BIOLOGICAL PHOSPHORUS REMOVAL
FROM A PHOSPHORUS RICH
DAIRY PROCESSING WASTEWATER

A thesis presented in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy
in
Environmental Engineering
at
Massey University
Turitea Campus, Palmerston North,
New Zealand

PAUL O. BICKERS
2005
CANDIDATE’S DECLARATION

This is to certify that the research carried out for my Doctoral thesis entitled “Biological Phosphorus Removal From a Phosphorus Rich Dairy Processing Wastewater” in the Institute of Technology, Massey University, Palmerton North, New Zealand is my own work and that the thesis material has not been used in part or in whole for any other qualification.

Candidate’s Name
Paul Oliver Bickers

Signature

Date 26/06/04
SUPERVISOR’S DECLARATION

This is to certify that the research carried out for the Doctoral thesis entitled “Biological Phosphorus Removal From a Phosphorus Rich Dairy Processing Wastewater” was done by Paul Oliver Bickers in the Institute of Technology, Massey University, Palmerston North New Zealand. The thesis material has not been used in part or in whole for any other qualification, and I confirm that the candidate has pursued the course of study in accordance with the requirements of the Massey University regulations.

Supervisor’s Name
Rao Bhamidimarri

Signature

Date
CERTIFICATE OF REGULATORY COMPLIANCE

This is to certify that the research carried out in the Doctoral Thesis entitled Biological Phosphorus Removal From A Phosphorus Rich Dairy Processing Wastewater in the Institute Of Technology and Engineering at Massey University, New Zealand:

(a) is the original work of the candidate, except as indicated by appropriate attribution in the text and/or in the acknowledgements;
(b) that the text, excluding appendices/annexes, does not exceed 100 000 words;
(c) all the ethical requirements applicable to this study have been complied with as required by Massey University, other organisations and/or committees which had a particular association with this study, and relevant legislation.

Please insert Ethical Authorisation code(s) here if applicable __________________

Candidate's Name: Paul O. Bickers
Signature:
Date: 26/06/04
Supervisor's Name: Rao Bhamidimarri
Signature:
Date: 26/06/04
ABSTRACT

A phosphorus rich wastewater, typical of a dairy processing site producing milk powder, was biologically treated in a continuous activated sludge reactor.

A literature review indicated there was a vast amount of information on the mechanisms of the Enhanced Biological Phosphorus Removal (EBPR) process and its application to domestic wastewaters, but little successful research on its application to dairy processing wastewater.

The biodegradability of the wastewater organic fractions was assessed due to their impact on the EBPR process. Continuous anaerobic fermentation tests were used to determine the concentration of volatile fatty acids that could be generated, as these are required for successful EBPR. A fermenter hydraulic retention time of 12 hours and a temperature of 35 °C generated the highest concentration of volatile fatty acids, with an acidification rate of 65% (based on 0.45μm filtered COD).

To permit improved dissolved oxygen control and increased flexibility, a multi-zone reactor was designed. A fermentation stage was also incorporated prior to the activated sludge reactor. This reactor was operated with anaerobic, anoxic and aerobic zones at an SRT of 10 days and stable biological phosphorus removal was achieved. A maximum of 41.5 mg P/L was removed and phosphorus release and PHA storage occurred in both the anaerobic and anoxic zones. The soluble COD consumed in the unaerated zones (anaerobic + anoxic) totalled 484 mg COD/L on the day of the zone study (day 158). The aerobic sludge phosphorus concentration averaged 7.0% mg P/mg VSS after system optimisation. The anaerobic volume was doubled in order to increase the anaerobic consumption of volatile fatty acids. This change increased the amount of soluble COD consumption in the unaerated zones to 632 mg P/L after 40 days but did not result in a significant increase in biological phosphorus removal.

In the next series of trials, the concentration of nitrogen in the wastewater was decreased and the anoxic zone removed. This change did not improve the amount of biological phosphorus removal, which was 35 mg P/L at an SRT of 10 days. The effect of different sludge retention times was then investigated. Increasing the SRT to
15 days resulted in little change in phosphorus removal (34.5 mg P/L). Decreasing the SRT to 5 days resulted in the loss of EBPR.

