Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Designing Sustainable Distributed Generation Systems for Rural Communities

An Application of Optimisation Modelling and Decision Analysis to include Sustainability Concepts and Uncertainty into Design Optimality

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Agricultural Engineering (Renewable Energy) at Massey University, Palmerston North, New Zealand.

Phillip Edward Murray
2005
Abstract

The deregulation of the electricity supply industry in New Zealand has led to an increased level of interest in the security of electricity supply to rural communities. This in turn has led to questions about sustainable alternatives to conventional methods of electricity supply. A solution may be the adoption of sustainable community sized renewable energy (RE) based distributed generation systems. However, choosing between the myriad of possibilities requires much data and analysis.

An accurate analysis of electricity load and RE resource matching is normally required. In most cases, this is an expensive and time-consuming assessment. In order to minimise these costs, and yet give due consideration to stakeholder preferences and technical uncertainty, a process incorporating the economic, social, environmental, and technical aspects of sustainable design in a relatively short timeframe will be required.

This study developed such a method through the integrated use of the wind atlas assessment and analysis program (WAsP), the micropower optimisation model (HOMER), and three methods of decision analysis using Logical Decisions for Windows (LDW) software, which formed the decision analysis framework, SPIRAL (Sustainable Power in Rural Areas and Locations).

The efficacy of the integrated use of the software in the SPIRAL framework was tested through two analyses using electricity load and RE resource data from a case study site. The first was an analysis using a full-year of data in a multi-method decision analysis process thus setting the framework in place. A further analysis then tested the minimum monitoring time required to obtain and analyse the data for modelling meaningful results.

In both analyses, the results were ranked based on stakeholder preferences between the economic, social, environmental, and technical aspects of sustainable energy systems. The clear representation of the uncertainty of the electricity loads and the RE resources was paramount in the results. The short-term analysis results differed in small ways from the full-term, but were essentially similar.

This study developed a decision analysis framework that delivered transparent results in a manner likely to instil insight and confidence in them, and this would provide the decision-maker with much valuable information on which to base their decision.
Acknowledgements

Sir Isaac Newton said "If I have seen further, it is by standing on the shoulders of giants". It is in this same light that I would like to acknowledge the ever ready and willing assistance I received throughout this research and without which, it would not have been as rewarding, fun or as good as it has been. Therefore, my first thanks must go to my research supervisors – Professor Ralph Sims and Dr John Holland – as much for the benefit of their advice and patience, as for their friendship. My life lately has revolved around some of their decisions, knowledge, and wit. I have enjoyed it very much and am a better person for it.

A large portion of my time was in the field gathering data and so I would like to offer special thanks to the residents of Totara Valley, Mike & Prue, Mike, Geoff & Marion, Nick & Jan, and Craig & Pauline; the management and staff of Limestone Downs – Warwick, Alf & Carol, Don, Steve, James and the rest of the crew; the valuable technical assistance from the very able staff at the Institute of Technology and Engineering workshop, Leo, Russell, and Don. Mr Mark Wenborn, Dr Iain Sanders, and Mr Alister Gardner of IRL were also of immense help. The help and advice from Joan, Roanna, Gayle, Trish and Lisa over the years has made my academic life more productive and satisfying and has been much appreciated.

Advice, information and encouragement was received gratefully from: Mr George Horvath, who asked the question that set in motion the curiosity that led to this study; Mr Mark Carter and Mr Laurence Sherriff for their technical advice and encouragement; Dr Steve Reid (NIWA) for the benefit of his extensive knowledge of the wind and modelling it; Dr Tony Bowen (Canterbury University) for his time and advice given on WASP; and Dr Peter Lilienthal and Mr Tom Lambert (NREL) for their time and energy in tutoring me on the many and varied idiosyncrasies of HOMER. Special thanks to Dr Martin Sullivan for encouragement and friendship, and to the research assistants – Geraldine, Rachael, John, Andrew, and Nihal. To those I have missed or inadvertently omitted, I thank you.

This research would not have been feasible without financial assistance and I hope I have given value for money. Assistance was gratefully received from: Meritec Limited (Jim Fletcher Memorial Scholarship); C. Alma Baker Trust, CentralPower Energy Trust, The Turanga Trust, Massey University for the Massey Doctoral Scholarship; and finally the consortia of electricity distributors – PowerCo, Transpower, Central Hawke Bay Networks, WEL Energy, Mainpower, CentralPower Energy Trust, and Dunedin Lines.

This has been a period of much change and growth for me and at times, it has been hard work and tough for those around me too. Therefore, very special thanks go to my mother and family for their encouragement and support, and my wife Bobbi, who has been there through the good times as well as the difficult times. Lastly, I have thought a lot about my late father while finishing this study, and how his pride and approval would have been expressed in a firm handshake and a comment about the time it took me.

