RHEOLOGICAL CHARACTERISATION OF AGE THICKENING IN MILK CONCENTRATES

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN FOOD ENGINEERING AT MASSEY UNIVERSITY

BINH TRINH
2006
This project investigates the time-dependent rheological behaviour of fresh and reconstituted milk concentrates.

New experimental protocols, including sampling and measurement techniques, as well as equipment calibration and data analysis procedures were developed for both the industrial surveys and controlled rheology experiments.

The controlled rheology experiments were mainly carried out on reconstituted milk concentrates to minimise the variation in composition of fresh milk. A new recombination rig was built which could minimise the age thickening process by mixing at 35°C and recirculating at 40,000 s⁻¹ to break down the structure completely. This is the essence of this project, where age thickening is studied from a starting point of a fully broken down structure in contrast to past research. Using this method, the replicate milk concentrate samples had reproducible rheological behaviour, with a maximum reproducible error of 10%.

Age thickening involves two stages, a slow initial increase in apparent viscosity with storage time, followed by a sudden sharp rise which marks the onset of gelation.

The age thickening behaviour of milk concentrates is dependent on the processing variables prior to rheological measurement. These include solids content, shear rate and temperature during recombination, shear rate and residence time in the plate heat exchanger, and most importantly the raw material. The viscosity at the gelling point is an important characteristic of the age thickening process, and seems to depend mainly on the powder used, rather than the process treatments applied.

Industrial surveys exhibited similar trends, even under varying conditions that could not be completely controlled.

It is proposed that two types of age thickening phenomena can be distinguished: type I occurs below the temperature at minimum viscosity (65°C in this case), where weak
interactions take place between the casein micelles; type II occurs above the temperature at minimum viscosity, where additional stronger covalent bonds are formed, primarily due to the denaturation of whey proteins.

No mathematical model for the time-dependent rheology was developed. However, some important issues that must be taken into account during modelling were discussed.

The results showed that the age thickening process is more complex than had previously been envisaged. The knowledge of the interactions between the operating conditions, rheology of fresh concentrates and powder properties should be invaluable in the improvement of plant efficiency and quality control.
ACKNOWLEDGEMENTS

I would like to dedicate this PhD to my loving father, I will forever be in his debt for his love, kindness, perseverance, and faith in me, and to my caring mother for always supporting me throughout my life.

I wish to express my deepest appreciation and gratitude to my supervisor, Dr Derek Haisman for his supervision, guidance and patience during the course of this project. I would also wish to extend my appreciation to my co-supervisors, Dr Mike Weeks, and Mr Brent Prankerd for their support and invaluable help, particularly during the plant visits.

I would like to thank Mr Byron McKillop for his valuable assistance, particularly during the design and commission work on the recombination rig, Mr. Steve Glassgow, Mr. Garry Radford, Mr. Aaron Hicks for their technical assistance during the experimental work at Massey University, Mr. Darren Johnson and Mr. Carrigan Trower for making the industrial surveys trouble free and enjoyable.

I wish to extend my gratitude to the Foundation for Research, Science and Technology, New Zealand and Fonterra Co-operative Ltd for their generous financial support without which this project would not have been possible.

I sincerely thank the staff of the Institute of Food, Nutrition and Human Health for their assistance. I would also like to mention the enjoyable company and memorable moments provided by my fellow post-graduate students during the course of this project.

Finally, I would like to express my special thanks to my sincere friend, Laura Clouston, for her love, encouragement, patience and invaluable help.
TABLE OF CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
LIST OF SYMBOLS
NOMENCLATURE
LIST OF PUBLICATIONS

1. **INTRODUCTION**
2. **LITERATURE REVIEW**
 - 2.1 Milk concentrate rheology
 - 2.1.1 Milk composition
 - 2.1.1.1 Total solids content
 - 2.1.1.2 Protein
 - 2.1.1.3 Fat
 - 2.1.1.4 Salts and minerals
 - 2.1.1.5 Urea
 - 2.1.1.6 Seasonal variation and stage of lactation
 - 2.1.2 pH
 - 2.1.3 Temperature during processing
 - 2.1.4 Preheat treatment
 - 2.1.5 Reconstituted versus fresh milk
 - 2.1.6 Effect of rheological behaviour of concentrate
systems on processing conditions and milk powder properties

2.1.7 Rheological modelling 37
2.1.8 Postulated mechanism of age thickening 40
2.1.9 Summary 42

2.2 Recombination 44

2.2.1 Raw ingredients 45
2.2.2 Recombining technology 45
2.2.3 Equipment 46

2.3 Conclusion of literature review 46

3 MATERIALS AND METHODS 49

3.1 Introduction 50

3.2 Recombination rig 53

3.2.1 Principle of design 53

3.2.2 Commissioning experiments 57

3.2.2.1 Viscosity data during recombination 57

3.2.2.2 Viscosity data during storage at 65°C 60

3.2.2.3 Effect of bacteria 62

3.2.2.4 Replicate error 67

3.2.3 Recombination protocol 67

3.3 Performance characterisation of the Paar Physica MC1 68

3.3.1 Minimum reliable spindle speed 73

3.3.1.1 Cause of scattering error 80

3.3.1.2 Effect of measurement time on the performance of the MC1 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2</td>
<td>Minimum reliable torque</td>
<td>86</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Accuracy and stress correction protocol</td>
<td>89</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Rheological measurement protocol for the Paar Physica MC1</td>
<td>93</td>
</tr>
<tr>
<td>3.4</td>
<td>Industrial surveys</td>
<td>94</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Sampling method</td>
<td>97</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Rheological measurement protocol for Brookfield viscometer</td>
<td>99</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Brookfield versus Paar Physica MC1</td>
<td>100</td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Comparison of Brookfield and Paar Physica MC1 measurements</td>
<td>101</td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Time-dependent analysis</td>
<td>104</td>
</tr>
<tr>
<td>3.5</td>
<td>Controlled rheology experimental protocols</td>
<td>108</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Materials</td>
<td>109</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Generalised experimental procedures for reconstituted samples</td>
<td>110</td>
</tr>
<tr>
<td>3.5.3</td>
<td>TEM protocol</td>
<td>111</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Particle size distribution (PSD) analysis</td>
<td>112</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Total solids content measurement</td>
<td>112</td>
</tr>
<tr>
<td>3.6</td>
<td>Data analysis</td>
<td>113</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Brookfield LVTD data</td>
<td>113</td>
</tr>
<tr>
<td>3.6.1.1</td>
<td>Shear stress and shear rate calculations</td>
<td>113</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Paar Physica MC1 data</td>
<td>115</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>Shear stress and shear rate calculations</td>
<td>115</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>Non-Newtonian corrections</td>
<td>118</td>
</tr>
<tr>
<td>3.6.2.3</td>
<td>Model fitting and data analysis</td>
<td>122</td>
</tr>
</tbody>
</table>
4 INDUSTRIAL SURVEYS