The medium term effect on the EBPR process by removing the fermentation stage was also assessed using an AO configuration at an SRT of 10 days. The amount of phosphorus removed decreased slightly after 34 days to 34 mg P/L, but the soluble COD consumed in the anaerobic zone increased to 624 mg P/L.

It was concluded that a stable EBPR process could be established when treating a dairy processing wastewater with a continuous activated sludge reactor. The biological stability was sensitive to changes in the solids retention time and the removal of the fermentation stage.
ACKNOWLEDGEMENTS

I wish to acknowledge Professor Rao Bhamidimarri for establishing this project and encouraging me to undertake it and also his patience during this long process of completion. I also wish to acknowledge the financial support and input of the New Zealand Dairy Research Institute (now Fonterra Research), especially Mike Donkin, Jim Barnett and latterly John Russell and Joanna Shepherd. Their patience has also been much appreciated.

The assistance of the technical staff of the Massey University Institute of Technology has also been much appreciated. Without the input of Don McLean in the mechanical workshop and Bruce Collins in the electrical workshop, this project would not have been possible as they made my experimental concepts a reality. Thanks very much Don and Bruce. Thanks also to John Sykes for providing analytical assistance and keeping the instruments functioning and to Anne-Marie Jackson for placing consumables orders and finding equipment. Mention must be made of the golf outings with Don and John that kept me partially sane. The companionship and knowledge of Magnus Christensson during his two years working on this difficult project was also invaluable.

The encouragement and support of Andy Shilton who completed his own thesis while continuing a busy lecturing schedule has been much appreciated. Thanks mate.

Finally thanks to my family for their support. To my wife Fiona and our daughters Sera and Amy for putting up with this whole process. As we have progressed through marriage, having a family, changing cities and employment this study has always been present, hopefully now we can look forward to more time together. Leana Hola! Thanks also to my mother for her solid support as always, this thesis is dedicated to her.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>Abbreviations and Nomenclature</td>
<td>xxi</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The New Zealand Dairy Industry and Wastewater Management</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Phosphorus and the Dairy Industry</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Biological Phosphorus Removal and dairy Processing Wastewater</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Research Approach</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Specific Objectives</td>
<td>4</td>
</tr>
<tr>
<td>Chapter 2: Literature Review</td>
<td>6</td>
</tr>
<tr>
<td>2.1 Phosphorus and the Environment</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Chemical and Biological Phosphorus Removal Options</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1 Chemical</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2 Biological</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Enhanced Biological Phosphorus Removal (EBPR)</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Principles of EBPR</td>
<td>9</td>
</tr>
<tr>
<td>2.3.2 Biochemical Principles of EBPR</td>
<td>10</td>
</tr>
<tr>
<td>2.3.3 Microbiology of EBPR</td>
<td>14</td>
</tr>
<tr>
<td>2.3.4 Substrate Influences on EBPR</td>
<td>14</td>
</tr>
<tr>
<td>2.3.5 Influences of Substrates on the Microbial Population</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Biological Phosphorus Removal Systems</td>
<td>19</td>
</tr>
</tbody>
</table>
2.4.1 EBPR Systems without Nitrogen Removal
2.2.2 EBPR Systems with Nitrogen Removal
2.4.3 Factors Affecting EBPR System Performance

2.5 Dairy Processing Wastewater
2.5.1 Characteristics of Dairy Processing Wastewater
 2.5.1.1 Nitrogen
 2.5.1.2 Phosphorus
2.5.2 Synthetic Dairy Processing Wastewater

