EFFECTS OF EXTREMELY LOW FREQUENCY ELECTROMAGNETIC_FIELDS ON HUMAN CHROMOSOMES.

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Genetics

at the
Institute of Molecular BioSciences
Massey University, Palmerston North,
New Zealand

by

MOHAMMED ABDUL WAHAB

2005
Abstract.

Electromagnetic fields (EMFs) have been associated with increased incidences of cancer as suggested by epidemiological studies. The in vitro sister chromatid exchange (SCE) technique, radiation-induced micronucleus assay (MN assay), COMET assay, and fluorescence in situ hybridization (FISH) were used in the present study to test the carcinogenic potentiality of extremely low frequency (ELF) EMFs on human peripheral blood lymphocytes. All experiments were performed single blind and used lymphocytes taken from 6 age-matched donors. The SCE experiments were conducted twice: round 1 (R1) and round 2 (R2), in order to determine whether or not the results obtained could be duplicated.

Detailed analysis of the SCE results showed that there was a significant increase in the number of SCES/cell in the grouped experimental conditions compared to the controls in both rounds. Similarly, in the MN assay, a significant increase of mean number of micronucleated CB cells/100 CB cells (M_a) and mean number of micronuclei/100 CB cells (M_b) was observed in the grouped experimental conditions compared to the controls. Moreover, the highest SCE frequency in R1 was 10.03 for a square continuous field, and the SCE frequency of 10.39 for a square continuous field in R2 (albeit a different strength) was the second highest in this latter round. But in the MN assay a square pulsed field with increasing EMF strength showed the greatest effect on the DNA repair system. The COMET assay also showed that both a 1mT square field (continuous or pulsed) resulted in significant fragmentation of the DNA. On the other hand, a FISH analysis failed to show any translocations.

In the field of EMF research, perhaps the most outstanding question that remains to be answered with certainty is how weak EMFs exert their effects at the molecular level. Various mechanisms are reviewed and evaluated in this thesis. From the results of the research performed in the current study which concentrated on testing and discovering genetic effects, a model is postulated that weak EMFs stimulate the production of free radicals which result in genetic damage. Further extensive research should be conducted to test this hypothesis.
Acknowledgments.

I wish to extend my sincere gratitude to my supervisors, Dr. R.E. Rowland, and Dr. J.V. Podd, without whom I would not have had the wonderful opportunity to tackle this piece of work. Their constant invaluable guidance, advice, encouragement and supervision kept me on track and from both of them I have learnt a lot.

I would like to express my sincere thanks to:

- Elizabeth Nickless-who was an endless help in providing the invaluable advice throughout my research on methods and equipment.
- Charlotte James - who was my friend in need, and endless helper during my study.
- Bruce Rapley - for his invaluable contribution in building the special incubator to generate accurate ELF EMFs and assistance during the study.
- Chris Kendrik - his assistance with blood collection was invaluable and greatly appreciated. Chris's smiling face continually inspired me.
- Chad Johnson - who taught me how to perform the COMET assay.
- Ted Drawneek - is a nice person, who assisted me with all the statistical analysis.
- Paul Hauquard, Michael Wilson - who were two of my blood donors and gave me endless assistance and made my IMBS life much easier.
- Amira Pearson - Auckland University Medical School, who is a person with infinite patience from whom I learned the MN assay technique.
- Colin Dicks and his oncology staff in the Palmerston North Hospital - for their endless friendship and co-operation during this study.
- Rissa Ota, Matthew Phillips, Leon Perrie, Kerryn Slack, Tim White, and Andrew Clarke - who generously offered their computer expertise.

To my family, especially my wife Kamrunnahar Begum, and my many friends and colleagues who have given me endless support and space to complete this work, I give my heartfelt thanks. Their help and encouragement are sincerely appreciated.

Finally, I would like to express my sincere thanks to Massey University for providing me with the Massey Doctoral Scholarship and Palmerston North Medical Research Foundation for providing me with a research grant.
DEDICATED

TO

MY BELOVED WIFE

KAMRUNNAHAR BEGUM (Hira)

IN APPRECIATION OF HER
CONTINUOUS HELP,
SUPPORT AND
LOVE.
Table of Contents.

Opening page I
Title page II
Abstract III
Acknowledgments IV
Dedication V
Table of Contents VI
List of Tables XI
Lists of Figures XII

Chapter One: Introduction.

1. INTRODUCTION 1
1.1 Sister Chromatid Exchange (SCE) 4
1.2 Micronucleus Assay (MN Assay) 5
1.3 The COMET Assay 5
1.4 Fluorescent In Situ Hybridization (FISH) 6
1.5 Aim, Objective and Prediction 7

Chapter Two: Review of Literature.