4.1 Effect of plant operation on the rheology of fresh milk concentrate systems

4.2 Effect of plant design on the rheology of fresh milk concentrate systems

4.3 Effect of solids content on the rheology of fresh milk concentrate systems

4.4 Effect of preheat treatment on the rheology of fresh milk concentrate systems

4.5 Effect of protein content on the rheology of fresh milk concentrate systems

4.6 Effect of shear rate during sampling on the rheology of fresh milk concentrate systems

5 CONTROLLED RHEOLOGY EXPERIMENTS

5.1 Rheological characterisation of whole milk concentrate systems

5.1.1 Materials and methods

5.1.2 Results

5.1.2.1 Basic flow curve

5.1.2.2 Rheological descriptors of time-dependent fluids

5.1.2.2.1 Apparent viscosity

5.1.2.2.2 Extrapolated viscosity at infinite shear rate

5.1.2.2.3 Hysteresis loop area

5.1.2.2.4 Rheological modelling

5.1.2.3 Limitations

5.2 Comparative rheology of fresh and reconstituted whole milk concentrates
5.2.1 Materials and methods

5.2.1.1 Fresh versus reconstituted milk with different shear history using the Brookfield LVTD and the Paar Physica MC1

5.2.1.2 Fresh versus reconstituted milk with different shear history using the Paar Physica MC1

5.2.1.3 Fresh versus reconstituted milk with the same shear history using the Paar Physica MC1

5.2.2 Results

5.2.2.1 Fresh versus reconstituted milk with different shear history using the Brookfield LVTD and the Paar Physica MC1

5.2.2.2 Fresh versus reconstituted milk with different shear history using the Paar Physica MC1

5.2.2.3 Fresh versus reconstituted milk with the same shear history using the Paar Physica MC1

5.3 Effect of solids content on the rheology, pH and PSD of the reconstituted whole milk concentrates

5.3.1 Materials and methods

5.3.2 Results

5.4 Effect of solids content and temperature on the rheology of reconstituted whole milk concentrates

5.4.1 Materials and methods

5.4.2 Powder A results

5.4.2.1 Effect of solids content and temperature on the initial viscosity

5.4.2.2 Effect of solids content and temperature on age thickening

5.4.2.3 Rheological modelling

5.4.3 Powder B results
5.4.3.1 Effect of solids content and temperature on age thickening

5.4.3.2 Rheological modelling

5.4.3.3 Changes in PSD of powder A reconstituted concentrates during age thickening

5.4.4 Data summary

5.5 Effect of shear rate during recirculation on the rheological behaviour of reconstituted whole milk concentrates during reconstitution and subsequent heating and storage

5.5.1 Materials and methods

5.5.2 Results

5.5.2.1 Effect of recirculation shear rate on the inline rheological behaviour

5.5.2.2 Effect of recirculation shear rate on the rheological behaviour of heated reconstituted milk concentrates during storage at 65°C for powder A concentrates and 75°C for powder B concentrates

5.5.2.3 Effect of recirculation time and shear rate on the rheology of heated reconstituted milk concentrates made from powder A during storage at 65°C

5.5.2.4 Changes in PSD of powder A reconstituted concentrates during recirculation and storage

5.5.3 Data summary

5.6 Effect of temperature during recirculation on the rheological behaviour of reconstituted whole milk concentrates during reconstitution and subsequent heating and storage

5.6.1 Materials and methods

5.6.2 Powder A results
5.6.2.1 Effect of recirculation temperature on the inline rheological behaviour

5.6.2.2 Effect of recirculation temperature on the rheological behaviour of stored samples at 65°C

5.6.3 Powder B results

5.6.3.1 Effect of recirculation temperature on the inline rheological behaviour

5.6.3.2 Effect of recirculation temperature on the rheological behaviour of stored samples at 75°C

5.6.4 Data summary

5.7 Effect of shear and residence time during heating on the rheology of reconstituted whole milk concentrates

5.7.1 Materials and methods

5.7.2 Results

5.7.2.1 Age thickening during storage

5.7.2.2 Rheological modelling

5.7.2.3 Changes in PSD during age thickening

5.7.3 Data summary

5.8 Age thickening of skim and whole milk concentrates - TEM, rheology, PSD

5.8.1 Materials and methods

5.8.2 Results

5.8.2.1 Age thickening in reconstituted whole milk concentrates

5.8.2.1.1 Rheological measurement

5.8.2.1.2 PSD
5.8.2.1.3 TEM

5.8.2.2 Age thickening in reconstituted skim milk concentrates

5.8.3 Data summar

5.9 Direct experimental proof of irreversible changes during age thickening

5.9.1 Materials and methods

5.9.2 Results

5.9.2.1 Irreversibility at 35°C

5.9.2.2 Irreversibility at 75°C

5.9.3 Data summary

6 DISCUSSION

6.1 Data analysis

6.1.1 Data collection and measurement procedures

6.1.1.1 Oscillatory versus flow curve tests

6.1.1.2 Structure breakdown and build up

6.1.2 Measurement with the Brookfield LVDT viscometer and the Paar Physica MCI rheometer

6.1.3 Techniques for rheology characterisation of time dependent milk concentrates

6.1.4 Bias and shortcomings of the modelling technique

6.2 Methods of recombination

6.3 Controlled rheology experiments

6.3.1 Use of reconstituted powder solutions versus fresh milk concentrates

6.3.2 Effects of solids content and temperature on the transition of rheological behaviour in reconstituted...
6.3.3 Behaviour of milk concentrates observed during age thickening

6.3.4 Effect of solids content and temperature on the rheology of reconstituted milk concentrates

6.3.4.1 Solids Content

6.3.4.2 Temperature

6.3.5 Effect of sample preparation techniques on the rheology of reconstituted milk concentrates

6.3.5.1 Effect of recombination shear rate

6.3.5.2 Effect of recombination temperature

6.3.6 Effect of powder origin

6.4 Industrial surveys

6.5 Mechanism for age thickening

6.5.1 Physical changes during concentration and heating

6.5.1.1 Volume fraction

6.5.1.2 PSD

6.5.2 Reversible and irreversible changes during age thickening

6.5.2.1 Changes not reversed by dilution

6.5.2.2 Changes not reversed by shearing

6.5.3 Milk components and chemical changes involved in the age thickening process

6.5.4 Types of age thickening

6.5.5 Proposed mechanisms of age thickening

6.5.5.1 Physical interactions in type I mechanism

6.5.5.2 Aggregation in type II mechanism
6.5.5.3 Particle interactions

6.5.6 Modelling of the age thickening process

7 CONCLUSIONS AND RECOMMENDATIONS

7.1 Calibration of the Paar Physica MC1

7.2 Controlled rheology experiments

7.2.1 Rheology of milk concentrates

7.2.1.1 Effect of solids content and temperature on the viscosity of reconstituted milk concentrates

7.2.2 Age thickening behaviour

7.2.2.1 Processing conditions affecting the age thickening behaviour

7.2.2.2 Effect of powder origin

7.3 Industrial surveys

7.4 Mechanisms of age thickening

7.5 Recommendations for future studies

7.5.1 Improvements to the recombination rig

7.5.2 Industrial surveys

7.5.3 Factors affecting the age thickening behaviour of reconstituted milk concentrates

7.6 Concluding remarks

8 REFERENCES

APPENDICES

A.1. Milk system literature review

A.2. Time-dependent rheology: Thixotropy review
A.3. Ratios of change in the Herschel-Bulkley parameters during age thickening