2.6 Biological Phosphorus Removal from Dairy Processing Wastewater

2.7 Fermentation of Dairy Processing Wastewater

2.8 Summary

Chapter 3: Analytical and Experimental Methodology

3.1 Introduction

3.2 Analytical Methodology
 3.2.1 Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS)
 3.2.2 Chemical Oxygen Demand (COD)
 3.2.3 Total Phosphorus (TP)
 3.2.4 Soluble Anions (PO$_4^{3-}$, NO$_2^-$ and NO$_3^-$)
 3.2.5 Total Kjeldahl Nitrogen (TKN)
 3.2.6 Ammonia
 3.2.7 Glycogen
 3.2.8 Poly-β-hydroxyalkanoate (PHA)
 3.2.9 Volatile Fatty Acids (VFA’s)
 3.2.10 Dissolved Oxygen (DO) and Oxygen Uptake Rate (OUR and SOUR)

vi
Chapter 11: References

LIST OF FIGURES

Chapter 2

Figure 2.1: Biological Effects of Eutrophication (Queens University Belfast, 2003). 6
Figure 2.2: Profiles of soluble BOD and phosphorus during the EBPR process. 10
Figure 2.3: Schematic diagrams for the behaviour proposed by the Comeau/Wentzel model unanaerobic (a) and aerobic conditions (b). 12
Figure 2.4: Schematic diagrams of the biochemical mechanisms proposed by the Mino model under anaerobic (a) and aerobic conditions (b). 13
Figure 2.5: EBPR system without nitrogen removal (AO). 20
Figure 2.6: AAO system or 3-stage modified Bardenpho. 21
Figure 2.7: Modified (5-stage) Bardenpho, Phoredox. 21
Figure 2.8: UCT process. 22
Figure 2.9: Modified UCT. 22
Figure 2.10: SBR sequencing for biological phosphorus removal. 23

Chapter 3

Figure 3.1: Example of GC chromatogram for PHB and PHV analysis. 44
Figure 3.2: Schematic of OUR measurement technique. 45
Figure 3.3: Schematic of AAO laboratory activated sludge system. 48
Figure 3.4: Picture of initial AAO laboratory activated sludge system. 49
Figure 3.5: Schematic of Modified UCT laboratory activated sludge system. 51
Figure 3.6: Schematic of improved laboratory zoned reactor system. 53
Figure 3.7: Zoned reactor system showing clarifier and stirrer, DO control system and temperature control unit. 54
Figure 3.8: Mixed liquor contents of zoned reactor system. 54
Figure 3.9: Schematic of fermenter process. 56
Figure 3.10: Photo of fermenter system showing 4°C synthetic wastewater Storage refrigerator on the right and fermented wastewater refrigerator on the left. 57
Chapter 4

Figure 4.1: RBCOD determination using aerobic batch test method for Synthetic dairy processing wastewater (S/X=0.05). 65

Figure 4.2: RBCOD determination using aerobic batch test method for Synthetic dairy processing wastewater (S/X=0.12). 66

Figure 4.3: Anoxic batch test NUR graph for four different substrates. 69

Figure 4.4: Anoxic batch test comparison for acetate and synthetic dairy processing wastewater. 71

Figure 4.5: The percentage of each VFA as a fraction of the total VFA COD. 75

Chapter 5

Figure 5.1: AAO activated sludge preliminary lab-scale system. 80

Figure 5.2: TSS concentration in each zone. 81

Figure 5.3: Zone VSS/TSS ratio's during AAO system operation. 82

Figure 5.4: Variation in the SVI and the effluent TSS during AAO system operation. 82

Figure 5.5: Soluble COD concentrations in each zone. 84

Figure 5.6: Ammonia concentrations in the aerobic zone and effluent. 85

Figure 5.7: Nitrate concentrations in each zone. 85

Figure 5.8: Soluble phosphorus (PO₄-P) concentration in each zone. 86

Figure 5.9: P release in anaerobic and anoxic zones based on both total influent phosphorus and the soluble influent phosphorus. 86

Figure 5.10: Modified UCT activated sludge lab-scale system for treatment of synthetic dairy processing wastewater. 90

Figure 5.11: TSS concentration in each zone for the MUCT system. 91

Figure 5.12: COD concentration in each zone for the MUCT system. 92

Figure 5.13: Anaerobic zone total and soluble COD consumption. 92

Figure 5.14: Ammonia concentration in each zone for the MUCT system. 93

Figure 5.15: NOₓ-N (Nitrate+Nitrite) concentrations in each zone for the MUCT system. 94