It has taken a quite a while, and it has been done with the help, guidance, and support from many people, for which I am sincerely grateful, thank you.
Designing Sustainable Distributed Generation Systems for Rural Communities

List of Contents

Abstract i
Acknowledgements ii
List of Contents iii
List of Figures viii
List of Tables xvii
List of Equations xix

1 Introduction
1.1 Problem Statement 1
1.2 Aim 2
1.3 Objectives 2
1.4 The Decision Analysis Framework 3
1.5 Limitations of Research 5
1.6 Thesis Structure 6

Part one: the framework design

2 Review of the Literature 9
2.1 New Zealand Rural Communities Defined 9
2.2 The Background to the Current Electricity Industry Situation 16
2.3 Distributed Generation 17
2.4 Renewable Energy System Design Problems 19
2.5 Electricity Load Profiles 21
2.6 Decision Analysis 24
2.6.1 Decision Analysis in the Electricity Industry 28
2.7 Summary 31

3 Review and Selection of Modelling Software 32
3.1 Wind Resource Modelling Software 32
3.1.1 WAstP 34
3.1.2 Known Limitations of WAstP 34
3.1.3 WindScape Raptor 35
3.1.4 Wind Software Chosen 36
3.2 Distributed Generation Simulation and Optimisation Software 37
3.3 Multiple Criteria Decision Analysis Software 37
3.3.1 Decision Analysis Software Chosen 40
3.4 Summary 40

4 The Decision Analysis Framework – SPIRAL 41
4.1 Preliminary Project Short-Term Duration Analysis 41
4.2 Short-Term Duration – Data Requirements and Sources 44
4.2.1 WAstP – Wind Data 44
4.2.2 HOMER – Electricity Load and Resource Data 44
4.3 Electricity Load Profile Data 44
4.4 Wind Resource Data 45
4.5 Hydrological Data 48
4.6 Solar Data 49
4.7 Summary 50

5 The Totara Valley Case Study Site 51
5.1 Totara Valley – A Rural Community 12
5.2 Monitored Electricity Load Sites 51
5.3 Monitored Renewable Energy Resource Sites 53
5.4 Summary 54

Part two: the data collection

6 Totara Valley Community Electricity Load Profiles 57
6.1 Community Demographic Details 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Research Method</td>
<td>59</td>
</tr>
<tr>
<td>6.2.1 Load metering Details</td>
<td>59</td>
</tr>
<tr>
<td>6.3 Results of the Electricity Load Monitoring</td>
<td>61</td>
</tr>
<tr>
<td>6.3.1 Monitored Electricity Load Profiles</td>
<td>62</td>
</tr>
<tr>
<td>6.3.2 Collated Electricity Load Profiles for HOMER</td>
<td>65</td>
</tr>
<tr>
<td>6.3.3 Short-Term Duration Analysis – Electricity Load Profile Modelling</td>
<td>67</td>
</tr>
<tr>
<td>Mean Daily Load Profiles</td>
<td>67</td>
</tr>
<tr>
<td>Mean Daily Load</td>
<td>68</td>
</tr>
<tr>
<td>'Noise' Calculations</td>
<td>68</td>
</tr>
<tr>
<td>6.4 Discussion</td>
<td>70</td>
</tr>
<tr>
<td>6.5 Summary</td>
<td>73</td>
</tr>
<tr>
<td>7 Totara Valley Renewable Energy Resources</td>
<td>74</td>
</tr>
<tr>
<td>7.1 Research Methods</td>
<td>74</td>
</tr>
<tr>
<td>7.1.1 Wind Energy Resource Monitoring Method</td>
<td>74</td>
</tr>
<tr>
<td>7.1.2 Hydrological Energy Monitoring Method</td>
<td>77</td>
</tr>
<tr>
<td>7.1.3 Solar Energy Monitoring Method</td>
<td>79</td>
</tr>
<tr>
<td>7.2 Results of the Renewable Energy Resource Monitoring</td>
<td>79</td>
</tr>
<tr>
<td>7.2.1 The Wind Energy Resource</td>
<td>79</td>
</tr>
<tr>
<td>Wind Site 1</td>
<td>79</td>
</tr>
<tr>
<td>Wind Site 2</td>
<td>85</td>
</tr>
<tr>
<td>Wind Site 3</td>
<td>86</td>
</tr>
<tr>
<td>Wind Site 4</td>
<td>87</td>
</tr>
<tr>
<td>Wind Site 5</td>
<td>88</td>
</tr>
<tr>
<td>7.2.2 Wind Site Comparison Wind Rose</td>
<td>91</td>
</tr>
<tr>
<td>7.2.3 Wind Site Monitoring Time-Line</td>
<td>93</td>
</tr>
<tr>
<td>7.2.4 NIWA Data</td>
<td>93</td>
</tr>
<tr>
<td>7.2.5 The Hydrological Energy Resources</td>
<td>95</td>
</tr>
<tr>
<td>Hydro Site 1</td>
<td>95</td>
</tr>
<tr>
<td>Hydro Site 2</td>
<td>96</td>
</tr>
<tr>
<td>Hydro Site 3</td>
<td>97</td>
</tr>
<tr>
<td>7.2.6 The Solar Energy Resource</td>
<td>98</td>
</tr>
<tr>
<td>7.2.7 Short-Term Duration Analysis – Renewable Energy Resources</td>
<td>103</td>
</tr>
<tr>
<td>Wind Energy Resource Data</td>
<td>103</td>
</tr>
<tr>
<td>Solar Energy Resource Data</td>
<td>106</td>
</tr>
<tr>
<td>7.3 Discussion</td>
<td>107</td>
</tr>
<tr>
<td>7.3.1 The Wind Energy Resource</td>
<td>107</td>
</tr>
<tr>
<td>7.3.2 The Hydrological Resources</td>
<td>108</td>
</tr>
<tr>
<td>7.3.3 The Solar Resource</td>
<td>109</td>
</tr>
<tr>
<td>7.4 Summary</td>
<td>109</td>
</tr>
<tr>
<td>Part three: the framework applied</td>
<td></td>
</tr>
<tr>
<td>8 Wind Energy Resource Modelling</td>
<td>113</td>
</tr>
<tr>
<td>8.1 Applications of WASP</td>
<td>113</td>
</tr>
<tr>
<td>8.2 Modelling with WASP in the SPIRAL Framework</td>
<td>114</td>
</tr>
<tr>
<td>8.2.1 Reference Site Analysis</td>
<td>115</td>
</tr>
<tr>
<td>Ruggedness Index Analysis</td>
<td>116</td>
</tr>
<tr>
<td>Correlation and Regression Analysis</td>
<td>117</td>
</tr>
<tr>
<td>The Predictor Site</td>
<td>118</td>
</tr>
<tr>
<td>8.2.2 Setting the WASP Wind Climate Prediction Parameters</td>
<td>118</td>
</tr>
<tr>
<td>8.3 Results</td>
<td>119</td>
</tr>
<tr>
<td>8.3.1 Observed and Modelled Data</td>
<td>119</td>
</tr>
<tr>
<td>8.3.2 Totara Valley Wind Atlases</td>
<td>123</td>
</tr>
<tr>
<td>8.3.3 Ruggedness Index Number – Prediction Error Analysis</td>
<td>125</td>
</tr>
<tr>
<td>8.3.4 Short-Term Duration Analysis – WASP Modelling</td>
<td>125</td>
</tr>
<tr>
<td>8.4 Discussion</td>
<td>126</td>
</tr>
<tr>
<td>8.5 Summary</td>
<td>128</td>
</tr>
<tr>
<td>9 Distributed Generation System Modelling</td>
<td>129</td>
</tr>
<tr>
<td>9.1 HOMER – The Method of Simulation and Optimisation</td>
<td>129</td>
</tr>
<tr>
<td>9.1.1 HOMER within the SPIRAL Modelling Procedure</td>
<td>129</td>
</tr>
<tr>
<td>9.1.2 Full-Term Duration – Settings and Inputs</td>
<td>131</td>
</tr>
<tr>
<td>Sensitivity Values</td>
<td>132</td>
</tr>
</tbody>
</table>
Part five: the appendices

