Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FUNCTIONAL ANALYSIS OF GENES ENCODING HYDROLYTIC ENZYMES IN THE INTERACTION OF *EPICHLOË FESTUCAE* WITH PERENNIAL RYEGRASS

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Molecular Genetics

at Massey University, Palmerston North, New Zealand

Michelle Kay Bryant

2005
ABSTRACT

Hydrolytic enzymes degrade macromolecules into smaller components. These enzymes are important in fungal nutrition and have been implicated in the pathogenicity and virulence of pathogenic fungi towards their hosts. However, it is unknown if hydrolytic enzymes play important roles in mutualistic symbioses. In this study, the function of two different classes of hydrolytic enzymes was examined in the mutualistic symbiosis between the fungal endophyte *Epichloë festucae* and perennial ryegrass (*Lolium perenne* cv. Nui).

Nine members of a gene family encoding subtilisin-like proteases were identified in *E. festucae*. The *prt2*, *prt3* and *prt5* genes encode putative extracellular proteins belonging to the proteinase K subfamily 1, and *prt1* and *prt6* encode putative extracellular proteins belonging proteinase K subfamily 2. The *prt7* and *prt8* genes encoded pyrolysin-like enzymes from subfamilies 1 and 2. The *prt4* gene encodes a putative vacuolar protease, while the *kex2* gene encodes a putative proprotein convertase. Expression analysis showed that the *prt1*, *prt3*, *prt5*, *prt4* and *kex2* genes, but not the *prt2* gene, were expressed in culture. The *prt1* and *prt3* genes appeared to be up-regulated *in planta* compared to culture.

The function of *prt1* and *prt2* in the symbiotum between *E. festucae* and perennial ryegrass was characterised by expressing these genes under the control of the *Aspergillus nidulans gpdA* or the *E. festucae Fl1 ltmM* promoters. No major differences in hyphal or plant morphology were observed between symbioses containing wild type *E. festucae* or endophyte strains containing the *prt1* or *prt2* transgenes.

The *gcn1* gene, which encodes a β-1,6-glucanase, was identified immediately downstream of the *prt2* gene. The function of the *gcn1* gene was characterised by gene replacement and testing the phenotype during growth in culture and *in planta*. *E. festucae Δgcn1* strains grew normally on glucose-containing media. On media containing the β-1,6-glucan pustulan, Δ*gcn1* strains did not form aerial hyphae or hydrolyse pustulan, which the wild type strain did. This phenotype was partially
complemented by growth of the $\Delta gcnl$ mutant in close proximity to wild type strains, and fully complemented by insertion of the $gcnl$ gene. This suggests that the $gcnl$ gene encodes the major β-1,6-glucanase activity of $E. festucae$.
ACKNOWLEDGEMENTS

Firstly, I would like to thank my chief supervisor, Barry Scott, for his supervision throughout my project. Your knowledge, support and tact have been deeply appreciated. To my other supervisor, Greg Bryan, thanks for your involvement and the fresh perspective you brought to our discussions. I would also like to thank AGMARDT for the Doctoral scholarship that supported me throughout the first three years of this degree.

To my lab mates, past and present: thank you also for the support, discussions and helpful suggestions throughout, especially to Carolyn Young and Xiuwen Zhang. To Andrea Bryant and Carla Eaton, thanks for your friendship and support, especially when it all felt too hard. Thanks also to Kim, Sanjay, Aiko, Shuguang, Heike, Damien, Brendon and Simon for helpful suggestions, Ruth for technical assistance, and Glenda for her support. I'd also like to thank other people in the institute who have been very supportive. To Paul Stock and Cynthia Charron, thanks for supporting me and listening when I got stressed and things weren't going right. Also to our institute secretaries Ann and Cynthia, who have been so helpful during the many draft printings of this thesis. Special thanks must also go to my “PhD support group” – Xiuwen and Carolyn during the first part of my degree, and Vikki Weake and Andrew Clarke in more recent times.

Thanks also to everyone at AgResearch Grasslands who has been so helpful. To Mike Christensen, thank you for our many discussions and to Wayne and Anouk, thanks for your help with the plants (special thanks for the immunoblotting). Thanks to Richard Johnson for providing the *N. lolii* Lp19 kexin sequence that enabled me to clone the *E. festucae* kex2 gene, and also Linda Johnson for helpful discussions.