Figure 5.16: Orthophosphate (PO₄-P) concentrations in each zone for the MUCT system. 94

Figure 5.17: Phosphorus fractionation anaerobic batch test. 96
Chapter 6

Figure 6.1: Schematic of laboratory treatment system. 99

Figure 6.2: Zoned laboratory-scale activated sludge EBPR AAO reactor system. 100

Figure 6.3: Influent fermentation system. 101

Figure 6.4: COD profile during reactor operation in fermenter feed and fermenter effluent. 102

Figure 6.5: VFA COD fractionation, total VFA COD and % acidification of fermenter effluent. 102

Figure 6.6: TSS profile during zoned AAO reactor operation. 104

Figure 6.7: COD profile during reactor operation in the anaerobic, anoxic and last aerobic zone. 105

Figure 6.8: SVI variation during reactor operation. 105

Figure 6.9: Effluent nitrate concentrations during the reactor operation. 106

Figure 6.10: Phosphorus concentrations during the reactor operation. 107

Figure 6.11: Sludge phosphorus concentration in the final aerobic zone during the reactor operation. 107

Figure 6.12: phosphorus removal during the reactor operation, based on both the fermented effluent total phosphorus (TP) and soluble phosphorus (PO₄-P). 108

Figure 6.13: Anaerobic zone PHA, PHB and PHV concentration during the reactor operation. 108

Figure 6.14: TSS concentration and VSS/TSS ratio for each zone on day 158. 111

Figure 6.15: Soluble COD and PO₄-P decrease through each zone on day 158. 111

Figure 6.16: Net phosphorus uptake in each zone (negative uptake means phosphorus release). 112

Figure 6.17: Biomass phosphorus content relative to the soluble PO₄-P concentration in each zone. 112

Figure 6.18: Nitrate and nitrite zone concentrations for each zone on day 158. 113

Figure 6.19: Total PHA, PHB, PHV and glycogen sludge concentrations. 113

Figure 6.20: OUR uptake rates (OUR) and specific oxygen uptake rates (SOUR) in each aerobic zone. 114

Figure 6.21: Phosphorus release/uptake and acetate uptake during the
batch test with acetate as sole carbon source.

Figure 6.22: Specific oxygen uptake rate (SOUR) and phosphorus during release/uptake during batch test.

Figure 6.23: VSS/TSS ratio and phosphorus release/uptake during batch test.

Figure 6.24: Glycogen, sludge phosphorus content and soluble phosphorus profiles during batch test.

Figure 6.25: EAAO system TSS concentrations and VSS/TSS ratio profiles.

Figure 6.26: EAAO system soluble COD and soluble phosphate zone concentrations.

Figure 6.27: EAAO system net phosphate uptake profiles (negative uptake denotes phosphate release).

Figure 6.28: EAAO system biomass phosphorus content relative to soluble phosphate concentrations.

Figure 6.29: EAAO system nitrate and nitrite concentrations.

Figure 6.30: Extended anaerobic zone system nitrate and nitrite concentrations.

Figure 6.31: Anaerobic batch test using sludge from EAAO system.

Figure 6.32: Theoretical phosphorus removed as a function of sludge phosphorus concentration for individual mixed liquor VSS concentrations for a reactor at an SRT of days.

Chapter 7

Figure 7.1: Schematic of laboratory treatment system.

Figure 7.2: Zoned laboratory-scale AO activated sludge EBPR reactor system.

Figure 7.3: Fermenter feed and effluent COD profile during reactor operation.

Figure 7.4: VFA COD fractionation, total VFA COD and % acidification of fermenter effluent.

Figure 7.5: Zone profiles of TSS, VSS and the VSS/TSS ratio for the 10 day SRT AO zoned reactor.

Figure 7.6: Zone profiles of soluble COD and PO₄₋P for the 10 day SRT AO zoned reactor.

