EXPRESSION STUDIES OF THE ACC OXIDASE GENE FAMILY OF WHITE CLOVER

(Trifolium repens L.)

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Molecular Plant Biotechnology

at Massey University, Palmerston North, New Zealand

Chih-Ming (Balance) Chen

2005
Abstract

Four ACO promoters and four ACO genomic sequences have been isolated and cloned from *Trifolium repens* L. The promoter sequences were cloned using Gene Walker™ technology, and are defined as the 5’ flanking sequences upstream of the ATG translation start codon, and designated pTR-AC01 (1006 bp), pTR-AC02 (1510 bp), pTR-AC03 (1350 bp), and pTR-AC04 (1250 bp). To confirm that each 5’ flanking sequences represents distinct genes, Southern analysis was undertaken with each of the 5’ flanking sequences used as probes. For TR-AC01 and TR-AC02, Southern analysis indicated that the genome of white clover contains two copies of each gene, while single copies of TR-AC03 and TR-AC04 are evident. However, the pattern of recognition of pTR-AC03 differs from pTR-AC04 confirming TR-AC04 as a newly identified member of the ACO gene family of white clover. The four genomic sequences isolated cover sequences downstream of the ATG codon to the stop codon, and each comprises 4 exons interspersed by 3 introns. In terms of sequence identity, for exon 1, identities over the four genes ranges from 69% to 94%, with 94% identity between exon 1 of TR-AC03 and TR-AC04, while for exon 2, identities range from 60% to 99%, with 99% identity between TR-AC03 and TR-AC04. For exon 3, sequence identities ranged from 71% to 89%, with 89% identity between TR-AC03 and TR-AC04, while for exon 4, identities range from 62% to 100%, with 100% sequence identity between TR-AC03 and TR-AC04. For the intron sequences, significantly lower identities are observed, with again, highest identities were observed for TR-AC03 and TR-AC04. For intron 1, identities ranged from 40% to 81% with the highest identity of 81% observed between TR-AC03 and TR-AC04. For intron 2, an identity range of 32% to 72% was observed with 72% identity between TR-AC03 and TR-AC04, while identity values of 13% to 79%, with 79% between TR-AC03 and TR-AC04. Analysis, *in silico*, of the 5’ flanking sequences was undertaken to identify putative transcriptional binding domains using the PLACE and Mat-Inspector programmes. The
TR-ACOl 5' flanking sequence contains a higher proportion of domains that are associated with young developing tissues, while the TR-ACOl 5' flanking sequence contains domains that are associated with environmental/hormonal cues. In contrast, the TR-AC03 and TR-AC04 5' flanking sequences contain a higher proportion of ethylene-response and wound associated domains. The expression pattern, in vivo, directed by all four 5' flanking sequences during leaf development has been examined using GUS fusions and transformation into both tobacco and white clover. In tobacco, the pTR-ACOl directed expression in the terminal bud and in axillary buds of younger leaves, with expression declining in the older tissues. The pTR-ACOl directed expression in the petioles and mature-green and senescent leaves, while the TR-AC03 and TR-AC04 promoters directed expression in the axillary buds, petioles and leaves of mature-green tissues and those in the early stages of senescence. In white clover, the TR-ACOl 5' flanking sequence directed highest expression in the apical tissues, axillary buds, and leaf petiolules in younger tissues and then declines in the ageing tissues, while the pTR-ACOl directed expression in the axillary buds and leaf petiolules in mature-green tissues. The TR-AC03 and TR-AC04 5' flanking sequences direct more expression in the ontological older tissues, including the axillary buds and leaf petiolules. However, in association with this ontological pattern, all of the 5' flanking sequences directed expression in most cell types examined during leaf ontogeny. In younger tissues, the TR-ACOl 5' flanking sequence directed expression in the ground meristem and newly emerged leaf tissue at the apical bud of the stolon, the ground meristem tissue of axillary buds, vascular tissue, pith and cortex of the internode and node, and the cortex and vascular tissue of the leaf petiolule. In ontological older tissue, the TR-AC03 and TR-AC04 5' flanking sequences directed expression in the ground meristem of the axillary buds, the vascular tissue of the stolon and petiolule. However, staining could be observed in the pith and cortex of the stolon, and the cortex of the leaf petiolule, but at a reduced intensity. These expression studies suggest that in leaf development of white clover, the primary cues for the transcriptional regulation of the ACO gene family are
ontological in nature.
Acknowledgements

