PFGE 145
Figure 3.4 Average Linkage Dendrogram illustrating the clonal relatedness of 39 UPEC 146
Figure 4.1 Multiplex PCR assay of feline UPEC ... 158
Figure 4.2 Correlation between VFG markers and PFGE types 162
Figure 4.3 PFGE banding patterns of UK and NZ isolates 163
Figure 4.4 Clonal relationship of UPEC from UK and NZ 164
Figure 5.1 Pulsed Field Gel Electrophoresis banding patterns of UPEC isolates 174
Figure 5.2 Timeline of detected *E. coli* clones in 6 cats. 175
Figure 5.3 Visualisation of representative VFG markers (Set 2) in isolates from cats A, D and E ... 176
Figure 6.1 Lysis of 53 UPEC strains by the 10 phages with the broadest host range 190
Figure 6.2 Electron micrographs of phages 1-5 (from left to right) 194
Figure 6.3 Comparison of phages 1-4 to phylogenetically well-characterised phages 195
List of Tables

Table 1.1 Retrospective assessment of problems encountered during early phage therapy... 20

Table 1.2 Examples of infections treated with phages at the Hirszfeld Institute of Immunology and Experimental Therapy... 27

Table 1.3 Phage and antibiotics: Key therapeutic differences... 43

Table 1.4 Classification of UTI... 61

Table 1.5 Differences of E. coli populations... 65

Table 1.6 Fimbrial assembly... 71

Table 1.7 PAIs detected in UPEC... 72

Table 1.8 Adhesin binding specificity... 74

Table 1.9 Function of proteins encoded by the group II capsular operon... 87

Table 1.10 Gene designation and function of the yersiniabactin gene operon... 94

Table 1.11 Growth characteristics of intracellular bacterial communities... 100

Table 1.12 Antimicrobials commonly used to treat E. coli UTI in dogs and cats – Mechanism of action and mechanism of resistance developed by bacteria... 105

Table 2.1 E. coli from the strain collection - Differentiation between UPEC and non-UPEC... 109

Table 2.2 Subsets of E. coli chosen from the strain collection... 112

Table 2.3 Multiplex PCR: Primer pair combination and VFG profile of control strains... 115

Table 3.1 Prevalence of VFGs in UPEC from different species... 138

Table 3.2 Twelve VFG profiles found in more than one patient. Source species (dog, cat or human) is shown... 139

Table 3.3 Prediction of the source of UPEC by discriminant analysis... 141
List of Tables

Table 3.4 PC analysis of extended VFG profiles of canine, feline and human UPEC 142

Table 4.1 Correlation between virulence factors gene markers 157

Table 4.2 Prevalence of VFGs in relation to geographic origin 160

Table 5.1 VFG profiles of the 9 UPEC clones determined by PFGE 177

Table 5.2 Results of antimicrobial susceptibility testing 179

Table 6.1 Prevalence of VFG markers in UPEC isolated from dogs and cats 193

Table 8.1 Summary of previous studies comparing UPEC isolated from humans, dogs and cats 220

Table 8.2 Summary of some studies conducted in the former Soviet Union before 2001 223

Table 8.3 The potential use of phages to treat UTI – Studies published from 1923-1939 228

Table 8.4 VFG profiles of UPEC isolated from NZ dogs, cats and people 230

Table 8.5 PFGE Dice coefficient similarity matrix of UPEC from NZ 238

Table 8.6 VFG profiles of UPEC isolated from UK cats 240

Table 8.7 VFG profiles of UPEC isolated from NZ cats 242

Table 8.8 PFGE Dice coefficient similarity matrix of feline UPEC from UK and NZ 244

Table 8.9 Raw Data Phage Lysis Experiment 246
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABU</td>
<td>Asymptomatic bacteriuria</td>
</tr>
<tr>
<td>CRF</td>
<td>Chronic renal failure</td>
</tr>
<tr>
<td>EM</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>ExPEC</td>
<td>Extraintestinal pathogenic Escherichia coli</td>
</tr>
<tr>
<td>Fur</td>
<td>Ferric-uptake regulator</td>
</tr>
<tr>
<td>HPI</td>
<td>High-pathogenicity island</td>
</tr>
<tr>
<td>IVABS</td>
<td>Institute of Veterinary, Animal and Biomedical Sciences</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal inhibitory concentration</td>
</tr>
<tr>
<td>MLEE</td>
<td>Multilocus enzyme electrophoresis</td>
</tr>
<tr>
<td>NCCLS</td>
<td>National Committee for Clinical Laboratory Standards</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>OMP</td>
<td>Outer membrane protein</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>PAI</td>
<td>Pathogenicity Island</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed-Field Gel Electrophoresis</td>
</tr>
<tr>
<td>PFU</td>
<td>Plaque forming unit</td>
</tr>
<tr>
<td>THP</td>
<td>Tamm-Horsfall protein, synonym uromucoid</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UPEC</td>
<td>Uropathogenic Escherichia coli</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary tract infection</td>
</tr>
<tr>
<td>VF</td>
<td>Virulence factor</td>
</tr>
<tr>
<td>VFG</td>
<td>Virulence factor gene</td>
</tr>
</tbody>
</table>