A.4. Comparison of consistency coefficient versus apparent viscosity
LIST OF FIGURES

Figure 2.1: Relative change in viscosity of whey protein free milk with various concentrations of β-lactoglobulin (β-lg) as a function of the holding time at 90°C: \circ, β-lg = 0.2 g/L; \bullet, β-lg = 3.3 g/L; \triangle, β-lg = 6.6 g/L. (Jeurnink & Dekruif, 1993) 15

Figure 2.2: Schematic representation of the casein/whey protein acid gels. (A) casein/native whey protein heated to 20°C, (B) casein/native whey protein heated to 80°C, (C) casein/pre-denatured whey protein, which has been heated to 80°C, heated to 20°C, (D) casein-pre-denatured whey protein, which has been heated to 80°C, heated to 80°C. (Schorsch et al. 2001) .. 17

Figure 2.4: Schematic representation of the thickening of non-homogenised concentrate (A) and of homogenized concentrate (B). (Snoeren et al., 1984) 22

Figure 2.5: pH-HCT profile of a Type A milk. (McCrae, 1999) .. 28

Figure 2.6: pH-HCT profile of a Type B milk. (McCrae, 1999) .. 29

Figure 2.7: A schematic representation of the interactions between casein micelles and whey proteins occurring in milk during heat treatment for 10 minutes at 80°C at pH values ranging from 6.35 to 6.9. The small circles represent denatured whey proteins, the large circles the casein micelles. The whey proteins are either present in aggregates or covalently associated with the casein micelle. Native whey proteins are not included in the figure. (Vasbinder & de Kruif, 2003) .. 32

Figure 2.8: Variation of apparent viscosity with temperature and storage time. (Trinh and Shramekrad, 2002) .. 34

Figure 3.1: Schematic layout of the recombination rig ... 54

Figure 3.2: Accurate Dry Material Feeder .. 55
Figure 3.3: Mixing tank equipped with four baffles and a central baffle disc. 55

Figure 3.4: Powder mixing system .. 56

Figure 3.5: Capillary tubes system .. 57

Figure 3.6: Shear sweep curve for a 47%TS reconstituted sample of medium heat whole powder just after complete mixing. Experiment A1, Paar Physica MC1, Z2.1, CSS, 35°C .. 58

Figure 3.7: Viscosity at 105.3 Pa against recirculation time for reconstituted samples of medium whole milk powder at 47.1 %TS (A1) and 45.8 %TS (A2). Paar Physica MC1, Z2.1, CSS, 35°C .. 59

Figure 3.8: Effect of recirculation time at 35°C on the viscosity during storage for a heated reconstituted whole milk concentrate solution. Experiment A3, Paar Physica MC1, Z2.1, CSS, 48%TS, 65°C .. 61

Figure 3.9: Change in in-line viscosity with recirculation time at 35°C for three reconstituted solutions at three concentrations, 45.1%TS (A6), 46.5%TS (A7), 47%TS (A8). Paar Physica MC1, Z2.1, CSS, 35°C .. 65

Figure 3.10: Effect of recirculation time at 35°C on the viscosity during storage for heated reconstituted whole milk concentrates. Experiment A9, Paar Physica MC1, Z2.1, CSS, 48%TS, 65°C .. 66

Figure 3.11: Paar Physica MC1 and Julabo water bath ... 70

Figure 3.12: Paar Physica MC1 spindles Z2,1 (left bob and cup) and Z3 (right bob and cup) ... 71

Figure 3.13: Flow curve of a S60 oil at 20°C using a Z2.1 spindle in CSS mode. Experiment A32 ... 72
Figure 3.14: Viscosity against shear rate for a S60 oil at 20°C using a Z2.1 spindle in CSS mode. Experiment A32. ... 73

Figure 3.15: Shear sweep curves for S200 oil at several temperatures. (a) viscosity versus spindle speed, (b) viscosity versus torque. Experiment A33-A36, Paar Physica MC1, Z1, CSR. ... 75

Figure 3.16: Comparison between shear sweep and shear step tests for S200 oil using the Z1 spindle at 40°C in CSR mode. Experiment A37-A40, Paar Physica MC1, Z1, CSR. Solid line represents the data from a single shear sweep test. The data points represent the data from three replicate shear step tests. .. 76

Figure 3.17: Coefficient of variation (COV) against spindle speed at different temperatures for S200 oil. Experiments A41-A44, Paar Physica MC1, Z1, CSR. 78

Figure 3.18: Coefficient of variation (COV) against spindle speed at different temperatures for S2000 oil. Experiments A45-A49, Paar Physica MC1, Z3, CSR. 79

Figure 3.19: Variation in viscosity over 5 minutes of constant shear of 4rpm and 90 rpm for an S200 oil at 40°C. Experiment A74, Paar Physica MC1, Z1, CSR. 81

Figure 3.20: Viscosity and relative position versus spindle speed for an S200 oil at 40°C. Experiment A74, Paar Physica MC1, Z1, CSR. .. 82

Figure 3.21: Viscosity versus rotational position at 4rpm and 90 rpm, for an S200 oil at 40°C. Experiment A74, Paar Physica MC1, Z1, CSR. .. 83

Figure 3.22: Effect of measurement time on the COV versus spindle speed plot of a S60 oil at 20°C. Experiments A73-A77, Paar Physica MC1, Z2.1, CSR. 85

Figure 3.23: Effect of measurement time on the COV versus torque plot of a S60 oil at 20°C. Experiments A81-A85, Paar Physica MC1, Z2.1, CSR. 85
Figure 3.24: Normalised viscosity for S2000 oil at different temperatures. (a) normalised viscosity versus spindle speed (b) normalised viscosity versus torque. Experiments A102-A106, Paar Physica MC1, Z3, CSR. 88

Figure 3.25: Viscosity against shear stress for the S60 oil at different temperatures without stress correction. Experiments A107-A118, Paar Physica MC1, Z2.1, CSS. 90

Figure 3.26: Stress correction coefficient versus spindle speed for S60 oil at different temperatures. Experiments A107-A118, Paar Physica MC1, Z2.1, CSS. 91