I would really like to offer a very large thank you to my supervisor, Associate Professor Michael T. McManus, Institute of Molecular Biosciences, Massey University, for his excellent guidance, understanding, patience, and encouragement throughout the course of Ph.D. project. I am especially grateful for the time he has been spent towards the end of my writing, editing my Asia’s style English, and offering a valuable perspective on this thesis. I feel I cannot say enough, thank you again Michael.

I thank to Dr. Richard Scott, his enthusiastic helping me in many aspects. Especially, I thank you for your valuable discussion when I encountered problems, although I still own you some chocolate fishes. I also thank to Ms. Anya Lambert and Miss Susanna Leung for their chemical ordering help always in a fast mode and with patient to listen my requests.

I thank to Ms. Trish McLenachan and Dr. Rissa Ota. Their warmly smiling to listen my stories and enthusiastically encouragement that helps me to accelerate lab works. Greg Clack, an interest lab mate, thank you companied me for rest of lab time. From you, I recognized the delicious flavor of milkshake. I also appreciate rest crew of MTM lab, Dr. Simon, Dr. Trish, Dr. Ning, Cait, Mathew, Fiona, Rachael, Ludervin, and Marrisa who have created a real-world-like place to work.

To the many staffs and students of the Institute Molecular BioScience who I have for reason or another asked for assistance, thank you.

My appreciation also goes out to the staffs of Plant Molecular Genetics Lab at AgResearch, Gresslands. All of whom have been kindly and friendly helped me during Ph.D. period, especially thank to Dr. Derek White and Roy Meeking their patient to teach me the white clover plant transgenic techniques and Dr. Nena Alvarez and Dr. Alicia Scott their consultation in GUS activity and in-situ hybridization assays.
I also thank to Dr. David Lewis and Mr. Ian King from Crop and Food Research, their kindly provided the GMO glasshouse for rescuing my transgenic plants when the period of GMO glasshouse of Massey University was re-constructed.

I would like to thank to my co-supervisor Dr. Mike Hay and AgResearch, Grasslands, for lab research funding support, also thank to Bright Future Scholarship providing financial assistance throughout my Ph.D. research period.

My final and very special thank to my all family members. I cannot thank them enough for all the support and encouragement they have given to me.
Table of Contents