Figure 7.7: PO₄₋P uptake for each zone for the 10 day SRT AO zoned reactor.

Figure 7.8: Soluble PO₄₋P and sludge phosphorus profiles for each zone for the 10 day SRT AO reactor.
Figure 7.9: Zone nitrate concentrations for each zone for the 10 day SRT AO reactor.

Figure 7.10: SOUR and OUR profiles for each zone of 10 days AO reactor.

Figure 7.11: Acetate COD and PO₄-P profiles during the batch test.

Figure 7.12: Sludge phosphorus content and VSS/TSS variation during batch test at 0, 300 and 600 minutes.

Figure 7.13: SOUR and OUR profiles during the batch test aerobic phase.

Figure 7.14: TSS and VSS/TSS profiles during 15 day SRT reactor operation.

Figure 7.15: Soluble COD profiles of anaerobic zone and final aerobic zones for 15 day SRT reactor operation.

Figure 7.16: The amount of soluble COD and VFA COD consumed in the anaerobic zone and the % of the available COD and VFA consumed within the anaerobic zone for 15 day SRT reactor.

Figure 7.17: SVI variations during the 15 day SRT AO reactor operation.

Figure 7.18: Effluent nitrate concentrations during reactor operation at an SRT of 15 days.

Figure 7.19: Soluble phosphorus concentrations in the anaerobic zone and final aerobic zone during 15 day SRT reactor operation.

Figure 7.20: Sludge phosphorus concentration in the final aerobic zone.

Figure 7.21: TSS, VSS and VSS/TSS ratio's for each zone for 15 day AO reactor.

Figure 7.22: Soluble COD and PO₄-P profiles for each zone for 15 day SRT AO reactor.

Figure 7.23: Phosphorus uptake in each zone for 15 day SRT AO reactor.

Figure 7.24: Sludge phosphorus content and PO₄-P concentrations for each zone for the 15 day SRT reactor.

Figure 7.25: Nitrate concentrations in each zone for the 15 day SRT AO reactor.

Figure 7.26: PHB, PHV, total PHA and glycogen concentrations for each zone for the 15 day SRT AO reactor.

Figure 7.27: SOUR and OUR rates for each zone for the 15 day SRT AO reactor.

Figure 7.28: Soluble COD and PO₄-P profiles during batch test for
15 day SRT reactor.

Figure 7.29: Sludge phosphorus content and VSS/TSS variations during 15 day mixed liquor batch test.

Figure 7.30: PHB, PHV, total PHA, glycogen and SOUR profiles during batch tests for 15 day SRT reactor.

Figure 7.31: TSS, VSS and VSS/TSS ratio's for the anaerobic zone and the final aerobic during the 5 day SRT AO reactor operation.

Figure 7.32: Soluble COD for the anaerobic zone and the final aerobic zone during the 5 day SRT AO reactor operation.

Figure 7.33: Total VFA COD concentration in the anaerobic zone, the amount of VFA COD consumed within the anaerobic zone for 5 day SRT AO reactor.

Figure 7.34: SVI variation during the operation of the 5 day SRT AO reactor.

Figure 7.35: Anaerobic and aerobic PO₄-P concentrations and the amount of Anaerobic zone P-release during the operation of the 5 day SRT AO reactor.

Figure 7.36: Final aerobic zone sludge phosphorus content during the operation of the 5 day SRT AO reactor.

Figure 7.37: Final zone nitrate concentration during the operation of the 5 day SRT AO reactor.

Figure 7.38: TSS, VSS and VSS/TSS ratio in each zone for reactor operated at an SRT of 5 days.

Figure 7.39: Soluble COD and PO₄-P concentration in each zone for AO Zoned reactor operated at an SRT of 5 days.

Figure 7.40: Anaerobic zone phosphorus uptake in each zone for AO zoned Reactor operated an SRT of 5 days.

Figure 7.41: Final aerobic zone sludge phosphorus content and PO₄-P for zones of AO reactor operated at an SRT of 5 days.

Figure 7.42: Nitrate in each zone of AO reactor operated at an SRT of 5 days.