Figure 3.27: Corrected viscosity against shear stress for the S60 oil at different temperatures with stress correction. Experiments A107-A118, Paar Physica MC1, Z2.1, CSS. 92

Figure 3.28: General process flow chart during skim milk powder processing. 95

Figure 3.29: Brookfield LVTD viscometer and LV1 spindle. 98

Figure 3.30: Change in viscosity with shearing time for fresh infant milk concentrate samples taken after the evaporator (47.4% TS, 52°C) at the Waitoa milk powder plant with the Brookfield LVTD viscometer. Experiment A119. 102

Figure 3.31: Change in viscosity with shearing time for fresh infant milk concentrate samples taken after the concentrate heater (47.12% TS, 72°C) at the Waitoa milk powder plant with the Brookfield LVTD viscometer. Experiment A119. 102

Figure 3.32: Change in viscosity at 105.3 Pa with storage time for fresh infant milk concentrate samples taken after the evaporator (47.4% TS, 52°C) and concentrate heater (47.4% TS, 74°C) at the Waitoa milk powder plant. Experiment A119, Paar Physica MC1. 103
Figure 3.33: Change in τ_y with storage time for fresh infant milk concentrate samples collected after the concentrate heater data at the Waitoa milk powder plant. Experiment A119, Paar Physica MC1, 47.5% TS, 75°C

Figure 3.34: Change in K with storage time for fresh infant milk concentrate samples collected after the concentrate heater data at the Waitoa milk powder plant. Experiment A119, Paar Physica MC1, 47.5% TS, 75°C

Figure 3.35: Change in n with storage time for fresh infant milk concentrate samples collected after the concentrate heater data at the Waitoa milk powder plant. Experiment A119, Paar Physica MC1, 47.5% TS, 75°C

Figure 3.36: Effect of non-Newtonian correction on the rheological data measured in fresh milk concentrates collected after the concentrate heater (47.6% TS, 75°C) at the Waitoa milk powder plant with the Paar Physica MC1 rheometer. Experiment A119

Figure 3.37: Effect of non-Newtonian correction on rheological data measured in a reconstituted whole milk concentrate sample (48% TS, 75°C) with the Paar Physica MC1 rheometer

Figure 4.1: Change in viscosity with shearing time for fresh skim milk concentrate samples (46.5% TS) taken after the evaporator #4 (64°C) and concentrate heater (65°C) at the Te Awamutu skim milk powder plant. Experiment B1, Brookfield LVTD

Figure 4.2: Comparison of replicate values in the age thickening profiles after the evaporator at 30 rpm and the concentrate heater at 6 rpm for experiments B1 and B2 at the Te Awamutu skim milk plant

Figure 4.3: Variation in total solids content of milk concentrate samples after the evaporator for experiments B1 and B2 at the Te Awamutu skim milk powder plant
Figure 4.4: Variation in milk concentrates temperature after the evaporator for experiments B1 and B2 at the Te Awamutu skim milk powder plant.130

Figure 4.5: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the evaporator #1 at the Te Awamutu skim milk powder plant. Experiment B3, Brookfield LVTD, 50%TS, 48°C ..131

Figure 4.6: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the concentrate heater at the Te Awawmutu skim milk powder plant. Experiment B3, Brookfield LVTD, 50%TS, 62°C ..131

Figure 4.7: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the evaporator #1 at the Te Awamutu skim milk powder plant. Experiment B6, Brookfield LVTD, 50%TS, 47.5°C ..135

Figure 4.8: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the evaporator #4 at the Te Awamutu skim milk powder plant. Experiment B5, Brookfield LVTD, 50%TS, 55.5°C ..136

Figure 4.9: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the density meter #1 at the Waitoa milk powder plant. Experiment B7, Brookfield LVTD, 48%TS, 54°C ..139

Figure 4.10: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the density meter #3 at the Waitoa milk powder plant. Experiment B7, Brookfield LVTD, 48%TS, 54°C ..139

Figure 4.11: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the filter #1 at the Waitoa milk powder plant. Experiment B7, Brookfield LVTD, 48%TS, 54°C ..140
Figure 4.12: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the filter #3 at the Waitoa milk powder plant. Experiment B7, Brookfield LVTD, 48%TS, 54°C.

Figure 4.13: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the evaporator #2 at the Te Awamutu skim milk powder plant. Experiment B8, Brookfield LVTD, 46.2%TS, 47.5°C.

Figure 4.14: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the evaporator #4 at the Te Awamutu skim milk powder plant. Experiment B8, Brookfield LVTD, 46.4%TS, 60°C.

Figure 4.15: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the concentrate heater #2 at the Te Awamutu skim milk powder plant. Experiment B8, Brookfield LVTD, 46%TS, 66°C.

Figure 4.16: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the concentrate heater #3 at the Te Awamutu skim milk powder plant. Experiment B8, Brookfield LVTD, 46%TS, 66°C.

Figure 4.17: Change in viscosity with shearing time for fresh skim milk concentrate samples (50%TS, 66°C) taken after the concentrate heater at the Te Awamutu skim milk powder plant. Experiment B5, Brookfield LVTD.

Figure 4.18: Change in viscosity with shearing time for fresh skim milk concentrate samples taken (52%TS, 66°C) after the concentrate heater at the Te Awamutu skim milk powder plant. Experiment B6, Brookfield LVTD.

Figure 4.19: Change in viscosity with shearing time for fresh infant milk concentrate samples taken after the concentrate heater at the Waitoa milk powder plant. Experiment B11, Brookfield LVTD, 48%TS, 72°C.
Figure 4.20: Change in viscosity with shearing time for fresh infant milk concentrate samples taken after the concentrate heater at the Waitoa milk powder plant. Experiment B12, Brookfield LVTD, 48%TS, 78°C.................................151

Figure 4.21: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the concentrate heater at the Te Awamutu whole milk powder plant. Experiment B9, Brookfield LVTD, 47.5%TS, 55°C.................................154

Figure 4.22: Change in viscosity with shearing time for fresh skim milk concentrate samples taken after the concentrate heater at the Te Awamutu whole milk powder plant. Experiment B13, Brookfield LVTD, 46%TS, 55°C.................................154

Figure 4.23: Schematic diagram of the low shear sampler at the Waitoa milk powder plant...156

Figure 4.24: Effect of shear level during sampling on the rate of age thickening of fresh infant milk concentrate samples taken after the concentrate heater at the Waitoa milk powder plant. Experiment B14, Paar Physica MC1, 47.2%TS, 72°C.................158

Figure 4.25: Changes in the Herschel Bulkley model parameters for 47.5%TS with storage time at 75°C. (a) yield stress τ_y; (b) consistency coefficient K; (c) behaviour index n...160