Abstract ... I

Acknowledgements ... IV

Table of Contents .. VI

List of Figures .. XII

List of Tables .. XVI

List of Abbreviations .. XVII

Chapter 1 Introduction ... 1

1.1 Ethylene in plant development .. 1

1.2 Ethylene biosynthesis pathway ... 4

 1.2.1 SAM synthetase .. 6

 1.2.2 ACC synthase (ACS) ... 7

 1.2.3 Conjugation of ACC .. 13

 1.2.4 ACC oxidase (ACO) .. 14

 1.2.4.1 Identification of EFE as ACC oxidase .. 14

 1.2.4.2 Biochemical characterization of ACC oxidase 16

 1.2.4.3 Molecular characterization of ACC oxidase 18

1.3 Ethylene signal transduction pathway .. 21

 1.3.1 Ethylene perception ... 21

 1.3.2 Ethylene signal transduction ... 25

 1.3.3 Ethylene responses in the nucleus ... 26

1.4 Regulation of ACC oxidase gene expression in higher plants 28

 1.4.1 Tissue specific patterns of expression .. 28

 1.4.2 Patterns of ACO expression induced by external cues 30

 1.4.3 Analysis of the ACO gene promoter ... 35

1.5 ACC oxidase gene studies in white clover .. 39

1.6 Research aims ... 41

Chapter 2 Materials and Methods .. 43

2.1 Plant material ... 43

2.2 Chlorophyll quantification .. 43

2.3 Chemicals .. 45

2.4 Isolation of genomic DNA ... 45

2.5 Digestion of genomic DNA .. 47

2.6 Purification of digested genomic DNA .. 47
2.7 Ligation of genomic DNA with adaptors .. 48
2.8 PCR methods ... 48
 2.8.1. Primary PCR .. 48
 2.8.2. Secondary PCR ... 50
2.9 RT-PCR assay ... 50
 2.9.1. RNA isolation .. 50
 2.9.2. Reverse transcriptase synthesis of cDNA 51
 2.9.3. PCR amplification of cDNA ... 51
2.10 DNA cloning procedures ... 52
 2.10.1. Electrophoresis of DNA ... 52
 2.10.2. DNA recovery from agarose gels ... 52
 2.10.3. Precipitation of DNA ... 53
 2.10.4. DNA quantification ... 53
 2.10.5. DNA ligation with the T-vector system 54
 2.10.6. Transformation of E.coli competent cells 54
 2.10.6.1 Preparation of competent cells 54
 2.10.6.2 Transformation using the heat shock method 56
 2.10.7. Selection of transformants ... 56
 2.10.8. Isolation of plasmids .. 56
 2.10.8.1 Alkaline lysis miniprep method 56
 2.10.8.2 Column miniprep method ... 57
 2.10.9. Restriction digestion of plasmid DNA 58
 2.10.10. DNA sequencing procedures ... 58
 2.10.10.1 PCR of terminator dye reaction 58
 2.10.10.2 Precipitation of terminator DNA and automated DNA sequencing 59
2.11 Plant transformation and growth ... 59
 2.11.1 Construction of binary transformation vectors 59
 2.11.1.1 Modification of binary vector system 59
 2.11.1.2 Modification of promoter sequences by the PCR method 60
 2.11.2 Ligation of promoters and binary vectors 63
 2.11.3 Transformation of competent cells of Agrobacterium tumefaciens 64
 2.11.4 Confirmation of the binary vector transformation 64
 2.11.5 Transformation of tobacco procedures 65
 2.11.5.1 Tobacco plant material .. 65
 2.11.5.2 Tobacco transformation methods 65
 2.11.5.3 Regeneration and growth of transgenic tobacco plants 67
 2.11.6 Transformation of white clover ... 69
 2.11.6.1 White clover plant material ... 69
Chapter 3 Results ... 85