Appendix A

13 Renewable Energy Related Legislation 227
 13.1 Electricity Act 1992 227
 Section 62 – Continuance of Supply 227
 13.2 Electricity Industry Reform Amendment Act 2004 228
 Section 3 – Purpose of this Part 228
 Section 5 – Meaning of electricity supply business 228
 13.3 Energy Efficiency and Conservation Act 2000 228
 Section 5 – Purpose 228
 Section 6 – Sustainability principles 228
 13.4 Resource Management Act 1991 228
 Section 5 – Purpose 228
 13.5 Resource Management (Energy & Climate Change) Amendment Act 2004 229
 Section 3 – Purpose 229
 Section 4 – Interpretation 229

Appendix B

14 Wind Energy Resource Modelling 230
 14.1 WASP Error Calculations 230
 14.2 Initial Wind Atlas from Wind Site 1 232
 14.3 WASP Inversion level Setting 233
 14.4 Ruggedness Index Error Analysis 234

Appendix C

15 Multiple Criteria Decision Analysis 235
 15.1 Decision Analysis Software 235
 15.2 Sensitivity Analysis Results 238
 15.2.1 Full-Term Duration 238
 15.2.2 Short-Term Duration 241

Appendix D

16 The Limestone Downs Case Study Site 245
 16.1 The Electricity Load at the Limestone Downs Shearing Shed 246
 16.1.1 The Sheep Shearing Electricity Load 246
 16.1.2 The Sheep Shearing Load Model 248
 16.1.3 The Sheep Crutching Electricity Load 250
 16.2 Limestone Downs Renewable Energy Resource Assessment 253
 16.2.1 Wind Energy Resource Data 253
 16.2.2 Solar Energy Resource Data 256