Andrea, I really owe you double amounts of thanks. Not only do I thank you for your help in the lab, I also have to thank you for introducing me to your brother! To my husband Jeremy, you’ve been my tower of strength. Without your love and support I could not have completed this task. I know at times it’s been hard with the two of us doing our doctorates at the same time – it’s my fault for convincing you to do a PhD too! To my parents Pat and Teresa, and my brothers Des and Steve, thanks for your support throughout this degree. To my sister Roslyn, thanks for being there, listening and understanding – and for the many visits with Ari. To Ralph and Raewyn, thanks for your unceasing support. To Nikki and Scott, Kayley, Zoe, and Joel, thanks for the fun family times. Thanks also to the friends and relatives who have helped cheer me up and provided diversions along the way, especially Kelly, Blair, Greg and Heather.
TABLE OF CONTENTS

Abstract .. iii
Acknowledgements .. v
Table of contents ... vi
Table of figures ... xv
Table of tables .. xviii
Table of abbreviations ... xix

CHAPTER 1: Introduction

1.1 FUNGAL LIFESTYLES ... 2
1.2 EPICHLÖÈ AND NEOTYPHODIUM ENDOPHYTES ... 3
 1.2.1 Relationships between Epichloë and Neotyphodium endophytes and their hosts .. 3
 1.2.2 Endophyte secondary metabolites .. 5
 1.2.3 Endophyte growth and colonisation within their hosts 6
 1.2.4 Endophyte-host compatibility ... 8
 1.2.5 Endophyte nutrition within its host grass .. 9
 1.2.6 Epichloë and Neotyphodium sp. endophytes as experimental systems ... 11
1.3 HYDROLYTIC ENZYMES ... 12
1.4 SUBTILISIN-LIKE PROTEASES .. 14
 1.4.1 Family I of the fungal subtilisin-like proteases: pyrolysin-type proteases 15
 1.4.2 Family II of the fungal subtilisin-like proteases: proteinase K-type proteases ... 16
 1.4.3 Fungal subtilisin-like protease family III: kexin-type proteases 18
 1.4.4 Distribution of subtilisin-like proteases in fungal genomes 20
1.5 ROLE OF PROTEASES IN INTERACTIONS WITH THEIR HOSTS 23
 1.5.1 Insect pathogenic fungi ... 23
 1.5.2 Trichoderma species ... 26
 1.5.3 Nematode pathogenic fungi ... 27
 1.5.3.1 Arthrobotrys oligospora ... 27
 1.5.3.2 Verticillium chlamydosporium ... 28
 1.5.3.3 Paecilomyces lilacinus ... 29
 1.5.4 Candida albicans .. 29
 1.5.5 Dermatophytic fungi .. 30
 1.5.6 Plant pathogenic fungi ... 31
 1.5.6.1 Magnaporthe grisea .. 31
 1.5.6.2 Botrytis cinerea .. 32
 1.5.6.3 Sclerotinia sclerotiorum ... 32
 1.5.6.4 Fusarium species .. 33
 1.5.6.5 Verticillium dahliae .. 33
 1.5.6.6 Stagonospora nodorum ... 34
 1.5.6.7 Cochliobolus carbonum ... 34
 1.5.6.8 Glomerella cingulata .. 34
 1.5.6.9 Ophiostoma piliferum .. 35
CHAPTER 2: Materials and methods