3.1 Isolation of TR-ACO promoter sequences 85

3.1.1 TR-ACO1 promoter isolation 85

3.1.1.1 Amplification of the TR-ACO1 promoter using Genome Walker™
PCR ... 85

3.1.1.2 Screening of putative TR-ACO1 promoter inserts in p-GEM vector 85

3.1.1.3 Sequencing of the putative TR-ACO1 promoter 87

3.1.1.4 Confirmation of putative TR-ACO1 promoter sequence 87

3.1.1.4.1 TR-ACO1 promoter sequence analysis using BLAST-n 87

3.1.1.4.2 GCG analysis of the TR-ACO1 sequence 91

3.1.2 TR-ACO2 promoter isolation 91

3.1.2.1 Amplification of the TR-ACO2 promoter using Genome Walker™
PCR ... 91

3.1.2.2 Screening of the TR-ACO2 promoter inserts in E.coli 91

3.1.2.3 Sequencing of the putative TR-ACO2 promoter 95
3.1.2.4 Confirmation of putative TR-ACO2 promoter sequence 95
 3.1.2.4.1 TR-ACO2 sequence analysis using BLAST-n 95
 3.1.2.4.2 GCG analysis of the TR-ACO2 promoter sequence 98
3.1.3 TR-ACO3 promoter isolation ... 98
 3.1.3.1 Amplification of the TR-ACO3 promoter using Genome Walker™ PCR .. 98
 3.1.3.2 Screening of the TR-ACO3 promoter inserts in E.coli 98
 3.1.3.3 Sequencing of the putative TR-ACO3 promoters 102
 3.1.3.4 PCR extension of the TR-ACO3 promoters 102
 3.1.3.5 Confirmation of the putative TR-ACO3 promoter sequences 102
 3.1.3.5.1 TR-ACO3-J and TR-ACO3-2 sequence analysis using BLAST-n 108
 3.1.3.5.2 GCG analysis of the TR-ACO3-J (1566 bp) and the TR-ACO3-2 (1654 bp) promoter sequences 108
3.1.4 Confirmation of promoter sequences using Southern analysis 111
3.1.5 Genomic sequence isolation to characterise the TR-ACO gene family 113
 3.1.5.1 Isolation of the TR-ACO1 genomic sequence 113
 3.1.5.2 Isolation of the TR-ACO2 genomic sequence 113
 3.1.5.3 Isolation of the TR-ACO3-J genomic sequence 118
 3.1.5.4 Isolation of the TR-ACO3-2 genomic sequence 118
3.1.6 Comparison of the genome structure and identity of the TR-ACO gene family ... 118
3.2 Bioinformatic analysis of the TR-ACO1, TR-ACO2, TR-ACO3-J, and TR-ACO3-2 promoters ... 123
 3.2.1 Analysis of potential regulatory binding sites 123
 3.2.1.1 Identification of transcription factor binding domains in the TR-ACO1 promoter ... 124
 3.2.1.2 Identification of transcription factor binding domains in the TR-ACO2 promoter ... 124
 3.2.1.3 Identification of transcription factor binding domains in the TR-ACO3 promoter ... 126
 3.2.1.4 Identification of transcription factor binding domains in the TR-ACO4 promoter ... 126
 3.2.1.5 Comparison of the transcription factor binding domains in the TR-ACO promoters ... 130
3.3 Analysis of the TR-ACO1, TR-ACO2, TR-ACO3, and TR-ACO4 promoter activity in vivo ... 132
 3.3.1 Construction of the plant transformation vectors 132
3.3.1.1 Vector modification and isolation..132
3.3.1.2 Isolation of promoter sequences using PCR.................................132
3.3.1.3 Transformation of E.coli with the plant transformation vectors........134
3.3.1.4 Transformation of pRD-410 into Agrobacterium tumefaciens........134
3.3.2 Analysis of GUS expression in transgenic tobacco.......................140
3.3.2.1 Southern blot analysis..140
3.3.2.2 Primary GUS staining pattern in the pTR-ACO1::GUS transformed tobacco plants..144
3.3.2.3 Primary GUS staining pattern in the pTR-ACO2::GUS transformed tobacco plants..148
3.3.2.4 Primary GUS staining pattern in the pTR-ACO3::GUS transformed tobacco plants..150
3.3.2.5 Primary GUS staining pattern in the pTR-ACO4::GUS transformed tobacco plants..154
3.3.2.6 Changes in total chlorophyll concentration during leaf ontogeny in tobacco..156
3.3.3 Analysis of GUS expression in transgenic white clover..................158
3.3.3.1 Southern blot analysis..158
3.3.3.2 Changes in chlorophyll concentration during leaf ontogeny in white clover..162
3.3.3.3 Primary GUS staining patterns in the pTR-ACO1::GUS transformed white clover plants..162
3.3.3.4 Primary GUS staining patterns in the pTR-ACO2::GUS transformed white clover plants..167
3.3.3.5 Primary GUS staining patterns in the pTR-ACO3::GUS transformed white clover plants..169
3.3.3.6 Primary GUS staining patterns in the pTR-ACO4::GUS transformed white clover plants..172
3.3.3.7 Cellular expression pattern of GUS staining in white clover transformed with the pTR-ACO1::GUS construct.................................174
3.3.3.8 Cellular expression pattern of GUS staining white clover transformed with the pTR-ACO2::GUS construct.................................177
3.3.3.9 Cellular expression pattern of GUS staining white clover transformed with the pTR-ACO3::GUS construct.................................181
3.3.3.10 Cellular expression pattern of GUS staining white clover transformed with the pTR-ACO4::GUS construct.................................181
3.3.4 In situ hybridization studies of TR-ACO expression in white clover......186
3.3.4.1 Cellular expression pattern of TR-ACO1..................................186
3.3.4.2 Cellular expression pattern of TR-ACO3