Figure 5.1: Shear sweep curves for 48%TS heated reconstituted whole milk concentrates after 150 minutes of storage at 65°C. Run C1.................................169

Figure 5.2: Apparent viscosity of 48%TS reconstituted whole milk concentrate sample during storage at 65°C at three different shear stress values. Calculated from the shear-up legs...171

Figure 5.3: Apparent viscosities calculated for shear up and shear down legs of the flow curves at the reference shear stress of 105.3 Pa. Run C1.................................171
Figure 5.4: Changes in apparent viscosity with (a) shear rate and (b) \(\frac{1}{\text{Shear Rate}} \) for a 48%TS reconstituted whole milk concentrate sample during 148 minutes of storage at 65°C. Run C1.................. ...172

Figure 5.5: Comparison between the extrapolated apparent viscosity at infinite shear and apparent viscosity at 105.3 Pa of a 48%TS reconstituted whole milk concentrate sample during 148 minutes of storage at 65°C. Run C1..................173

Figure 5.6: Flow curve of the reconstituted milk concentrate sample after 90 minutes of storage. C1, powder A, 48%TS, 65°C...174

Figure 5.7: Changes in thixotropy hysteresis area and apparent viscosity of the 48%TS reconstituted whole milk concentrate sample during storage at 65°C. Run C1.......................... ...175

Figure 5.8: Changes in the maximum shear rate of the shear up curve and the HLA with storage time in the reconstituted milk concentrate sample after 90 minutes of storage. Run C1, powder A, 48%TS, 65°C ...176

Figure 5.9: Changes in the flow curves of the shear up and down tests of the reconstituted milk concentrate samples after 90 and 120 minutes of storage. Run C1, powder A, 48%TS, 65°C.......................... ...176

Figure 5.10: Changes in the standardised and intrinsic HLA with storage time. Run C1, powder A, 48%TS, 65°C...177

Figure 5.11: Changes in the Herschel Bulkley model parameters for 48%TS with storage time at 65°C. (a) yield stress \(\tau_y \); (b) consistency coefficient \(K \); (c) behaviour index \(n \) Run C1.......................... ...179
Figure 5.12: The effect of the number of data points on the apparent viscosity when conducting a shear sweep test on yoghurt samples at 10°C in CSS mode using the Paar Physica MC1. Runs C2-C12. ...181

Figure 5.13: Apparent viscosity against storage time for the reconstituted concentrates with the Paar Physica MC1 and measurement time for the fresh concentrates with the Brookfield LVTD. 47.5%TS and 75°C. C22 189

Figure 5.14: Apparent viscosity against storage time for fresh (B14) and reconstituted (C26) concentrates using the Paar Physica MC1. 47.5%TS and 75°C ..190

Figure 5.15: Changes in the Herschel-Bulkley model parameters with storage time for fresh (B14) and reconstituted concentrates (C26) using the Paar Physica MC1. 47.5%TS and 75°C. (a) \(\tau_y \); (b) \(K \); (c) \(n \) ..191

Figure 5.16: Apparent viscosity against storage time for fresh (C28) and reconstituted (C29) concentrates using the Paar Physica MC1. 47.5%TS and 75°C. Paar Physica MC1 ..194

Figure 5.17: Changes in the Herschel-Bulkley model parameters with storage time for fresh (C28) and reconstituted milk concentrates (C29) with storage time. 47.5%TS and 75°C. Paar Physica MC1. (a) yield stress \(\tau_y \); (b) consistency coefficient \(K \); (c) behaviour index \(n \) ..195

Figure 5.18: Effect of solids content on the apparent viscosity at 105.3 Pa of the reconstituted whole milk solutions. 35°C ..197

Figure 5.19: Effect of solids content on the Herschel-Bulkley model parameters of the reconstituted whole milk solutions. (a) \(\tau_y \); (b) \(K \); (c) \(n \) ..199
Figure 5.20: Effect of solids content on the pH of the reconstituted whole milk solutions at 35°C...200

Figure 5.21: Effect of solids content on the particle size distribution of the reconstituted whole milk solutions at 35°C...201

Figure 5.22: Effect of solids content on the volume percentage of particles > 2μm at 35°C...201

Figure 5.23: Effect of solids content on the initial (0 hr) viscosity of reconstituted whole milk concentrates at 45°C (runs C31, C33, C35, C37, C45, C50)205

Figure 5.24: Effect of concentration and storage time on the viscosity of reconstituted whole milk concentrates during storage at 45°C. Runs C31 (10%TS), C33 (20%TS), C35 (30%TS), C37 (35%TS), powder A, 45°C...............................206

Figure 5.25: Effect of concentration and storage time on the viscosity of reconstituted whole milk concentrates during storage at 85°C. Runs C31 (10%TS), C33 (20%TS), C35 (30%TS), C37 (35%TS), powder A, 85°C...............................207

Figure 5.26: Initial apparent viscosity values of various reconstituted whole milk concentrates as a function of temperature. Powder A.................................208

Figure 5.27: Apparent viscosities of various reconstituted whole milk concentrates as a function of temperature after 60 minutes of storage. Powder A.................................209

Figure 5.28: Changes in the apparent viscosity with shear rate at different storage times. Run C52, powder A, 48%TS, 65°C.................................210

Figure 5.29: Effect of heating and storage temperature on the changes in apparent viscosity with storage time in 44%TS reconstituted milk concentrates. Powder A...211
Figure 5.30: Effect of heating and storage temperature on the changes in apparent viscosity with storage time in 46%TS reconstituted milk concentrates. Powder A...211

Figure 5.31: Effect of heating and storage temperature on the changes in apparent viscosity with storage time in 48%TS reconstituted milk concentrates. Powder A...212

Figure 5.32: Changes in the apparent viscosity with storage time up to the gelling point at two heating and storage temperatures. Runs C46 (55°C) and C47 (65°C), powder A, 46%TS..214

Figure 5.33: Effect of solids content on the changes in apparent viscosity with storage time in reconstituted milk concentrate solutions that were heated and stored at 65°C. Powder A..215

Figure 5.34: Effect of solids content on the changes in apparent viscosity with storage time in reconstituted milk concentrate solutions that were heated and stored at 75°C. Powder A..216

Figure 5.35: Effect of solids content on the changes in apparent viscosity with storage time in reconstituted milk concentrate solutions that were heated and stored at 85°C. Powder A..216

Figure 5.36: Effects of solids content and temperature on the gelling time of the reconstituted concentrates made from powder A. (a) gelling time versus heating and storage temperature at different solids contents, (b) gelling time versus solids content at different heating and storage temperatures..218

Figure 5.37: Variation of consistency coefficient K with time-temperature for 48%TS reconstituted whole milk concentrates. Powder A...221