2.1 BIOLOGICAL MATERIAL .. 44
2.2 GROWTH OF BACTERIAL AND FUNGAL CULTURES 47
 2.2.1 Bacterial cultures ... 47
 2.6.1 Fungal cultures .. 47
2.3 MEDIA ... 47
 2.3.1 Aspergillus complete medium (ACM) 47
 2.3.2 Luria-Bertani medium (LB) .. 47
 2.3.3 Potato dextrose medium (PD) .. 48
 2.3.4 Pustulan or glucose media .. 48
 2.3.5 Regeneration medium (RG) .. 48
 2.3.6 SOC medium .. 48
 2.3.7 TOP agarose medium .. 48
 2.3.8 Water agar medium .. 48
 2.3.9 Media additions ... 49
2.4 BUFFERS AND SOLUTIONS ... 49
 2.4.1 Buffers ... 49
 2.4.1.1 Byrd extraction buffer .. 49
 2.4.1.2 20% PEG solution .. 49
 2.4.1.3 SM buffer .. 49
 2.4.1.4 20x SSPE buffer ... 49
 2.4.1.5 STE (100/10/1) buffer ... 49
 2.4.1.6 STET buffer ... 49
 2.4.1.7 Taha lysis buffer ... 49
 2.4.1.8 TE (10/0.1) buffer .. 50
 2.4.1.9 TES buffer ... 50
 2.4.1.10 Tris acetate buffer ... 50
 2.4.2 Enzymes .. 50
 2.4.2.1 DNase I .. 50
 2.4.2.2 Lysozyme .. 50
 2.4.2.3 Proteinase K ... 50
 2.4.2.4 RNase A (DNase free) ... 50
 2.4.3 Commonly used stock solutions .. 50
 2.4.4 Stains ... 51
 2.4.4.1 Aniline Blue stain ... 51
 2.4.4.2 Congo Red stain ... 51
2.5 DNA ISOLATION AND PURIFICATION 51
2.5.1 Phenol-chloroform purification ... 51
2.5.2 Precipitation of DNA with ethanol or isopropanol 51
2.5.3 Gel purification ... 51
 2.5.3.1 Freeze-thaw extraction .. 51
 2.5.3.2 Extraction from agarose using the QiaQuick™ gel extraction kit
 (Qiagen) .. 52
2.5.4 PCR product purification .. 52
2.5.5 Plasmid DNA isolation .. 52
 2.5.5.1 Rapid boil plasmid isolation .. 52
 2.5.5.2 High Pure™ plasmid isolation kit (Roche) 53
 2.5.5.3 Quantum™ plasmid miniprep kit (Bio-Rad) 53
 2.5.5.4 Quantum™ plasmid midiprep kit (Bio-Rad) 53
2.5.6 Alkaline lysis purification of plasmids and cosmids 54
 2.5.6.1 Alkaline lysis solutions .. 54
 2.5.6.1.1 Alkaline lysis solution I .. 54
 2.5.6.1.2 Alkaline lysis solution II .. 54
 2.5.6.1.3 Alkaline lysis solution III 54
 2.5.6.2 Alkaline lysis preparation of plasmid and cosmid DNA for
 sequencing ... 54
 2.5.6.3 Large scale cosmid DNA isolation by alkaline lysis 55
2.5.7 λ DNA isolation ... 55
 2.5.7.1 Plating λ phage ... 55
 2.5.7.2 Isolation of λ phage DNA ... 56
2.5.8 Fungal and plant genomic DNA isolation 56
 2.5.8.1 Isolation of genomic DNA from fungal protoplasts 56
 2.5.8.2 Isolation of fungal or plant genomic DNA using modified
 Taha method .. 57
 2.5.8.3 Isolation of genomic DNA using the plant-fungal method 57
 2.5.8.4 Isolation of fungal genomic DNA using modified Byrd method ... 58
2.6 DNA QUANTIFICATION .. 58
 2.6.1 Fluorometric quantitation with Hoescht dye 58
 2.6.1.1 Solutions for fluorometric quantitation 58
 2.6.1.1.1 Hoescht dye solution .. 58
 2.6.1.1.2 10 x TNE buffer ... 58
 2.6.1.1.3 Calf thymus DNA stock 58
 2.6.1.1.4 Assay solution A (for low range assays) 59
 2.6.1.1.5 Assay solution B (for high range assays) 59
 2.6.1.2 Quantitation using the fluorometer 59
 2.6.1.2.1 Low concentration assays of DNA concentration 59
 2.6.1.2.2 High concentration assays of DNA concentration 59
 2.6.2 Quantitation by ethidium bromide staining 60
2.7 RESTRICTION ENDONUCLEASE DIGESTION OF DNA 60
2.8 AGAROSE GEL ELECTROPHORESIS ... 60
 2.8.1 Agarose gel electrophoresis solutions 60
 2.8.1.1 1 x TAE electrophoresis buffer 60
 2.8.1.2 1 x TBE electrophoresis buffer 60
 2.8.1.3 SDS loading dye ... 60
 2.8.1.4 Ethidium bromide staining solution 61
2.9 SOUTHERN BLOTTING .. 62

2.9.1 Southern blotting solutions ... 62
 2.9.1.1 Solution 1 ... 62
 2.9.1.2 Solution 2 ... 62
 2.9.1.3 Solution 3 ... 62
 2.9.1.4 20 x SSC ... 62
 2.9.1.5 2 x SSC ... 62
 2.9.1.6 10 x Denhardt’s Solution .. 62
 2.9.1.7 Library hybridisation solution 62
 2.9.1.8 Alkaline stripping solution 62

2.9.2 Southern (capillary) blotting ... 62

2.9.3 Radiolabelling of DNA probes .. 63

2.9.4 Hybridisation of radio labelled DNA probes 64

2.9.5 Autoradiography .. 64

2.9.6 Stripping of Southern blots ... 64

2.10 LIBRARY SCREENING .. 65

2.11 DNA SEQUENCING .. 65

2.12 DNA LIGATION .. 66
 2.12.1 CAP treatment of vector DNA 66
 2.12.2 DNA ligation .. 67
 2.12.3 Shot gun cloning of λ and cosmid DNA fragments 67