Chapter 4 Discussion ..193

4.1 Isolation of promoter sequences ..193
 4.1.1. Determination of criteria for promoter selection ..193
 4.1.2. Frequency of panhandle structures ..194
4.2 Confirmation of isolated sequences as TR-ACO promoters195
 4.2.1. Overlapping sequences ..195
 4.2.2. Confirmation by Southern analysis ..199
4.3 Gene structure of the TR-ACO genes ..200
 4.3.1. Occurrence of exons and introns ..200
4.4 Expression analysis of the TR-ACO promoters ...201
 4.4.1. Bioinformatic analysis ..201
 4.4.2. Trends of pTR-ACO-directed expression established using TFBD analysis202
 4.4.3. TR-ACO gene expression and the distribution of TFBD classes in each
 5' flanking sequence ...203
 4.4.4. TFBD analysis in other ACO promoter sequences ...205
 4.4.5. Strategies to test the function of the TFBDs ..207
4.5 Analysis of TR-ACO promoter-directed expression using GUS reporter
 transcripted fusions ..208
 4.5.1. Transgenic tobacco as the genetic background ...208
 4.5.2. Transgenic white clover as the genetic background ..212
 4.5.3. Assessment of the consistency of the GUS staining pattern218
4.6 Summary and concluding remarks ..220