Figure 5.38: Variation of yield stress τ_y with time-temperature for 48%TS reconstituted whole milk concentrates. Powder A...221
Figure 5.39: Variation of behaviour index n with time-temperature for 48%TS reconstituted whole milk concentrates. Powder A..222

Figure 5.40: Variation of consistency coefficient K with time-concentration at 75 °C for powder A reconstituted whole milk concentrates ...222

Figure 5.41: Variation of yield stress τ_y with time-concentration at 75 °C for powder A reconstituted whole milk concentrates ..223

Figure 5.42: Variation of behaviour index with time-concentration at 75 °C for powder A reconstituted whole milk concentrates ..223

Figure 5.43: Effect of heating and storage temperature on the changes in apparent viscosity with storage time in 50%TS reconstituted milk concentrate solutions. Runs C55-C58, powder B..226

Figure 5.44: Effects of solids content and temperature on the gelling time of the reconstituted concentrates made from powders A and B ...227

Figure 5.45: The effect of powder type on the rate of age thickening (RAT) up to the gelling point of reconstituted concentrate samples made from powders A and B ..228

Figure 5.46: Effect of heating and storage temperature on the changes in the Herschel-Bulkley model parameters with storage time in reconstituted whole milk concentrates made from powder B. (a) τ_y; (b) K; (c) n. Runs C55-C58, powder B, 50%TS..229

Figure 5.47: Changes in particle size distribution with storage time. Run C55, powder B, 50%TS, 35°C..231

Figure 5.48: Changes in particle size distribution with storage time. Run C58, powder B, 50%TS, 75°C..232
Figure 5.49: Comparison of the change in apparent viscosity and aggregation profile with storage time. Run C55, powder B, 50%TS, 35°C..........................233

Figure 5.50: Comparison of the change in apparent viscosity and aggregation profile with storage time. Run C58, powder B, 50%TS, 75°C..........................233

Figure 5.51: Effect of recirculation shear rate on the inline apparent viscosity with recirculation time of the reconstituted milk concentrates. C59-C62, powder B, 50%TS, 35°C...237

Figure 5.52: Changes in the in-line Herschel-Bulkley model parameters during recirculation at different shear rate for reconstituted whole milk concentrates. (a) τ_y; (b) K; (c) n. C59-C62, powder B, 48%TS, 35°C..........................239

Figure 5.53: Effect of recirculation shear rate on the inline apparent viscosity during recirculation at 35°C. C63-C67, powder A, 48%TS, 35°C..........................240

Figure 5.54: Changes in rates of age thickening with nominal shear rates during recirculation in reconstituted milk concentrates made from powders A and B........241

Figure 5.55: Effect of shear rate during recirculation at 35°C on the rheology of heated reconstituted whole milk concentrates during storage at 75°C. C78-C79, powder B, 50%TS, 75°C..........................243

Figure 5.56: Effect of recirculation shear rate on the hysteresis loop area of the reconstituted whole milk concentrates during storage at 75°C. C78-C79, powder B, 50%TS, 75°C..........................243

Figure 5.57: Effect of recirculation shear rate on the Herschel-Bulkley model parameters during storage at 75°C. (a) τ_y; (b) K; (c) n. C78-C79, powder B, 50%TS, 75°C..........................245
Figure 5.58: Effect of shear rate during recirculation on the rheology of heated reconstituted whole milk concentrates during storage at 65°C. C73-C77, powder A, 48%TS, 65°C. 247

Figure 5.59: Effect of recirculating shear rate on the gelling time of heated reconstituted whole milk concentrates during storage at 65°C. C73-C77, powder A, 48%TS, 65°C. 247

Figure 5.60: Effects of recirculation time on the apparent viscosity with storage time at 65°C for 47%TS reconstituted milk concentrates that had been sheared at 40,000s⁻¹ during recirculation at 35°C. C80, powder A, 47%TS. 248

Figure 5.61: Effects of recirculation time on the apparent viscosity with storage time at 65°C of 47%TS reconstituted milk concentrates that had been sheared at 600s⁻¹ during recirculation at 35°C. C81, powder A, 47%TS. 249

Figure 5.62: Changes in particle size distribution with recirculation time during recirculation at 600s⁻¹ at 35°C. Run C67, powder A, 48%TS, 35°C. 250

Figure 5.63: Changes in particle size distribution with storage time at 65°C when the milk concentrates were sheared at 40,000s⁻¹ at 35°C. Run C80, powder A, 47%TS, 65°C. 251

Figure 5.64: Changes in particle size distribution with storage time at 65°C when the milk concentrates were sheared at 600s⁻¹ at 35°C. Run C81, powder A, 47%TS, 65°C. 251

Figure 5.65: Comparison of the changes in apparent viscosity with the aggregation profile during recirculation at 600 s⁻¹ at 35°C. Run C67, powder A, 48%TS, 35°C. 253
Figure 5.66: Comparison changes in apparent viscosity with the aggregation profile during storage at 65°C. Recirculation was carried out at 600s\(^{-1}\) for 60 minutes. C80, powder A, 47%TS, 65°C. ... 253

Figure 5.67: Comparison of changes in apparent viscosity with the aggregation profile during storage at 65°C. Recirculation was carried out at 40,000s\(^{-1}\) for 60 minutes. C81, powder A, 47%TS, 65°C ... 254

Figure 5.68: Effect of recirculation temperature on the inline apparent viscosity with recirculation time at shear level of 40,000s\(^{-1}\). C82-C83, powder A, 48%TS ... 258

Figure 5.69: Effect of recirculation temperature on the apparent viscosity during storage at 65°C. C87-C90, powder A, 48%TS ... 259

Figure 5.70: Effect of recirculation temperature on the inline apparent viscosity with recirculation time at shear level of 40,000s\(^{-1}\). C84-C86, powder B, 50%TS ... 260

Figure 5.71: Effect of recirculation temperature on the apparent viscosity during storage at 75°C. C91-C92, powder B, 50%TS ... 261

Figure 5.72: Effect of flow rate during heating on the rheology of reconstituted milk concentrates during storage at 75°C. C96-97, powder B, 50%TS, 6 plates. 264

Figure 5.73: Effect of flow rate during heating on the rheology of reconstituted milk concentrates during storage at 75°C. C98-99, powder B, 50%TS, 10 plates. 264

Figure 5.74: Effect of flow rate during heating on the rheology of reconstituted milk concentrates during storage at 75°C. C100-101, powder B, 50%TS, 20 plates. 265

Figure 5.75: Effect of shear rate and number of plates during heating on the gelling time of heated products during storage. ... 266
Figure 5.76: Effect of flow rate during heating on the Herschel-Bulkley model parameters during storage at 75°C in a hot water bath. (a) τ_y; (b) K; (c) n. C90-C91, powder B, 50%TS, 20 plates. ... 267

Figure 5.77: Change in particle size distribution during storage of heated reconstituted whole milk concentrates. C97, powder B, 50%TS, 75°C, 6 plates, 40 L/hour ... 269