2.13 VECTOR CONSTRUCTION .. 68
 2.13.1 Construction of vectors to give heterologous *prt1* or *prt2* expression .. 68
 2.13.1.1 Construction of the phFunGus vector 68
 2.13.1.2 Construction of vectors to give heterologous *prt1* expression .. 68
 2.13.2 Construction of vectors to give heterologous *prt2* expression .. 70
 2.13.3 Construction of the *gcnl* gene replacement vector 73

2.14 BACTERIAL TRANSFORMATION .. 73
 2.14.1 Preparation of electro-competent *E. coli* cells 73
 2.14.2 Transformation of DNA by electroporation 75
 2.14.3 Screening of transformants 75
 2.14.3.1 Blue-white selection .. 75
 2.14.3.2 Clone Checker™ analysis (Invitrogen) 75
 2.14.3.3 Colony PCR ... 76

2.15 FUNGAL PROTOPLAST PREPARATION AND CHEF ELECTROPHORESIS 76
 2.15.1 Protoplasting solutions .. 76
 2.15.1.1 OM buffer .. 76
 2.15.1.2 Glucanex ... 76
 2.15.1.3 ST buffer .. 77
 2.15.1.4 STC buffer ... 77
 2.15.1.5 40% PEG buffer ... 77
 2.15.1.6 GMB buffer .. 77
 2.15.1.7 LMP in GMB ... 77
 2.15.1.8 SE buffer ... 77
2.15.1.9 10 x ET buffer with SLS ... 77
2.15.1.10 1 x ET buffer .. 77
2.15.2 Protoplast preparation .. 77
2.15.3 Preparation of protoplast plugs for CHEF 78
2.15.4 CHEF electrophoresis .. 78
2.16 FUNGAL TRANSFORMATION ... 79
2.16.1 Transformation of fungal protoplasts ... 79
2.16.2 Screening of fungal transformants ... 80
 2.16.2.1 Screening using alkaline lysis of fungal hyphae 80
2.16.2.2 Screening using the plant Extract-N-Amp™ PCR kit (Sigma) 80
2.17 PCR ... 80
2.17.1 PCR reagents .. 80
 2.17.1.1 Oligonucleotide primers ... 80
 2.17.1.2 dNTPs ... 83
2.17.2 Standard PCR .. 83
2.17.3 Gradient PCR .. 84
2.17.4 PCR using Expand™ Long Template (Roche) 84
2.17.5 PCR using Expand™ High Fidelity (Roche) 84
2.17.6 Inverse PCR .. 85
2.17.7 TripleMaster® PCR .. 85
2.17.8 RT-PCR .. 85
2.18 RNA ISOLATION AND PURIFICATION ... 85
2.18.1 Purification of total RNA using Trizol 86
2.18.2 Purification of polyA RNA from total RNA 86
2.18.3 RNA quantitation by measuring absorbance and A_{260}/A_{280} nm 86
2.18.4 DNase I treatment of RNA .. 87
2.18.5 cDNA synthesis ... 87
2.19 PLANT-ENDOPHYTE SYMBIOTA GROWTH AND MAINTENANCE 88
2.19.1 Plant maintenance .. 88
2.19.2 Inoculation of grass seedlings with endophyte hyphae 88
 2.19.2.1 Surface sterilisation of grass seeds 88
 2.19.2.2 Inoculation of grass seedlings with endophytes 88
 2.19.2.3 Root training of inoculated seedlings 88
2.19.3 Detection of infected seedlings after endophyte inoculation 89
 2.19.3.1 Aniline blue staining .. 89
 2.19.3.2 Immunodetection by immunoblotting 89
 2.19.3.2.1 Immunoblotting blocking solution 89
 2.19.3.2.2 Immunoblotting Tris buffer .. 89
 2.19.3.2.3 Fast Red chromogen .. 89
 2.19.3.2.4 Immunoblot detection of endophyte in grass tissues 89
2.20 MICROSCOPY AND PHOTOGRAPHY .. 90
2.21 BIOINFORMATICS ... 91
CHAPTER 3: Gene family

3.1 E. FESTUCAE AND N. LOLII PROTEINASE K FAMILY GENES (SUBFAMILIES 1 AND 2) ... 94
 3.1.1 The prt1 and prt5 genes ... 94
 3.1.2 The prt2 gene .. 101
 3.1.3 The prt3 gene .. 108
 3.1.3.1 Isolation of the N. lolii Lp19 and E. festucae Fll prt3 genes ... 108
 3.1.3.2 The N. lolii Lp19 and Lp5 prt3 genes encode non-functional proteins 112
 3.1.4 Phylogenetic analysis of E. festucae Fll and N. lolii Lp19 prt1, prt2,
 prt3 and prt5 genes .. 115
 3.2 E. FESTUCAE FL1 PROTEINASE K FAMILY GENE (SUBFAMILY 3) 117
 3.2.1 The prt4 gene .. 117
 3.2.2 Phylogenetic analysis of proteinase K subfamily 3 genes 122
 3.3 THE E. FESTUCAE KEX2 GENE ... 123
 3.4 E. FESTUCAE FL1 CONTAINS OTHER GENES ENCODING
 SUBTILISIN-LIKE PROTEASES .. 128
 3.5 CHROMOSOMAL LOCALISATION OF THE PRT AND KEX2 GENES.... 132
 3.6 EXPRESSION OF THE PRT AND KEX2 GENES IN CULTURE AND IN PLANTA ... 134