Appendix E

17 Aerial Photograph of Totara Valley 258

Appendix F

18 Electricity Load Profile Data 259
 18.1 Electricity Load Profiles – Totara Valley Community 259
 18.1.1 Community Domestic Load Profile Only 260
 18.1.2 Community Water Heating Load Profile Only 262
 18.1.3 Community Farm Load Profile Only 264
 18.2 Electricity Load Profiles – Individual Sites 266
 18.2.1 Site 1 – Electricity Load Profiles 268
 Site 1 Domestic and Water Heating Load Profiles 268
 Site 1 Domestic Load Profile Only 270
 Site 1 Water Heating Load Profile Only 272
 18.2.2 Site 2 – Electricity Load Profiles 274
 Site 2 Domestic and Water Heating Load Profiles 274
 Site 2 Domestic Load Profile Only 276
 Site 2 Water Heating Load Profile 278
 18.2.3 Site 3 – Electricity Load Profiles 280
 Site 3 Domestic and Water Heating Load Profiles 280
 Site 3 Domestic Load Profile Only 282
 Site 3 Water Heating Load Profile Only 284
18.2.4 Site 4 – Electricity Load Profiles
Site 4 Domestic, Water Heating and Workshop Load Profiles
Site 4 Domestic Load Profile Only
Site 4 Water Heating Load Profile Only
Site 4 Workshop Load Profile Only
18.2.5 Site 5 – Electricity Load Profiles
Site 5 Domestic and Water Heating Load Profiles
Site 5 Domestic Load Profile Only
Site 5 Water Heating Load Profile Only
18.2.6 Site 6 – Electricity Load Profiles
Site 6 Domestic and Water Heating Load Profiles
Site 6 Domestic Load Profile Only
Site 6 Water Heating Load Profile Only
18.2.7 Site 7 – Electricity Load Profiles
Site 7 Shearing Shed and Freezer Shed Load Profiles
Site 7 Shearing Shed Load Profile Only
Site 7 Freezer Shed Load Profile Only
18.2.8 Site 8 – Electricity Load Profiles
Site 8 Shearing Shed and Freezer Shed Load Profiles
Site 8 Shearing Shed Load Profile Only
Site 8 Freezer Shed Load Profile Only
18.2.9 Metering Problems
18.3 Short-Term Duration Analysis – Electricity Loads
18.3.1 Daily and Hourly Load Statistics
18.3.2 Cumulative Annual Mean Electricity Loads Analysis
18.3.3 Cumulative Hourly Electricity Load Standard Deviation Analysis

Appendix
19 Renewable Energy Resource Data
19.1 Hydrological Resource Data
19.1.1 Hydro Site 1 – Farm 1
19.1.2 Hydro Site 2 – Farm 3
19.1.3 Hydro Site 3 – Farm 3
19.2 Ambient Air Temperature
19.3 Short-term Duration Analysis – Wind Energy Resources
19.3.1 Weibull Probability Density Functions
19.3.2 Diurnal Pattern Strength Factor
19.3.3 Hour of Peak Wind-speed

20 References
21 Bibliography
22 Index
List of Figures

Figure 1.1 An initial schematic diagram of the overall decision analysis framework to be further developed in this study. 4

Figure 2.1 Urban rural classification methodology used by Statistics New Zealand (2005). 11
Figure 2.2 The location of the rural/urban areas according to the Statistics New Zealand (2005) classification system. 11
Figure 2.3 The location of Totara Valley in the lower North Island indicating it is rural with low urban influence. The map indicates the rural/urban areas according to the Statistics New Zealand classification system. 13
Figure 2.4 Population by region of rural areas with low urban influence (2001 figures). 14
Figure 2.5 Population density (people/km²) by region of rural areas with low urban influence (2001 figures). 14
Figure 2.6 Percentage of national land area by region classified as rural with low urban influences (2001 figures). 14
Figure 2.7 Building type by region (2001 figures). 14
Figure 2.8 Household heating method and fuels by region (2001 figures). 15
Figure 2.9 Numbers of occupied dwellings by occupancy type and by region (2001 figures). 15
Figure 2.10 Occupation type by region (2001 figures). 15
Figure 2.11 Income source by region (2001 figures). 15
Figure 2.12 The six electricity profile classifications from the household energy end-use project (HEEP) study indicating the mean load profile in each class (Bold black line). 23

Figure 3.1 The chronological development of wind models based on the Jackson-Hunt theory. 33

Figure 4.1 An initial critical path – project evaluation and review technique (PERT) analysis of the SPIRAL framework estimating the duration required for both short-term and full-term analyses. 42
Figure 4.2 The inputs required in the electricity load-modelling page of HOMER 2.19. 44
Figure 4.3 The inputs required in the wind resource-modelling page of HOMER 2.19. 46
Figure 4.4 The wind speed variation with height modelling dialog box of HOMER 2.19. 47
Figure 4.5 An example sensitivity analysis of the relative levels of energy produced to changes in the annual mean wind-speed, Weibull 'k', autocorrelation factor, and diurnal pattern strength. 47
Figure 4.6 The inputs required in the hydrological resource-modelling page in HOMER 2.19. 48
Figure 4.7 The inputs required in the solar resource-modelling page of HOMER 2.19. 49

Figure 5.1 The Totara Valley region and monitored electricity load site locations. Approximate farm boundaries and the monitored sites are marked. 52
Figure 5.2 A view of the southern end of Totara Valley as seen from the ridgeline on Farm 2. 52
Figure 5.3 The Totara Valley region and locations of the renewable energy resource monitoring sites. Approximate farm boundaries and monitored sites are marked. Site labels 'Hydro Site 1' etc are standard throughout the text. 53