Figure 5.78: Comparison of the changes in the apparent viscosity and the aggregation profile with storage time during age thickening at 75°C. C97, powder B, 50%TS, 75°C, 6 plates, 40 L/hour. ... 270

Figure 5.79: Changes in the apparent viscosity at 105.3 Pa with storage time during age thickening at 75°C. Run C103, whole milk powder B, 50%TS. 272

Figure 5.80: Changes in the behaviour index, n, of the Herschel-Bulkley model with time for a 50%TS reconstituted whole milk concentrate during storage at 75°C. Run C103, whole milk powder B, 50%TS... 274

Figure 5.81: Change in particle size distribution of the 50%TS reconstituted whole milk concentrates during storage at 75°C. Run C103, whole milk powder B. 275

Figure 5.82: Comparison of the changes in the aggregation profile and apparent viscosity with storage time at 75°C during age thickening for the 50%TS reconstituted whole milk concentrates. Run C103, whole milk powder B. ... 276

Figure 5.83: Age thickening in reconstituted whole milk concentrates during storage at 75°C. Magnification 3200x. Storage time: (a) 0 min, (b) 150 min, (c) 270 min, (d) 340 min. Run C103, whole milk powder B, 50%TS... 277

Figure 5.84: Age thickening in reconstituted whole milk concentrates during storage at 75°C. Magnification 9100x. Storage time: (a) 0 min, (b) 150 min, (c) 270 min, (d) 340 min. Run C103, whole milk powder B, 50%TS... 278
Figure 5.85: Age thickening in reconstituted whole milk concentrates during storage at 75°C. Magnification 20600x. Storage time: (a) 0 min, (b) 150 min, (c) 270 min, (d) 340 min. Run C103, whole milk powder B, 50%TS.

Figure 5.86: Age thickening in reconstituted skim milk concentrates during storage at 65°C. Magnification 3200x. Storage time: (a) 1 hour, (b) 2 hours, (c) 4 hours. Run C104, skim milk powder C, 50%TS.

Figure 5.87: Age thickening in reconstituted skim milk concentrates during storage at 65°C. Magnification 20600x. Storage time: (a) 1 hour, (b) 2 hours, (c) 4 hours. Run C104, skim milk powder C, 50%TS.

Figure 5.88: Change in apparent viscosity with storage time during age thickening at 35°C. Run C105, powder B, 49.4%TS, 35°C.

Figure 5.89: Change in pH with storage time during age thickening at 35°C. Run C105, powder B, 49.4%TS, 35°C.

Figure 5.90: Change in standardised HLA with storage time during age thickening at 35°C. Run C105, powder B, 49.4%TS, 35°C.

Figure 5.91: Effect of heating and storage temperature on the Herschel-Bulkley model parameters with storage time in concentrates made from powder B. (a) τ_y; (b) K; (c) n. Run C105, powder B, 49.4%TS, 35°C.

Figure 5.92: Changes in PSD with storage time after the first recirculation step. Run C105, powder B, 49.4%TS, 35°C.

Figure 5.93: Changes in PSD with storage time after the second recirculation step. Run C105, powder B, 49.4%TS, 35°C.
Figure 5.94: Changes in volume percentage of particles >2μm with storage time.
Run C105, powder B, 49.4%TS, 35°C ... 292

Figure 5.95: Change in apparent viscosity with storage time during age thickening at 35°C. Run C106, powder B, 47.5%TS, 75°C ... 294

Figure 5.96: Change in standardised HLA with storage time during age thickening at 35°C. Run C106, powder B, 47.5%TS, 75°C ... 295

Figure 5.97: Comparison of standardised HLA between runs C105 at 35°C and C106 at 75°C ... 295

Figure 5.98: Effect of heating and storage temperature on the Herschel-Bulkley model parameters with storage time in reconstituted milk concentrates made from powder B. (a) τ_p; (b) K; (c) n. Run C106, powder B, 47.5%TS, 75°C ... 297

Figure 5.99: Changes in PSD with storage time after the first recirculation step.
Run C106, powder B, 47.5%TS, 75°C ... 298

Figure 5.100: Changes in PSD with storage time after the second recirculation step.
Run C106, powder B, 47.5%TS, 75°C ... 298

Figure 5.101: Changes in volume percentage of particles >2μm with storage time.
Run C106, powder B, 47.5%TS, 75°C ... 299

Figure 6.1: Typical flow curves drawn as torque versus spindle speed for two typical Newtonian solutions ... 305

Figure 6.2: Changes in the flow curve during age thickening in run C100. Powder B, 50%TS, 75°C ... 308

Figure 6.3: The changes in apparent viscosity with shear rate after different duration of recirculation. Runs C63-C67, powder A, 48%TS, 35°C ... 310
Figure 6.4: Effect of shear rate on the ratio of increase in the extrapolated apparent viscosity at infinite shear rate during recirculation..321

Figure 6.5: Proposed types of age-thickening ...335

Figure 6.6: Proposed mechanisms of age thickening...340
LIST OF TABLES

Table 2.1: Methods for eliminating the minimum from the HCT-pH profiles of Type A milks (Singh, 2004) ... 29

Table 3.1: Mesophilic bacteria count during a recombination experiment A4 63

Table 3.2: Effect of cleaning and addition of sodium azide on bacterial count during a recombination experiment A5 ... 64

Table 3.3: Background data on the Paar Physica MC1 (quoted by Physica Messtechnik GmbH, 1993) ... 69

Table 3.4: Dimensions for several spindle geometries for the Paar Physica MC1 (Physica Messtechnik GmbH, 1993) ... 70

Table 3.5: Viscosity-temperature data for three Cannon Instrument Company’s Newtonian standard oils ... 74

Table 3.6: Spindle speeds and measured torques at critical COV of 0.001 for Z3 spindle with S2000 oil at various temperatures. Experiments A45-A49 86

Table 3.7: Viscosity values for the S60 Newtonian oil (lot 03201) (Cannon Instrument Company, USA), manufactured in 24 February 2003, expires on 08 February 2005 ... 90

Table 3.8: Measuring protocol for shear sweep test using the Paar Physica MC1 ... 93

Table 3.9: Technical data for several Brookfield spindles (Brookfield Engineering Labs) ... 99

Table 3.10: General composition of the infant milk concentrates in experiment A119 at the Waitoa milk powder plant ... 100
Table 4.9: Plant processing conditions in experiments B9, B1, B8 and B10 at the Te Awamutu skim and whole milk powder plants.. 148

Table 4.10: General composition of the infant milk concentrates in experiments B11 and B12 at the Waitoa milk powder plant... 149

Table 4.11: Plant processing conditions in experiments B11 and B12 at the Waitoa powder plant... 149