CHAPTER 4: Functional analysis of prt1 and prt2

4.1 CONSTRUCTION OF VECTORS TO GIVE ALTERED EXPRESSION
 OF THE PRT1 OR PRT2 GENES ... 140
4.2 TRANSFORMATION OF E. FESTUCAE FL1 WITH THE ALTERED
 EXPRESSION VECTORS .. 141
4.3 ANALYSIS OF TRANSFORMANT PRT1 OR PRT2 EXPRESSION 143
 4.3.1 Expression of the transformant prt1 or prt2 genes in culture 143
 4.3.2 Expression of the transformant prt1 or prt2 genes in planta 150
4.4 PHENOTYPE OF TRANSFORMANTS DURING GROWTH IN
 CULTURE AND IN PLANTA .. 153

CHAPTER 5: Functional analysis of gcn1

5.1 ENDOPHYTE GENES ENCODING β-1,6-GLUCANASES 160
5.2 REPLACEMENT OF THE E. FESTUCAE FL1 GCNI GENE 161
 5.2.1 Transformation of E. festucae Fll with a gcnl::hph construct 161
 5.2.2 Phenotype of the Δgcn1 strains during growth in culture 167
5.3 COMPLEMENTATION OF THE ΔGCNI STRAIN 170
5.4 GROWTH OF ΔGCNI STRAINS IN PLANTA 174

CHAPTER 6: Discussion

6.1 E. FESTUCAE CONTAINS A GENE FAMILY OF SUBTILISIN-LIKE
 PROTEASES .. 178
6.1.1 Proteinase K-type subtilisin-like proteases .. 178
 6.1.1.1 The prt5-prtl locus ... 178
 6.1.1.2 The prt2-gcn1 locus .. 179
 6.1.1.3 The prt3 locus ... 181
 6.1.1.4 The prt4 gene ... 184
6.1.2 Kex2 is a member of the kexin family of subtilisin-like proteases 184
6.1.3 Regulation of expression of genes encoding subtilisin-like proteases 184
6.1.4 Genomic distribution of subtilisin-like proteases in filamentous fungi 191

6.2 HETEROLOGOUS EXPRESSION OF PRT1 AND PRT2 IN
 EPICHLÓE FESTUCAE FL1 .. 195
6.3 FUNCTION OF THE E. FESTUCAE FL1 GCN1 GENE 200

APPENDIX

Appendix A1: Restriction maps ... 209
 Appendix A1.1: Vectors for general use ... 210
 A1.1.1 pFungUS ... 210
 A1.1.2 pAN7-1 .. 210
 A1.1.3 phGFP2 ... 211
 A1.1.4 pF199 .. 211
 A1.1.5 pPN1688 ... 212
 A1.1.6 pUC118 .. 212
 A1.1.7 pXZ56 .. 213
 A1.1.8 pGEM-T Easy ... 213
 Appendix A1.2: prtl vectors .. 214
 A1.2.1 pMM2 .. 214
 A1.2.2 pMM3 .. 214
 A1.2.3 pMM4 .. 215
 A1.2.4 pMM51 ... 215
 Appendix A1.3: prt2 vectors .. 216
 A1.3.1 pMM7 .. 216
 A1.3.2 pMM44 ... 216
 Appendix A1.4: kex2 vectors .. 217
 A1.4.1 pMM65 ... 217
 Appendix A1.5: Other genomic sequences .. 217
 A1.5.1 Ite cluster 1 from E. festucae FL1 ... 217
 A1.5.2 The E. festucae FL1 tub2 gene ... 218
 A1.5.3 The A. nidulans gpDA gene ... 218
 Appendix A2: Comparison of E. festucae and N. lolii sequences 219
 Appendix A2.1: Comparison of the E. festucae FL1 and N. lolii Lp19 prtl and prtl
 sequences ... 220
Appendix A2.2: Comparison of the *E. festucae* Fll and *N. lolii* Lp19 *prt2* and *gon1* sequences..226
Appendix A2.3: Comparison of the endophyte sequences homologous to *prt3*...232