Figure 7.43: SOUR and OUR zone profiles for AO reactor operated at an SRT of 5 days.

Figure 7.44: Phosphorus release (negative) and uptake (positive) rates for Each AO system zone study.
Chapter 8
Figure 8.1: Zone pH values for each zone study. 189
Figure 8.2: Soluble calcium values for zones 1, 5 and 10 for the 15 day SRT AO system (the total calcium concentration value in the effluent is 15.3 mg/L). 189
Figure 8.3: Soluble effluent phosphorus concentration over a 34 day period for an AO configured reactor fed unfermented wastewater. 190
Figure 8.4: TSS, VSS and VSS/TSS zone profiles for AO system treating unfermented wastewater. 194
Figure 8.5: Soluble COD and phosphorus profiles for AO system treating unfermented wastewater. 193
Figure 8.6: Anaerobic zone phosphorus uptake for non-fermented system. 194
Figure 8.7: Sludge phosphorus content for each zone. 195
Figure 8.8: Zone PHB, PHV and PHA concentrations. 195
Figure 8.9: SOUR and OUR respiration rates for each zone. 194
Figure 8.10: Soluble COD and PO₄-P profiles during batch test for non-fermented system. 197
Figure 8.11: Concentrations of magnesium, calcium and potassium for zones 1, 5 and 10 at the time of the 15 day AO system zone study. 202

Chapter 9
Figure 9.1: The total phosphorus removed in each system at the time of the zone study. 210
Figure 9.2: Total unaerated zone phosphorus release and anaerobic zone only phosphorus release relative to the unaerated fraction. 211
Figure 9.3: The relationship of the soluble COD consumption in the unaerated zones and overall phosphorus removed relative to the unaerated zone HRT (actual) for 10 day SRT reactors. 211
Figure 9.4: The change in Y.PO₄ determined from acetate batch tests relative to the continuous reactor total soluble consumption in the unaerated zones. 213
LIST OF TABLES

Chapter 2

Table 2.1	Precipitation reactions of phosphorus with lime, alum and iron Fe (III)	8
Table 2.2	Summary of molar ratios during anaerobic and aerobic periods for various organic substrates (from Comeau et al., 1987)	16
Table 2.3	Ratios of phosphorus released and VFA consumed under anaerobic conditions (from Abu-gharrarah and Randell, 1991)	17
Table 2.4	Chemical characteristics of whole milk (Danalewich et al., 1998)	25
Table 2.5	Chemical characteristics of dairy processing wastewaters. Average values of parameters are given along with either the range of values or maximum value shown in brackets ().	27
Table 2.6	Synthetic wastewater composition and characteristics as used by Leonard (1996).	31

Chapter 3

Table 3.1	Retention times in respective zones of laboratory AAO system.	47
Table 3.2	Hydraulic retention times in respective zones of laboratory MUCT system.	50
Table 3.3	Synthetic wastewater recipe with COD/TKN ratio of 28.	58
Table 3.4	Recipe for synthetic wastewater with COD/TKN ratio of 32.	58
Table 3.5	Milk powder characteristics according to the manufacturer (Anchor Milk Products Ltd, N.Z.).	59

Chapter 4

Table 4.1	Synthetic dairy processing wastewater recipe.	61
Table 4.2	Synthetic dairy processing wastewater chemical and physical characteristics.	62
Table 4.3	NUR batch test parameters	68
Table 4.5	NUR gradients for each substrate used in the anoxic batch test.	69
Table 4.6: NUR gradients for each substrate used in second anoxic batch test. 71
Table 4.7: RBCOD fraction and yield coefficients from the study and literature. 72
Table 4.8: Operating parameters and analytical data from the four different fermenter operations. 76

Chapter 5
Table 5.1: Retention time in respective zones of laboratory AAO system. 80
Table 5.2: Average analytical parameters for each zone during operation of AAO lab-scale configuration. 89
Table 5.3: Hydraulic retention times in respective zones of laboratory MUCT system. 90
Table 5.4: Average analytical parameters for each zone during operation of MUCT lab-scale configuration. 95
Table 5.5: Phosphorus fractionation of aerobic sludge sample (Day 35). 97