Figure 6.1 An electricity meter box with two Siemens S2A-100 meters and a Seaward MD-300 meter installed. 60
Figure 6.2 A schematic diagram illustrating the flow of use of the electricity load data from this study from the individual load profiles through to the full-term and short-term duration profiles. 62
Figure 6.3 The mean hourly electrical load profile as it varies through the day and from month to month for the Totara Valley Community. 64
Figure 6.4 The standard deviation of the mean hourly electrical load profile as it varies through the day and from month to month for the Totara Valley Community. 64
Figure 6.5 The coefficient of variation for the mean hourly electrical load profile as it varies through the day and from month to month for the Totara Valley Community. 64
Figure 6.6 The percentage of data solidity for mean hourly electrical load profile as it varies through the day and from month to month for the Totara Valley Community. 65
Figure 6.7 The 1-year modelled 'gap-filled' domestic, shearing shed and freezer shed electricity load profile for the community. 66
Figure 6.8 The 1-year modelled 'gap-filled' water heating electricity load profile for the community. 66
Figure 9.13 The fractional proportion of the seasonal electricity load met by the hydro (H) option in the full-term study.

Figure 9.14 The fractional proportion of the seasonal electricity load met by the wind – hydro (WH) option in the full-term study (note: the net export in the winter and spring).

Figure 9.15 The fractional proportion of the seasonal electricity load met by the solar PV (S) option in the full-term study.

Figure 9.16 The fractional proportion of the seasonal electricity load met by the solar PV – wind (SW) option in the full-term study.

Figure 9.17 The fractional proportion of the seasonal electricity load met by the solar PV – hydro (SH) option in the full-term study.

Figure 9.18 The fractional proportion of the seasonal electricity load met by the solar PV – wind – hydro (SWH) option in the full-term study.

Figure 9.19 The fractional proportion of the seasonal electricity load met by the wind (W) option in the short-term study.

Figure 9.20 The fractional proportion of the seasonal electricity load met by the hydro (H) option in the short-term study.

Figure 9.21 The fractional proportion of the seasonal electricity load met by the wind – hydro (WH) option in the short-term study (note: the net export in the winter and spring).

Figure 9.22 The fractional proportion of the seasonal electricity load met by the solar PV (S) option in the short-term study.

Figure 9.23 The fractional proportion of the seasonal electricity load met by the solar PV – wind (SW) option in the short-term study.

Figure 9.24 The fractional proportion of the seasonal electricity load met by the solar PV – hydro (SH) option in the short-term study.

Figure 9.25 The fractional proportion of the seasonal electricity load met by the solar PV – wind – hydro (SWH) option in the short-term study.

Figure 10.1 The process used in this study to develop a multiple criteria decision analysis decision model.

Figure 10.2 A schematic diagram of the multi-method MCDA approach used in this study.

Figure 10.3 An overview of the Logical Decisions for Windows analytical procedure using an example from this study.

Figure 10.4 Four examples of the linear and non-linear Single-Measure Utility Functions (SUF).

Figure 10.5 The AHP method of weight elicitation as used in the Logical Decisions for Windows software.

Figure 10.6 The SMARTS method of weight elicitation as used in the Logical Decisions for Windows software.

Figure 10.7 The SMARTER method of weight elicitation as used in the Logical Decisions for Windows software.

Figure 10.8 The decision hierarchy used in this study showing the primary goal, secondary goals, and subsequent sub-goals, measures, and measure categories.

Figure 10.9 A comparison of the utility between MCDA methods and preference sets for the full-term duration analysis and the mean results.

Figure 10.10 The full-term duration mean utility (expressed in absolute weights), standard deviation range, and maximum-minimum utility for the distribution network preferences for the three MCDA methods.

Figure 10.11 The full-term duration mean utility (expressed in absolute weights), standard deviation range, and maximum-minimum utility for the individual farm preferences for the three MCDA methods.

Figure 10.12 A comparison of the utility between MCDA methods and preference sets for the short-term duration analysis and the mean results.

Figure 10.13 An analysis of the percentage change of the utility from the full-term to the short-term duration results.

Figure 10.14 The short-term duration mean utility (expressed in absolute weights), standard deviation range, and maximum-minimum utility for the distribution network preferences for the three MCDA methods.

Figure 10.15 The short-term duration mean utility (expressed in absolute weights), standard deviation range, and maximum-minimum utility for the individual farm preferences for the three MCDA methods.

Figure 11.1 A complete view of the SPIRAL decision analysis framework developed by this study indicating the software interactions, and feedback loops.
Figure 16.17 Limestone Downs ten-minute mean wind-speed windrose.

Figure 16.18 The mean hourly diurnal – monthly wind resource for Limestone Downs.

Figure 16.19 The standard deviation of the hourly diurnal – monthly wind resource for Limestone Downs.

Figure 16.20 The coefficient of variation of the hourly diurnal – monthly wind resource for Limestone Downs.

Figure 16.21 The mean hourly diurnal – monthly solar resource.

Figure 16.22 The standard deviation of the hourly diurnal – monthly solar resource.

Figure 16.23 The unfiltered coefficient of variation of the hourly diurnal – monthly solar resource.

Figure 16.24 The coefficient of variation of the hourly diurnal – monthly solar resource filtered to exclude the very high variation above 2.0.

Figure 17.1 Totara Valley aerial photo indicating all resource and load sites locations of interest.

Figure 18.1 The mean monthly – diurnal domestic load profile over the duration of the monitoring for the whole community.

Figure 18.2 The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for the whole community.