Appendix A3: Analysis of Orf4 ...235

Appendix A4: Analysis of Cyc1 ...237

Appendix A5: Analysis of Ptn1 ...239
 Appendix A5.1 Alignment of the *E. festucae* Fll Ptn1 with phosphoinositide 3-
 phosphatase sequences...240
 Appendix A5.2 Phylogenetic relationship of Ptn1 to fungal PTEN-like phosphatases...241

Appendix A6: Analysis of Gao1 ...243
 Appendix A6.1 Alignment of Gaol with GaoA from *Fusarium* sp..............244
 Appendix A6.2 Phylogenetic analysis of the *E. festucae* Fll Gaol protein
 with D-galactose oxidases...245

Appendix A7: Design of degenerate primers
 Appendix A7.1 Design of degenerate PCR primers used to amplify the vacuolar
 protease encoding gene *prt4*..248
 Appendix A7.2 Design of degenerate primers for *prt* isolation.................249-250

Appendix A8: Analysis of Orf2 ...251

Appendix A9: Analysis of Orf3 ...253

Appendix A10: Analysis of Nc25 ..255

Appendix A11: MEME analysis for *prt* promoters..257
 Appendix A11.1 MEME analysis of the *E. festucae* Fll *prt* promoters........258
 Appendix A11.2 MEME motifs..258

Appendix A12: Raw data for assessing transgene copy number263
 Appendix A12.1: Raw data for copy number analysis in pMM32
 transformants...264
 Appendix A12.2: Raw data for copy number analysis in pMM33
 transformants...265
 Appendix A12.3: Raw data for copy number analysis in pMM26
 transformants...266
 Appendix A12.4: Raw data for copy number analysis in pMM27
 transformants...267

Appendix A13: Sequences used in phylogenetic analysis...............................269
 Appendix A13.1 Nucleotide sequences used in rRNA phylogenetic analysis....270
Appendix A13.2 Polypeptide sequences used in Prt1, Prt2, Prt3 and Prt5 phylogenetic analysis ... 271
Appendix A13.3 Polypeptide sequences used in Prt4 phylogenetic analysis 272
Appendix A13.4 Polypeptide sequences used in Kex2 phylogenetic analysis 273
Appendix A13.5 Polypeptide sequences used in Gcn1 phylogenetic analysis 274
Appendix A13.6 Polypeptide sequences used in Cyc1 phylogenetic analysis 275
Appendix A13.7 Polypeptide sequences used in Ptn1 phylogenetic analysis 276
Appendix A13.8 Polypeptide sequences used in Gaol phylogenetic analysis 277

Appendix A14: Intron conservation .. 279
Appendix A14.1 Conservation of intron position in prt genes 280
Appendix A14.2 Conservation of intron position in Fl1 prt4 281
Appendix A14.3 Intron conservation in kexin-encoding genes 282

Appendix A15: Growth of E. typhina PN2311 in planta 283
Appendix A16: Gene features .. 285