Chapter 6
Table 6.1: Reactor system operational parameters. 99
Table 6.2: Volume, number of individual zones and the HRT in the anaerobic, anoxic and aerobic steps with the overall HRT. 100
Table 6.3: Fermented wastewater VFA COD concentrations and percent of total VFA COD and soluble COD\(_{(<0.45\mu m)}\). 103
Table 6.4: Individual zone parameters for AAO configuration. 117
Table 6.5: Analytical parameters at time 0, 180, and 660 minutes for the batch test for 10 day SRT AAO system. Glycogen concentration is given for 420 minutes instead of 600 minutes. 119
Table 6.6: Individual zone parameters for EAAO configuration. 126
Table 6.7: Anaerobic and anoxic COD and VFA consumption and phosphorus release values for the single anaerobic zone AAO system (AAO) and for the extended anaerobic zone AAO system (EAAO). 131
Table 6.8: Anaerobic/anoxic phase stoichiometric constants from AAO and EAAO zone studies and for both batch test of mixed liquor. 134
Chapter 7

Table 7.1: Synthetic dairy processing wastewater recipe used in the AO zoned reactor studies. 139
Table 7.2: Modified low nitrogen synthetic dairy processing wastewater chemical and physical characteristics. 139
Table 7.3: AO reactor system operational parameters. 142
Table 7.4: Average fermented wastewater average VFA COD concentrations and proportions of total VFA and total COD$_{0.45}$µm. 144
Table 7.5: Fermenter Effluent and anaerobic zone (zone 1) individual short chain VFA COD concentrations, the % of total VFA COD and the % consumption of anaerobic zone individual VFA based on fermenter effluent VFA concentrations. 146
Table 7.6: Individual zone parameters for AO configuration at an SRT of 10 days. 150
Table 7.7: Analytical parameters at time 0, 300 and 600 minutes for batch test using mixed liquor of AO system operated at an SRT of 10 days. 154
Table 7.8: Individual zone parameters for AO configuration at an SRT of 15 days. 165
Table 7.9: Analytical parameters at time 0, 180 and 420 minutes for batch test using mixed liquor of AO system operated at an SRT of 15 days. Except OUR and SOUR are given for 210 minutes instead of 180 minutes. 169
Table 7.10: Individual zone parameters for AO configuration at an SRT of 5 days. 179
Table 7.11: Summary of anaerobic zone parameters during zone studies, except for P removed and %mg P/mg VSS that relate to final aerobic zone (zone 10). 180
Table 7.12: Stoichiometric constants from each zone study and batch test for the AO systems. 181
Chapter 8

Table 8.1: Characteristics of synthetic wastewater immediately before entry to zoned reactor. 191
Table 8.2: Individual and total VFA concentrations. 193
Table 8.3: Individual zone parameters for non-fermented wastewater AO configuration at an SRT of 10 days. 198
Table 8.4: Analytical parameters at time 0, 240 and 480 minutes for the batch of the unfermented 10 day SRT AO system. 199
Table 8.5: Amount of magnesium, potassium and calcium release in the anaerobic zone and the ratio of each cation to both phosphorus release and uptake. 202