Figure 18.3 The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for the whole community.

Figure 18.4 The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for the whole community.

Figure 18.5 The mean monthly – diurnal water heating load profile over the duration of the monitoring for the whole community.

Figure 18.6 The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for the whole community.

Figure 18.7 The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for the whole community.

Figure 18.8 The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for the whole community.

Figure 18.9 The mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for the whole community.

Figure 18.10 The standard deviation of the mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for the whole community.

Figure 18.11 The coefficient of variation of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for the whole community.

Figure 18.12 The data solidity of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for the whole community.

Figure 18.13 The mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 1.

Figure 18.14 The standard deviation of the mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 1.

Figure 18.15 The coefficient of variation of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 1.

Figure 18.16 The data solidity of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 1.

Figure 18.17 The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 1.

Figure 18.18 The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 1.

Figure 18.19 The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 1.

Figure 18.20 The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 1.

Figure 18.21 The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 1.

Figure 18.22 The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 1.

Figure 18.23 The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 1.

Figure 18.24 The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 1.
Figure 18.25 The mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 2. 274
Figure 18.26 The standard deviation of the mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 2. 274
Figure 18.27 The coefficient of variation of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 2. 275
Figure 18.28 The data solidity of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 2. 275
Figure 18.29 The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 2. 276
Figure 18.30 The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 2. 276
Figure 18.31 The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 2. 277
Figure 18.32 The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 2. 277
Figure 18.33 The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 2. 278
Figure 18.34 The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 2. 278
Figure 18.35 The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 2. 279
Figure 18.36 The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 2. 279
Figure 18.37 The mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 3. 280
Figure 18.38 The standard deviation of the mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 3. 280
Figure 18.39 The coefficient of variation of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 3. 281
Figure 18.40 The data solidity of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 3. 281
Figure 18.41 The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 3. 282
Figure 18.42 The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 3. 282
Figure 18.43 The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 3. 283
Figure 18.44 The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 3. 283
Figure 18.45 The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 3. 284
Figure 18.46 The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 3. 284
Figure 18.47 The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 3. 285
Figure 18.48 The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 3. 285
Figure 18.49 The mean monthly – diurnal domestic, water heating and workshop load profile over the duration of the monitoring for Site 3. 286
Figure 18.50 The standard deviation of the mean monthly – diurnal domestic, water heating, and workshop load profile over the duration of the monitoring for Site 3. 286
Figure 18.51 The coefficient of variation of the monthly – diurnal domestic, water heating, and workshop load profile over the duration of the monitoring for Site 3. 287
Figure 18.52 The data solidity of the monthly – diurnal domestic, water heating, and workshop load profile over the duration of the monitoring for Site 3. 287
Figure 18.53 The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 4. 288
Figure 18.54 The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 4. 288
Figure 18.55 The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 4. 289
Figure 18.56: The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 4.

Figure 18.57: The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 4.

Figure 18.58: The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 4.

Figure 18.59: The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 4.

Figure 18.60: The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 4.

Figure 18.61: The mean monthly – diurnal workshop load profile over the duration of the monitoring for Site 4.

Figure 18.62: The standard deviation of the mean monthly – diurnal workshop load profile over the duration of the monitoring for Site 4.

Figure 18.63: The coefficient of variation of the monthly – diurnal workshop load profile over the duration of the monitoring for Site 4.

Figure 18.64: The data solidity of the monthly – diurnal workshop load profile over the duration of the monitoring for Site 4.

Figure 18.65: The mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 5.

Figure 18.66: The standard deviation of the mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 5.

Figure 18.67: The coefficient of variation of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 5.

Figure 18.68: The data solidity of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 5.

Figure 18.69: The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 5.

Figure 18.70: The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 5.

Figure 18.71: The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 5.

Figure 18.72: The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 5.

Figure 18.73: The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 5.

Figure 18.74: The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 5.

Figure 18.75: The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 5.

Figure 18.76: The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 5.

Figure 18.77: The mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 6.

Figure 18.78: The standard deviation of the mean monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 6.

Figure 18.79: The coefficient of variation of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 6.

Figure 18.80: The data solidity of the monthly – diurnal domestic and water heating load profile over the duration of the monitoring for Site 6.

Figure 18.81: The mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 6.

Figure 18.82: The standard deviation of the mean monthly – diurnal domestic load profile over the duration of the monitoring for Site 6.

Figure 18.83: The coefficient of variation of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 6.

Figure 18.84: The data solidity of the monthly – diurnal domestic load profile over the duration of the monitoring for Site 6.

Figure 18.85: The mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 6.