Appendix A17: SignalP 3.0 analysis .. 287

BIBLIOGRAPHY

Bibliography ... 290
Figure 1.1	Life cycles of *Epichloë* and *Neotyphodium* species within their grass hosts	4
Figure 1.2	Exo- and endohydrolytic cleavage of molecules	13
Figure 1.3	Hydrolytic reaction catalysed by subtilisin-like proteases	14
Figure 1.4	Phylogenetic relationships of fungal species	22
Figure 1.5	Reaction catalysed by endo-β-1,6-glucanases	37
Figure 2.1	Construction of the phFunGus vector	69
Figure 2.2	Construction of vectors directing heterologous expression of *prt1*	71
Figure 2.3	Construction of vectors directing heterologous expression of *prt2*	72
Figure 2.4	Construction of the *gcn1*:kph replacement vector pMM54	74
Figure 3.1	Southern analysis of *N. lolii* Lp19 and *E. festucae* Fl1 *prt1*	95
Figure 3.2	Structure of the *N. lolii* Lp19 *prt5* and *prt1* genes	96
Figure 3.3	Structure of the *E. festucae* Fl1 *prt5* and *prt1* genes	96
Figure 3.4	Southern analysis of *E. festucae* Fl1 *prt5*	97
Figure 3.5	Gene structure of the *prt5* and *prt1* genes	98
Figure 3.6	Potential binding sites for fungal global transcription regulators in *E. festucae* Fl1 *prt5* and *prt1*	100
Figure 3.7	MEME analysis of repeated sequence elements found in the *prt* promoters	102
Figure 3.8	Southern analysis of *prt2*	103
Figure 3.9	Structure of the *N. lolii* Lp19 *prt2* locus	105
Figure 3.10	Structure of the *E. festucae* Fl1 *prt2* locus	105
Figure 3.11	Gene structure of the *E. festucae* Fl1 *prt2, gcn1, cyc1* and *pml1* genes	107
Figure 3.12	Potential binding sites for fungal global transcription regulators in *E. festucae* Fl1 *prt2*	109
Figure 3.13	Sequence of the At1 homologue from *N. lolii* Lp19	110
Figure 3.14	Southern analysis of *E. festucae* Fl1 *prt3*	111
Figure 3.15	Structure of the *E. festucae* Fl1 *prt3* genomic region	112
Figure 3.16	Gene structure of the *E. festucae* Fl1 *prt3* and *gao1* genes	112
Figure 3.17	Potential binding sites for fungal global transcription regulators in *E. festucae* Fl1 *prt3* locus	114
Figure 3.18	Phylogenetic relationships of *Prt1, Prt2, Prt3* and *Prt5*	116
Figure 3.19	Strategy for identifying a vacuolar protease homologue	117
Figure 3.20	Sequence of the *prt4* degenerate PCR product	118
Figure 3.21	Southern analysis of the *E. festucae* Fl1 *prt4*	119
Figure 3.22	Structure of the *E. festucae* Fl1 *prt4* gene	120
Figure 3.23	Gene structure of the *E. festucae* Fl1 *prt4* gene	120
Figure 3.24	Potential binding sites for fungal global transcription regulators in *E. festucae* Fl1 *prt4* locus	121
Figure 3.25	Phylogenetic relationship of *E. festucae* Fl1 *Prt4* to fungal vacuolar proteases	122
Figure 3.26 Southern analysis of *E. festucae* Fl1 *kex2* ... 123
Figure 3.27 Structure of the *E. festucae* Fl1 *kex2* gene ... 124
Figure 3.28 Gene structure of *E. festucae* Fl1 orf2, orf3, Ne25 and *kex2* genes 124
Figure 3.29 Potential binding sites for fungal global transcription regulators in *E. festucae* Fl1 *kex2* locus ... 126
Figure 3.30 Phylogenetic relationship of the *E. festucae* Fl1 Kex2 protein with fungal kexins ... 127
Figure 3.31 Degenerate PCR amplification of subtilisin-like protease-encoding sequences from *E. festucae* Fl1 ... 128
Figure 3.32 The *E. festucae* Fl1 prt6 gene ... 129
Figure 3.33 The *E. festucae* Fl1 *prt7* gene ... 130
Figure 3.34 The *E. festucae* Fl1 *prt8* gene ... 131
Figure 3.35 Chromosomal location of the *prt* genes .. 133
Figure 3.36 Chromosomal location of the *kex2* gene .. 133
Figure 3.37 Equalisation between in culture and *in planta* tub2 expression 135
Figure 3.38 Comparison of hydrolytic enzyme gene expression in culture and *in planta* ... 136
Figure 3.39 Comparison of *prt* gene regulation in different grass-endophyte symbiota ... 137

Figure 4.1 Constructs for altered expression of *prt1* and *prt2* 140
Figure 4.2 Strategy for assessing the number of intact transgene copies in transformant genomes .. 142
Figure 4.3 Southern blot analysis of pMM32 transformants ... 144
Figure 4.4 Southern blot analysis of pMM33 transformants ... 145
Figure 4.5 Southern blot analysis of pMM26 transformants ... 146
Figure 4.6 Southern blot analysis of pMM27 transformant .. 147
Figure 4.7 Expression of the *E. festucae* Fl1 *prt1* and *prt2* wild type genes and transgenes in culture ... 149
Figure 4.8 Expression of the wild type and transgene copies of *prt1* *in planta* 151
Figure 4.9 Expression of the wild type and transgene copies of *prt2* *in planta* 152
Figure 4.10 Growth of pMM32 transformants *in planta* .. 154
Figure 4.11 Growth of pMM33 transformants *in planta* .. 155
Figure 4.12 Growth of pMM26 transformants *in planta* .. 156
Figure 4.13 Growth of pMM27 transformants *in planta* .. 157