Chapter 9

No Tables

Chapter 10

Table 10.1: Aerobic Readily Biodegradable Test Data, S/X ratio of 0.05 216
Table 10.2: Aerobic Readily Biodegradable Test Data, S/X ratio of 0.12 217
Table 10.3: Anoxic Readily Biodegradable Test (S/X ratio of 0.03) 217
Table 10.4: Anoxic Readily Biodegradable Test (S/X ratio of 0.08) 218
Table 10.5: AAO Continuous Reactor Data – Unfermented Wastewater 219
Table 10.6: MUCT Continuous Reactor Data – Unfermented Wastewater 220
Table 10.7: Zoned AAO System – Fermented Wastewater 221
Table 10.8: AAO Reactor Fermented Wastewater VFA Concentrations 223
Table 10.9: Fermenter Operation during AO System Operation (15 day SRT) 224
Table 10.10: 15 Day SRT AO Reactor Operation 224
Table 10.11: 5 Day SRT AO Reactor System 225
ABBREVIATIONS AND NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAO</td>
<td>Anaerobic-Anoxic-Oxic</td>
</tr>
<tr>
<td>AO</td>
<td>Anaerobic-Oxic</td>
</tr>
<tr>
<td>ASM1</td>
<td>Activated Sludge Model No. 1</td>
</tr>
<tr>
<td>ASM2</td>
<td>Activated Sludge Model No. 2</td>
</tr>
<tr>
<td>BNR</td>
<td>Biological Nutrient Removal</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand (mg/L)</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand (mg/L)</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen (mg/L)</td>
</tr>
<tr>
<td>EBPR</td>
<td>Enhanced Biological Phosphorus Removal</td>
</tr>
<tr>
<td>GAO</td>
<td>Glycogen Accumulating Organisms</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time (d)</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solids</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed Liquor Volatile Suspended Solids</td>
</tr>
<tr>
<td>MUCT</td>
<td>Modified University of Cape Town</td>
</tr>
<tr>
<td>NUR</td>
<td>Nitrate Uptake Rate</td>
</tr>
<tr>
<td>OUR</td>
<td>Oxygen Uptake Rate</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PAO</td>
<td>Polyphosphate Accumulating Organisms</td>
</tr>
<tr>
<td>PHA</td>
<td>Poly-β hydroxyalkanoates</td>
</tr>
<tr>
<td>PHB</td>
<td>Poly-β hydroxybutyric Acid</td>
</tr>
<tr>
<td>PHV</td>
<td>Poly-β hydroxyvaleric Acid</td>
</tr>
<tr>
<td>RAS</td>
<td>Return Activated Sludge</td>
</tr>
<tr>
<td>RBCOD</td>
<td>Readily Biodegradable Chemical Oxygen Demand</td>
</tr>
<tr>
<td>S\textsubscript{A}</td>
<td>Fermentation Products as Acetate Equivalents (mg/L)</td>
</tr>
<tr>
<td>SBCOD</td>
<td>Slowly Biodegradable Chemical Oxygen Demand</td>
</tr>
<tr>
<td>SCVFA</td>
<td>Short Chain Volatile Fatty Acids</td>
</tr>
<tr>
<td>S\textsubscript{F}</td>
<td>Fermentable Readily Biodegradable Substrates (mg/L)</td>
</tr>
<tr>
<td>S\textsubscript{I\textsubscript{I}}</td>
<td>Inert Soluble Substrate (mg/L)</td>
</tr>
<tr>
<td>SOUR</td>
<td>Specific Oxygen Uptake Rate</td>
</tr>
<tr>
<td>SRT</td>
<td>Sludge Retention Time (d)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>S_{SI}</td>
<td>Readily Biodegradable Substrate (mg/L)</td>
</tr>
<tr>
<td>SVI</td>
<td>Sludge Volume Index (ml/g)</td>
</tr>
<tr>
<td>S/X</td>
<td>Substrate to Biomass Ratio</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjehldahl Nitrogen (mg/L)</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solids (mg/L)</td>
</tr>
<tr>
<td>UCT</td>
<td>University of Cape Town</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile Fatty Acids</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile Suspended Solids (mg/L)</td>
</tr>
<tr>
<td>X_{SI}</td>
<td>Slowly Biodegradable Substrate (mg/L)</td>
</tr>
<tr>
<td>Y_H</td>
<td>Heterotrophic Yield Coefficient (mg Cell COD/mg COD consumed)</td>
</tr>
<tr>
<td>Y_{HD}</td>
<td>Anoxic Yield Coefficient (mg Cell COD/mg COD Consumed)</td>
</tr>
<tr>
<td>Y_{PO4}</td>
<td>Ratio of Phosphorus Released to COD consumed (mg P/mg COD)</td>
</tr>
</tbody>
</table>