Figure 18.86: The standard deviation of the mean monthly – diurnal water heating load profile over the duration of the monitoring for Site 6.
Figure 18.87 The coefficient of variation of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 6. 305
Figure 18.88 The data solidity of the monthly – diurnal water heating load profile over the duration of the monitoring for Site 6. 305
Figure 18.89 The mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 7. 306
Figure 18.90 The standard deviation of the mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 7. 306
Figure 18.91 The coefficient of variation of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 7. 307
Figure 18.92 The data solidity of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 7. 307
Figure 18.93 The mean monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 7. 308
Figure 18.94 The standard deviation of the mean monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 7. 308
Figure 18.95 The coefficient of variation of the monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 7. 309
Figure 18.96 The data solidity of the monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 7. 309
Figure 18.97 The mean monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 7. 310
Figure 18.98 The standard deviation of the mean monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 7. 310
Figure 18.99 The coefficient of variation of the monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 7. 311
Figure 18.100 The data solidity of the monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 7. 311
Figure 18.101 The mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 8. 312
Figure 18.102 The standard deviation of the mean monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 8. 312
Figure 18.103 The coefficient of variation of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 8. 313
Figure 18.104 The data solidity of the monthly – diurnal shearing shed and freezer shed load profile over the duration of the monitoring for Site 8. 313
Figure 18.105 The mean monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 8. 314
Figure 18.106 The standard deviation of the mean monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 8. 314
Figure 18.107 The coefficient of variation of the monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 8. Be aware of the scale change to 0.50 kWh. 315
Figure 18.108 The data solidity of the monthly – diurnal shearing shed load profile over the duration of the monitoring for Site 8. 315
Figure 18.109 The mean monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 8. 316
Figure 18.110 The standard deviation of the mean monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 8. 316
Figure 18.111 The coefficient of variation of the monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 8. 317
Figure 18.112 The data solidity of the monthly – diurnal freezer shed load profile over the duration of the monitoring for Site 8. 317
Figure 18.113 Cumulative daily mean electricity loads for the domestic and water heating loads for complete weeks only. 321
Figure 18.114 Cumulative daily standard deviation of the electricity loads for the domestic and water heating loads for complete weeks only. The overall daily standard deviation values are indicated on the right hand axis for each of the load sites. 321
Figure 18.115 Cumulative daily mean electricity loads for the farm loads for complete weeks only. The daily mean values are indicated on the right hand axis for each of the load sites. 322
Figure 18.116 Cumulative daily standard deviation of the electricity loads for the farm loads for complete weeks only. The overall daily standard deviation values are indicated on the right hand axis for each of the load sites. 322
Figure 18.117 Cumulative standard deviation for the hourly domestic and water heating electricity loads for the Totara Valley community. 323
List of Tables

Table 2.1 Selected references to energy related MCDA applications or research in the literature. 30
Table 3.1 A comparative analysis of the MCDA software capability relative to this study. 39
Table 3.2 A comparison between the Criterion DecisionPlus and Logical Decision for Windows MCDA software for ease of use and value for this study. 39
Table 6.1 A brief demographic description of the monitored residential electricity load sites. 58
Table 6.2 A listing of appliance use/ownership of each electricity load site. 58
Table 6.3 A brief description of the non-domestic electricity load sites. 58
Table 6.4 A description of the electricity loads types monitored and meter type for all monitored sites. 59
Table 6.5 The mean daily loads (kWh/d) by month for 1999 for the Totara Valley community and the monthly percentage difference compared with January 1999. 68
Table 6.6 The modelled mean daily loads (kWh/d) for the Totara Valley community and the monthly difference compared with January 1999. 68
Table 6.7 The standard deviation percentage values for individual and community electricity load profiles at the end of the monitoring duration. 69
Table 6.8 The number of simultaneous readings for the community profile statistics leading to 'whole day' data. 70
Table 7.1 The velocity correction factors for stream flows in various channels that were used in this study. 79
Table 7.2 Cross-correlation statistics for the Ohakea, Palmerston North, Waione, and Totara Valley data. 93
Table 7.3 The estimated loss of solar radiation (Wh/m²/d) resulting from valley shading for the morning and evening, and the percentage of solar loss at the valley floor. 101
Table 7.4 The descriptive statistics useful for wind modelling in HOMER at the end of the monitoring duration. 103
Table 7.5 A comparison between the monitored solar data and the data from the NASA database. 107
Table 8.1 The calculated RIX values within a 3500-metre radius area for each 22-degree sector for all Wind Sites. 117
Table 8.2 The correlation and regression statistics for Wind Sites 2, 3, 4, and 5 relative to Wind Site 1. 117
Table 8.3 The correlation and regression statistics for Wind Sites 1, 2, 3, and 4 relative to Wind Site 5.

Table 9.1 The electricity load inputs to be used in a sensitivity analysis in HOMER.
Table 9.2 The estimated hydro system construction cost data for the dam and two weir scenario in Totara Valley (2001 $NZ).
Table 9.3 The wind turbine options and the estimated costs per site (2001 $NZ).
Table 9.4 The full-term duration ranked results of the HOMER modelling.
Table 9.5 The full-term duration mean and standard deviation values for levelised cost of energy, net present cost, carbon emissions, and hourly delivered energy.
Table 9.6 A single value sensitivity analysis table indicating the changes to the overall rankings resulting from fractional changes to the sensitivity variable.
Table 9.7 A two-way value sensitivity analysis table indicating the changes to the first three ranks resulting from fractional changes to the sensitivity variable.
Table 9.8 The full-term duration mean and standard deviation of the percentage of peak-load met by each option.
Table 9.9 The full-term duration miscellaneous values that were not outputs from HOMER modelling.
Table 9.10 The short-term duration ranked results of the HOMER modelling.
Table 9.11 The short-term duration mean and standard deviation values for levelised cost of energy, net present cost, carbon emissions, and hourly delivered energy.
Table 9.12 The short-term duration mean and standard deviation of the percentage of peak-load met by each option.
Table 9.13 The short-term duration miscellaneous values that were not other wise outputs from HOMER modelling.
Table 9.14 A comparison of HOMER model inputs between the full-term and the short-term duration models.
Table 9.15 The percentage differences between the full-term and short-term duration results for levelised cost of energy, net present value, carbon emissions, and hourly delivered energy.
Table 9.16 The percentage differences between the short-term and long-term duration results for the mean and standard deviation of the percentage of peak-load met by each option.
Table 9.17 The percentage differences between the short-term and long-term duration results for the miscellaneous values that were not otherwise outputs from HOMER modelling.