References ..225
List of Figures

Figure 1.1 The ethylene biosynthetic pathway ... 5
Figure 1.2 Model of the ethylene signalling pathway in Arabidopsis 22
Figure 2.1 White clover plant material and tissue structures 44
Figure 2.2 Sequence of the adaptor and the primers for promoter isolation using the Genome Walker™ method .. 49
Figure 2.3 Diagram of the pGEM-T-Easy vector used for T-A-cloning PCR generated sequences .. 55
Figure 2.4 Diagrammatic representation of the pRD-410 vector used for Agrobacterium transformation ... 61
Figure 2.5 Sequence of the primers used in cloning the TR-ACO promoter sequences, as indicated, into the pRD-410 vector ... 62
Figure 2.6 Sequence of the primers used in confirming the TR-ACO promoter sequences, as indicated, cloned into the pRD-410 vector 66
Figure 2.7 Sequences, as indicated, of the probes used in Southern blot analysis 72
Figure 2.8 Sequence of the probe used in Southern blot analysis for distinguishing between TR-ACO3 and TR-ACO4 genes .. 73
Figure 2.9 Sequence of the probe used in Southern blot analysis for genome copy number confirmation in transgenic plants ... 73
Figure 2.10 Sequences, as indicated, of the probes used in in-situ hybridization analysis for TR-ACO1 and TR-ACO3 .. 78
Figure 3.1.1 TR-ACO1 promoter isolation using PCR .. 86
Figure 3.1.2 Restriction enzyme digestion screening of p-GEM plasmids containing putative TR-ACO1 promoter inserts in E. coli cells 88
Figure 3.1.3 Sequence of the putative TR-ACO1 promoter from the L1 digestion library .. 89
Figure 3.1.4 Results from NCBI database BLAST-n analysis of the putative TR-ACO1 sequence .. 90
Figure 3.1.5 Structure of the 3' region of the 1440 bp pTR-ACO1 sequence 92
Figure 3.1.6 TR-ACO2 promoter isolation using PCR .. 93
Figure 3.1.7 Restriction enzyme digestion screening of p-GEM plasmids containing putative TR-ACO2 promoter inserts in E. coli cells 94
Figure 3.1.8 Sequence of the putative TR-ACO2 promoter from the L1 digestion library .. 96
Figure 3.1.9 Results from NCBI database BLAST-n analysis of the putative
Figure 3.1.10 Structure of the 3' region of the 1750 bp pTR-AC02 sequence ... 97
Figure 3.1.11 TR-AC03 promoter isolation using PCR ... 100
Figure 3.1.12 Restriction enzyme digestion screening of p-GEM plasmids containing putative TR-AC03 promoter inserts in E. coli cells ... 101
Figure 3.1.13 Sequence of the putative TR-AC03-1 promoter from the L3 digestion library .. 103
Figure 3.1.14 Sequence of the putative TR-AC03-2 promoter from the L3 digestion library .. 104
Figure 3.1.15 TR-AC03-2 promoter extending isolation using PCR ... 105
Figure 3.1.16 Restriction enzyme digestion screening of p-GEM plasmids containing putative TR-AC03-2 extension promoter inserts in E. coli cells ... 106
Figure 3.1.17 Sequence of the putative TR-AC03-2 extension from the L6 digestion library .. 107
Figure 3.1.18 Results from NCBI database BLAST-n analysis of the putative TR-AC03-1 and TR-AC03-2 sequences .. 109
Figure 3.1.19 Structure of the 3' region of the TR-AC03-1 and the TR-AC03-2 sequences .. 110
Figure 3.1.20 The 5' end coding sequence alignment of the TR-AC03-1 and the TR-AC03-2 with selected other species .. 112
Figure 3.1.21 Southern blot analysis of TR-AC0 genes ... 114
Figure 3.1.22 TR-AC0 genomic sequence isolation using PCR ... 115
Figure 3.1.23 Structure of TR-AC01 genomic sequence (2225 bp) .. 116
Figure 3.1.24 Structure of TR-AC02 genomic sequence (1660 bp) .. 117
Figure 3.1.25 Structure of TR-AC03-1 genomic sequence (1676 bp) .. 119
Figure 3.1.26 Structure of TR-AC03-2 genomic sequence (1678 bp) .. 120
Figure 3.1.27 Gene structure of TR-AC01, TR-AC02, TR-AC03 and TR-AC04 .. 121
Figure 3.2.1 Identification of putative transcription factor binding domains in the TR-AC01 promoter sequence .. 126
Figure 3.2.2 Identification of putative transcription factor binding domains in the TR-AC02 promoter sequence .. 127
Figure 3.2.3 Identification of putative transcription factor binding domains in the TR-AC03 promoter sequence .. 129
Figure 3.2.4 Identification of putative transcription factor binding domains in the TR-AC04 promoter sequence .. 130
Figure 3.2.5 Comparison of the number of transcription factor binding domains in each class for each of the TR-AC0 promoter sequences ... 131
Figure 3.3.1 Restriction digestion of the p-RD410 vector ... 133
Figure 3.3.2 Isolation of promoter sequences using PCR ... 135
Figure 3.3.3 Screening of p-RD410 plasmids with putative TR-ACO promoter inserts using restriction enzyme digestion .. 136
Figure 3.3.4 PCR screening and confirmation of the pTR-ACO1::GUS transformation into Agrobacterium cells ... 138
Figure 3.3.5 Restriction enzyme digestion screening and confirmation using PCR, of pTR-ACO2::GUS transformation into Agrobacterium cells ... 139
Figure 3.3.6 PCR screening and confirmation of the pTR-ACO3::GUS transformation into Agrobacterium cells ... 141
Figure 3.3.7 Restriction enzyme digestion screening and confirmation using PCR, of pTR-ACO4::GUS transformation into Agrobacterium cells ... 142
Figure 3.3.8 Screening, using Southern analysis, of putative pTR-ACO1::GUS transgenic tobacco plant lines .. 143
Figure 3.3.9 Screening, using Southern analysis, of putative pTR-ACO2::GUS transgenic tobacco plant lines .. 145
Figure 3.3.10 Screening, using Southern analysis, of putative pTR-ACO3::GUS transgenic tobacco plant lines .. 146
Figure 3.3.11 Screening, using Southern analysis, of putative pTR-ACO4::GUS transgenic tobacco plant lines .. 147
Figure 3.3.12 GUS staining analysis of leaf tissues excised from pTR-ACO1::GUS transformed tobacco lines .. 149
Figure 3.3.13 GUS staining analysis of leaf tissues excised from pTR-ACO2::GUS transformed tobacco lines .. 151
Figure 3.3.14 GUS staining analysis of leaf tissues excised from pTR-ACO3::GUS transformed tobacco lines .. 153
Figure 3.3.15 GUS staining analysis of leaf tissues excised from pTR-ACO4::GUS transformed tobacco lines .. 155
Figure 3.3.16 Changes in total chlorophyll concentration during leaf ontogeny in tobacco ... 157
Figure 3.3.17 Screening, by Southern analysis, of transgenic white clover transformed with the pTR-ACO1::GUS construct .. 159
Figure 3.3.18 Screening, by Southern analysis, of transgenic white clover transformed with the pTR-ACO2::GUS construct .. 160
Figure 3.3.19 Screening, Southern analysis, of transgenic white clover transformed with the pTR-ACO3::GUS construct .. 161
Figure 3.3.20 Screening, by Southern analysis, of transgenic white clover transformed with the pTR-ACO4::GUS construct .. 163
Figure 3.3.21 Changes in total chlorophyll concentration during leaf ontogeny in white
clover .. 164