Figure 5.1 Comparison of the *E. festucae* Fl1 and *N. lolii* Lp19 *prt2-gcn1* intergenic region .. 160
Figure 5.2 Alignment of endophyte β-1,6-glucanases ... 161
Figure 5.3 Phylogenetic analysis of fungal β-1,6-glucanases ... 162
Figure 5.4 The gcn1 deletion construct ... 163
Figure 5.5 PCR analysis of selected gcn1::hph transformants .. 164
Figure 5.6 Southern analysis of selected gcn1::hph transformants 166
Figure 5.7 Growth of Δgcn1 strains on media containing glucose 168
Figure 5.8 Growth of Δgcn1 strains on media containing pustulan, a β-1,6-glucan polymer .. 169
Figure 5.9 Genetic complementation of the gcnl deletion by co-transformation with pMM44 and pII99............................171
Figure 5.10 Growth screening of Δgcnl strains complemented with pMM44..........172
Figure 5.11 Phenotype of Δgcnl hyphae during growth in planta..........................175
TABLE OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Degradation of macromolecules by hydrolytic enzymes</td>
<td>13</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Distribution of subtilisin-like protease encoding genes in fungal genomes</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Biological material</td>
<td>44</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Supplements added to media</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Stock solutions</td>
<td>50</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Primers used in this study</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Size of fragments homologous to N. lolii Lp19 and E. festucae Fl1 prt1</td>
<td>95</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Size of fragments homologous to E. festucae Fl1 prt5</td>
<td>97</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Fragments homologous to N. lolii Lp19 prt2</td>
<td>104</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Fragments homologous to E. festucae Fl1 prt3</td>
<td>111</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Fragments homologous to E. festucae Fl1 prt4</td>
<td>119</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Fragments homologous to E. festucae Fl1 kex2</td>
<td>124</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Characterised products from degenerate PCR with the MM149- MM150 primers</td>
<td>128</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Transformation frequency for different plasmid constructs</td>
<td>141</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Intact copies of pMM32</td>
<td>144</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Intact copies of pMM33</td>
<td>145</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Intact copies of pMM26</td>
<td>146</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Intact copies of pMM27</td>
<td>147</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Regulation of fungal subtilisin-like proteases</td>
<td>185</td>
</tr>
</tbody>
</table>
TABLE OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>IN FULL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM</td>
<td>Aspergillus complete medium</td>
</tr>
<tr>
<td>BcAPs</td>
<td>Botrytis cinerea Aspartic Proteases</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAP</td>
<td>calf alkaline phosphatase</td>
</tr>
<tr>
<td>CDK</td>
<td>cyclin-dependent kinase</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary cDNA</td>
</tr>
<tr>
<td>CHEF</td>
<td>contour-clamped homogeneous electric field</td>
</tr>
<tr>
<td>CTAB</td>
<td>hexadecyltrimethylammonium bromide</td>
</tr>
<tr>
<td>CTD</td>
<td>carboxy-terminal domain</td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxyctosine</td>
</tr>
<tr>
<td>DEPC</td>
<td>Dierucyl phosphatidylcholine</td>
</tr>
<tr>
<td>DMAT</td>
<td>dimethylallylpyrophosphatase</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>Dnase</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleotide</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed Sequence Tag</td>
</tr>
<tr>
<td>FAO</td>
<td>Flavin-adenine dinucleotide</td>
</tr>
<tr>
<td>GPI</td>
<td>Glycophosphoinositols</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
<tr>
<td>HMP</td>
<td>hydroxymethylpyrimidine</td>
</tr>
<tr>
<td>HR</td>
<td>Hypersensitive Response</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelectric focusing</td>
</tr>
<tr>
<td>IP</td>
<td>imaging plate</td>
</tr>
<tr>
<td>IWF</td>
<td>Intercellular Wash Fluid</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LMP</td>
<td>low melting point</td>
</tr>
<tr>
<td>MEME</td>
<td>Multiple EM for Motif Elicitation</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour joining</td>
</tr>
<tr>
<td>NRPS</td>
<td>Non-Ribosomal Peptide Synthetase</td>
</tr>
<tr>
<td>PA</td>
<td>Protease-associated</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed Cell Death</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Potato dextrose</td>
</tr>
<tr>
<td>PDA</td>
<td>potato dextrose agar</td>
</tr>
<tr>
<td>PDB</td>
<td>Potato dextrose broth</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>PFU</td>
<td>plaque forming units</td>
</tr>
<tr>
<td>PIP3</td>
<td>phosphatidylinositol 3,4,5-triphosphate</td>
</tr>
<tr>
<td>Pir</td>
<td>Protein with Internal Repeat</td>
</tr>
<tr>
<td>PTEN</td>
<td>phosphatase and tensin</td>
</tr>
<tr>
<td>PTP</td>
<td>protein tyrosine phosphatase</td>
</tr>
<tr>
<td>RG</td>
<td>regeneration medium</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNAi</td>
<td>Ribonucleic Acid Interference</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>RO</td>
<td>reverse osmosis</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcriptase polymerase chain reaction</td>
</tr>
<tr>
<td>SAPs</td>
<td>Secreted Aspartic Proteases</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SLS</td>
<td>sodium laurel sarcosine</td>
</tr>
<tr>
<td>TGN</td>
<td>Trans Golgi Network</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indol beta-D-galactoside</td>
</tr>
</tbody>
</table>