Table 4.12: General composition of the skim milk concentrates in experiments B9 and B13 at the Te Awamutu whole milk powder plant... 152

Table 4.13: Plant operating conditions in experiments B9 and B13 at the Te Awamutu whole milk powder plant.. 153

Table 4.14: General composition of the infant milk concentrates in experiment B14 at the Waitoa milk powder plant.. 157

Table 4.15: Plant operating conditions in experiment B14 at the Waitoa milk powder plant.. 157

Table 5.1: The effect of the number of data points on the Herschel-Bulkley model parameters when conducting a shear sweep test on yoghurt samples at 10°C in CSS mode using the Paar Physica MC1. Runs C2-C12.. 181

Table 5.2: The effect of the minimum shear stress on the Herschel-Bulkley model parameters when conducting a shear sweep test on yoghurt samples at 10°C in CSS mode using the Paar Physica MC1. Runs C13-C21.. 182

Table 5.3: General composition of the infant milk concentrates in experiments C28 & C29 at the Pahiatua milk powder plant... 187

Table 5.4: Plant operating conditions in experiments C28 & C29 at the Pahiatua milk powder plant... 188
Table 5.5: Experimental conditions to study the effect of solids content and temperature on the rheology of reconstituted whole milk concentrates made from powder A.

Table 5.6: Experimental run conditions to study the effect of solids content and temperature on the rheology of reconstituted whole milk concentrates made from powder B.

Table 5.7: Typical values for the Herschel-Bulkley parameters at the gelling points in reconstituted concentrates made from powder A.

Table 5.8: Changes in the apparent viscosity and the Herschel-Bulkley parameters at the gelling points in reconstituted concentrates made from powder B at different heating temperatures.

Table 5.9: Experimental conditions to study the effect of shear rate on the rheology of reconstituted whole milk concentrates during recirculation at 35°C.

Table 5.10: Reconstitution conditions for experiments C82-C92.

Table 5.11: Operating parameters during heating experiments.

Table 5.12: Changes in solids content after recirculation.

Table 6.1: Changes in the HLA and the Herschel-Bulkley parameters with shear rate range in three concentrate samples. Run C100, powder B, 50%TS, 75°C.

Table 6.2: General composition of the two whole milk powders used in the controlled rheology experiments.
<table>
<thead>
<tr>
<th>Roman letters</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Empirical constant A in the Weltman model</td>
</tr>
<tr>
<td>B</td>
<td>Empirical constant B in the Weltman model</td>
</tr>
<tr>
<td>f_{ss}</td>
<td>Shear stress conversion factor</td>
</tr>
<tr>
<td>f_{sr}</td>
<td>Shear rate conversion factor</td>
</tr>
<tr>
<td>K</td>
<td>Consistency coefficient</td>
</tr>
<tr>
<td>L</td>
<td>Length of bob</td>
</tr>
<tr>
<td>m</td>
<td>Slope of the logarithmic plot of $\ln N$ versus $\ln \tau_s$</td>
</tr>
<tr>
<td>M</td>
<td>Torque</td>
</tr>
<tr>
<td>n</td>
<td>Behaviour index</td>
</tr>
<tr>
<td>n''</td>
<td>Slope of a logarithmic plot of torque versus rotational speed</td>
</tr>
<tr>
<td>N</td>
<td>Spindle speed</td>
</tr>
<tr>
<td>R_b</td>
<td>Radius of bob</td>
</tr>
<tr>
<td>R_c</td>
<td>Radius of cup</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>Greek Symbol</td>
<td>Unit</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>ε</td>
<td>Ratio of Rb/R_c</td>
</tr>
<tr>
<td>ϕ</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>ϕ_{max}</td>
<td>Maximum volume fraction of the dispersed phase</td>
</tr>
<tr>
<td>τ</td>
<td>Shear stress</td>
</tr>
<tr>
<td>τ_β</td>
<td>Baxter interaction parameter</td>
</tr>
<tr>
<td>τ_b</td>
<td>Shear stress at the surface of the spindle</td>
</tr>
<tr>
<td>τ_y</td>
<td>Yield stress</td>
</tr>
<tr>
<td>τ_e</td>
<td>Elastic stress</td>
</tr>
<tr>
<td>τ_t</td>
<td>Total stress</td>
</tr>
<tr>
<td>τ_v</td>
<td>Viscous stress</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity</td>
</tr>
<tr>
<td>μ_{app}</td>
<td>Apparent viscosity</td>
</tr>
<tr>
<td>μ_z</td>
<td>Viscosity of the solvent</td>
</tr>
<tr>
<td>$[\mu]$</td>
<td>Intrinsic viscosity</td>
</tr>
<tr>
<td>$\mu_{\text{normalised}}$</td>
<td>Normalised viscosity</td>
</tr>
<tr>
<td>$\mu_{\text{high shear}}$</td>
<td>Steady viscosity attained at high shear rates</td>
</tr>
<tr>
<td>μ_∞</td>
<td>Viscosity at infinite shear rate</td>
</tr>
<tr>
<td>$\mu_{\text{extrapolated}}$</td>
<td>Adjusted extrapolated viscosity at infinite shear rate</td>
</tr>
<tr>
<td>γ_e</td>
<td>Elastic strain associated with the flow structure</td>
</tr>
<tr>
<td>$\dot{\gamma}$</td>
<td>Shear rate</td>
</tr>
<tr>
<td>$\dot{\gamma}_b$</td>
<td>Shear rate at the surface of the spindle</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>β-lg</td>
<td>β-lactoglobulin</td>
</tr>
<tr>
<td>CCP</td>
<td>Colloidal calcium phosphate</td>
</tr>
<tr>
<td>CIP</td>
<td>Cleaning-in-place</td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DFGM</td>
<td>Damaged fat globule membrane</td>
</tr>
<tr>
<td>HCT</td>
<td>Heat coagulation time</td>
</tr>
<tr>
<td>HLA</td>
<td>Hysteresis loop area</td>
</tr>
<tr>
<td>NEM</td>
<td>N-ethylmaleimide</td>
</tr>
<tr>
<td>NFGM</td>
<td>Native fat globule membrane</td>
</tr>
<tr>
<td>PHE</td>
<td>Plate heat exchanger</td>
</tr>
<tr>
<td>PSD</td>
<td>Particle size distribution</td>
</tr>
<tr>
<td>RAT</td>
<td>Rate of age thickening</td>
</tr>
<tr>
<td>RSCM</td>
<td>Recombined sweetened condensed milk</td>
</tr>
<tr>
<td>SCM</td>
<td>Sweetened condensed milk</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SNF</td>
<td>Solids non-fat</td>
</tr>
<tr>
<td>TASMP</td>
<td>Te Awamutu skim milk powder</td>
</tr>
<tr>
<td>TAWMP</td>
<td>Te Awamutu whole milk powder</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