Figure 3.3.22 GUS staining analysis of three lines of white clover transformed with the pTR-ACOl::GUS construct .. 166

Figure 3.3.23 GUS staining analysis of three lines of white clover transformed with the pTR-ACO2::GUS construct .. 168

Figure 3.3.24 GUS staining analysis of three lines of white clover transformed with the pTR-ACO3::GUS construct .. 170

Figure 3.3.25 GUS staining analysis of three lines of white clover transformed with the pTR-ACO4::GUS construct .. 173

Figure 3.3.26 GUS-staining of selected tissues of pTR-ACOl::GUS transformed white clover .. 175

Figure 3.3.27 GUS-staining of selected tissues of pTR-ACO2::GUS transformed white clover .. 179

Figure 3.3.28 GUS-staining of selected tissues of pTR-ACO3::GUS transformed white clover .. 182

Figure 3.3.29 GUS-staining of selected tissues of pTR-ACO4::GUS transformed white clover .. 184

Figure 3.3.30 In situ hybridization analysis of white clover tissues by 3'-UTR specific probe of TR-ACOl .. 187

Figure 3.3.31 In situ hybridization analysis of white clover tissues by 3'-UTR specific probe of TR-ACO3 .. 190
List of Tables

Table 2.1 Murashige and Skoog (MS) basal salt mixture .. 68
Table 3.1.1 Identity of intron and exon sequences among TR-ACO1, TR-ACO2, TR-ACO3 and TR-ACO4 .. 122
Table 3.3.1 Numbers of sections examined by GUS staining, and consistency of staining of transgenic white clover lines .. 178
List of Abbreviations