Table 10.1 The full-term duration economic measure levels obtained from HOMER modelling.
Table 10.2 The full-term duration environment measure levels obtained from HOMER modelling and based on the renewable energy system configuration details.
Table 10.3 The full-term duration social measure levels based on the renewable energy system configuration details.
Table 10.4 The full-term duration technical measure levels obtained from HOMER modelling.
Table 10.5 The short-term duration economic measure levels obtained from HOMER modelling.
Table 10.6 The short-term duration environment measure levels obtained from HOMER modelling and based on the renewable energy system configuration details.
Table 10.7 The short-term duration technical measure levels obtained from HOMER modelling.
Table 10.8 The environmental measures as assessed by direct entry.
Table 10.9 The social measures as assessed by direct entry.
Table 10.10 The relative weights as entered for use for each MCDA method and preference set.
Table 10.11 The absolute weights as calculated by Logical Decisions for Windows to be used for each MCDA method and preference set.
Table 10.12 The *distribution network* preference set weighting changes that would effect ranking changes in the full-term duration analysis.
Table 10.13 The *individual farm* preference set weighting changes that would effect ranking changes in the full-term duration analysis.
Table 10.14 The *distribution network* preference set weighting changes that would effect ranking changes in the short-term duration analysis.
Table 10.15 The *individual farm* preference set weighting changes that would effect ranking changes in the short-term duration analysis.
Table 10.16 Summary comparison between HOMER and the full-term duration Logical Decisions for Windows ranked results.
Table 10.17 Summary comparison between HOMER and the short-term duration Logical Decisions for Windows results.
Table 15.1 A survey of decision analysis software and their specific applications with comments. 235
Table 18.1 A detailed listing of the monitored load and duration, meter type, and any metering problems. 318
Table 18.2 The descriptive statistics for the daily electricity load data for the duration of the monitoring. 319
Table 18.3 The descriptive statistics for the hourly electricity loads for the duration of the monitoring. 320
Table 19.1 The calculated flow rate of Totara Stream at Hydro Site 1 – January 2000. 325
Table 19.2 The calculated flow rate of Totara Stream at Hydro Site 1 – March 2000. 325
Table 19.3 The calculated flow rate of Totara Stream at Hydro Site 1 – August 2000. 325
Table 19.4 The calculated flow rate of Totara Stream at Hydro Site 2 – January 2000. 325
Table 19.5 The calculated flow rate of Totara Stream at Hydro Site 2 – March 2000. 326
Table 19.6 The calculated flow rate of Totara Stream at Hydro Site 3 – January 2000. 326
Table 19.7 The calculated flow rate of Totara Stream at Hydro Site 3 – March 2000. 326

List of Equations

Equation 4.1 The project evaluation and review technique (PERT) equation. 41
Equation 4.2 The electricity load noise perturbation calculation used in HOMER load modelling. 45
Equation 6.1 The equation used to fill gaps in the electricity load-profile data by interpolation. 61
Equation 6.2 The formula for the coefficient of variation used in this study. 61
Equation 7.1 The Simpson’s formula for calculating the cross-sectional area of a stream. 78
Equation 7.2 The formula used to calculate the flow rate of a stream. 79
Equation 7.3 Simple calculation of the diurnal pattern strength factor. 105
Equation 7.4 The autocorrelation function used to determine the correlation of the wind-speed on the wind-speed of the previous hour. 106
Equation 9.1 The formula used to calculate the net present cost in HOMER 131
Equation 9.2 The cost recovery factor calculations used in HOMER. 131
Equation 9.3 The levelised cost of energy (COE) calculations used in HOMER 131
Equation 9.4 The formula used to calculate the real interest rate used in the HOMER economic model. 134
Equation 10.1 The straight-line single-measure utility function (SUF). 167
Equation 10.2 The exponential single-measure utility function (SUF). 167
Equation 10.3 The additive multi-measure utility function. 168
Equation 10.4 The multiplicative multi-measure utility function. 168
Equation 10.5 The consistency index equation used in Logical Decisions for Windows. 170
Equation 19.1 The probability density distribution of a wind-speed. 328
Equation 19.2 The Rayleigh cumulative probability distribution. 329
Equation 19.3 The Rayleigh cumulative probability of exceedance. 329
Equation 19.4 The Weibull distribution. 329
Equation 19.5 The Weibull probability density function equation. 329