Absorbance at 280 nm
ABA Abscisic acid
ACC 1-aminocyclopropane-1-carboxylic acid
ACO ACC oxidase
ACS ACC synthase
AdoMet S-adenosyl-L-methionine
AEC 1-amino-2-ethyl-cyclopropane-1-carboxylate
AM Apical meristem
Amp100 Ampicillin (100 mg/ml)
APS Ammonium persulfate
ATP Adenosine-5'-triphosphate
AVG Aminoethoxyvinylglycine
BCIP 5-bromo-4-chloro-3-indoyl phosphate
bp Base pair
BSA Bovine serum albumin
°C Degrees celsius
ca Approximately
CaMV Cauliflower mosaic virus
Cef100 Cefotaxime (100 mg/ml)
CTR Constitutive triple response
CNBr Cyanogen bromide
DEA Diethanolamide
DEAE Diethylaminoethyl
DEPC Diethyl pyrocarbonate
DMF Dimethylformamide
DMSO Dimethyl sulphoxide
DNA Deoxyribonucleic acid
DPX Dibutyl phthalate xylene
DTT Dithiothreitol
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term/Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EFE</td>
<td>Ethylene forming enzyme</td>
</tr>
<tr>
<td>EIN</td>
<td>Ethylene insensitive</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EMS</td>
<td>Ethylmethane sulfonate</td>
</tr>
<tr>
<td>ETR</td>
<td>Ethylene triple response</td>
</tr>
<tr>
<td>FPLC</td>
<td>Fast protein liquid chromatography</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (9.8 m/s²)</td>
</tr>
<tr>
<td>GACC</td>
<td>1-(gamma-L-glutamylamino) cyclopropane-1-carboxylate</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GUS</td>
<td>E. coli β-glucuronidase</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HIC</td>
<td>Hydrophobic interaction chromatography</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole-3-acetic acid</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>Kan¹⁰⁰</td>
<td>Kanamycin (100 mg/ml)</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilo basepair</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo daltons</td>
</tr>
<tr>
<td>K_M</td>
<td>Substrate concentration at half maximum reaction rate</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>Log</td>
<td>Logarithm</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani (media or broth)</td>
</tr>
<tr>
<td>M</td>
<td>Molar, moles per litre</td>
</tr>
<tr>
<td>MACC</td>
<td>1-(malonylamino) cyclopropane-1-carboxylate</td>
</tr>
<tr>
<td>MADS</td>
<td>The conserved domain of MCM1, AGAMOUS, DEFICIENS and SRF</td>
</tr>
<tr>
<td>1-MCP</td>
<td>1-methylocyclopropene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>Milli-Q water</td>
<td>Water purified by a Milli-purification system</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>Mr</td>
<td>Relative molecular mass (g/mol)</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog base media</td>
</tr>
<tr>
<td>n</td>
<td>Number of replicates</td>
</tr>
<tr>
<td>NAA</td>
<td>1-naphthaleneacetic acid</td>
</tr>
<tr>
<td>NaOAc</td>
<td>Sodium acetate</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitrotetrazolium blue chloride</td>
</tr>
<tr>
<td>NCBI</td>
<td>National center for biotechnology information</td>
</tr>
<tr>
<td>nl</td>
<td>Nanolitre</td>
</tr>
<tr>
<td>nmol</td>
<td>Nanomole</td>
</tr>
<tr>
<td>NPT II</td>
<td>Neomycin phosphotransferase II</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBSalt</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Pers. comm.</td>
<td>Personal communication</td>
</tr>
<tr>
<td>pH</td>
<td>-Log [H⁺]</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene difluoride</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse osmosis</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase-dependent PCR</td>
</tr>
<tr>
<td>SAG</td>
<td>Senescence associated gene</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl-L-methionine</td>
</tr>
<tr>
<td>SAM</td>
<td>Shoot apical meristem</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>S.E.</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>TBA</td>
<td>Tertiary butyl alcohol</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TFBD</td>
<td>Transcription factors binding domain</td>
</tr>
<tr>
<td>T<sub>m</sub></td>
<td>PCR anneal temperature</td>
</tr>
<tr>
<td>TR-ACO</td>
<td>Trifolium repens-ACC oxidase</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethylcine</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>µl</td>
<td>Microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet light</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>V/V</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>WT</td>
<td>Wild type</td>
</tr>
<tr>
<td>W/V</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>W/W</td>
<td>Weight per weight</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside</td>
</tr>
<tr>
<td>X-Gluc</td>
<td>5-Bromo-4-chloro-3-indolyl β-D-glucuronide cyclohexylamine salt</td>
</tr>
</tbody>
</table>