2. REVIEW OF LITERATURE 8
2.1 ELF EMFs and Living Organisms 8
 2.1.1 Human Exposure to ELF EMFs 9
 2.1.2 Electromagnetic Field Mechanism(s) 10
 2.1.3 EMFs and Cancer 17
 2.1.4 EMFs and Transcription 22
 2.1.5 EMF and Enhancement of the Intracellular Ca^{2+} Response 25
2.1.6 EMF and Plasma Membrane 26
2.1.7 Melatonin and ELF EMFs 27
2.1.8 Geomagnetic Field (GMF) 34
2.1.9 DNA Damage, Chromosomal Aberration and ELF EMFs 42

2.2 Sister Chromatid Exchange (SCE) 46
2.2.1 Introduction 46
2.2.2 Genetic Basis of SCE 51
2.2.3 SCE Models 55
2.2.4 SCE Induction 77
2.2.5 SCE and Disease 80
2.2.6 Human Reproductive Hormones and SCE 86
2.2.7 Lymphocyte Concentration and SCE 87
2.2.8 Baseline SCE and the Influence of Genetic, Chemical, and Environmental Agents 87

2.3 Micronucleus Assay (MN Assay) 99
2.3.1 Introduction 99
2.3.2 Radiation Dose and Micronuclei 100
2.3.3 Radiosensitivity and Micronuclei 102
2.3.4 Genetic Studies Using the MN Assay 103
2.3.5 Micronucleus Frequency as a Biomarker of Cancer Risk 106
2.3.6 Effects of Age and Gender on Micronucleus Frequency 108
2.3.7 MN Assay and the Influence of Chemical and Environmental Agents 112
2.3.8 Concentration of Cytochalasin B 129

2.4 The COMET Assay 130
2.4.1 Introduction 130
2.4.2 Mechanism of Comet Tail Formation 132
2.4.3 The COMET Assay in Genotoxicity Testing 133
2.4.4 EMF Exposure and COMET Assay 135
2.4.5 Evaluation and Interpretation of Results 135
2.4.6 DNA Damage and Use of COMET Assay 136

2.5 Fluorescent In Situ Hybridization (FISH) 138
2.5.1 Introduction 138
2.5.2 Advantage, and Limitations of FISH Analysis 139
2.5.3 Translocation Study and the Use of FISH

Chapter Three: Materials and Methods.

3. MATERIALS AND METHODS

3.1 Sister Chromatid Exchange (SCE)
 3.1.1 Collection of blood samples
 3.1.2 SCE protocol

3.2 Micronuclei Assay (MN)
 3.2.1 Collection of blood samples
 3.2.2 MN assay protocol

3.3 COMET Assay
 3.3.1 Materials
 3.3.2 Generation of EMFs and Field Exposure
 3.3.3 Collection of Blood Samples
 3.3.4 Lymphocyte Cultures
 3.3.5 Lymphocyte Preparation
 3.3.6 Lymphocyte Concentration and Cell Viability
 3.3.7 Pre-treatment Method
 3.3.8 The COMET Assay Methodology
 3.3.9 Slide Analysis (Quantitative)

3.4 Fluorescent in situ Hybridization (FISH)
 3.4.1 Collection of Blood Samples
 3.4.2 FISH Protocol

Chapter Four: Results.

4. RESULTS

4.1 Sister Chromatid Exchange (SCE)
 4.1.1 Analysis of Round-1 (SCE)
 4.1.2 Analysis of Round-2 (SCE)
 4.1.3 Complex MF
Chapter Five: Discussion.

5. DISCUSSION
5.1 SCE Analysis 211
5.2 MN Assay 224
5.3 COMET Assay 230
5.4 FISH 233
5.5 FUTURE RESEARCH 234

Chapter Six: Summary and Limitations.

6. SUMMARY AND LIMITATIONS 237
6.1 Summary 237
6.2 Limitations of Present Study 239

References. 242

Appendix One (a): A simplified comparison between electrical pressure and water pressure. 296
Appendix One (b): A simplified comparison between electrical fields and magnetic fields. 297
Appendix One (c): Magnetic field decreases with increasing distance from the source and measured in Tesla (T). 298
Appendix Two : Personal Questionnaire 299
Appendix Three : Consent Form Appendix Two: Consent Form 311
Appendix Four : Showing 50 (1-50) random microscope coordinates at (X and Y positions) for each of the 2 gels per slide 312
Appendix Five : Figure 1a & 1b 314
Appendix Five: Figure 2a & 2b 315
Appendix Five: Figure 3a & 3b 316
Appendix Five: Figure 4a & 4b 317
Appendix Six: Sinusoidal wave & Square wave 318
Appendix Seven: Table 1a - Recorded Temperatures
(Control condition: coil off & no MF) 319
: Table 1b- Recorded Temperatures
(Coil on @ 1mT MF) 320
: Figure 1a & 1b - Graph of recorded temperatures
(Control condition: coil off & no MF) 321-322
: Figure 1c & 1d - Graph of recorded temperatures
(Coil on @ 1mT MF) 323-324
List of Tables.

Table 4.1. Overall mean SCE and standard deviations of the control group and that of the entire set of experimental groups for R1. 182
Table 4.2. Mean SCE and standard deviations of all experiments in R1 based on all three donors. 185
Table 4.3. Overall ANOVA for R1. 186
Table 4.4. Overall mean SCE and standard deviations of the control group and that of the entire set of experimental groups for R2. 189
Table 4.5. Mean SCE and standard deviations of all experiments in R2 based on all three donors. 191
Table 4.6. Overall ANOVA for R2. 192
Table 4.7. Overall SCE mean of control and complex experiments in R1. 193
Table 4.8. Overall SCE mean of control and complex experiments in R2. 194
Table 4.9. M_a’s and standard deviations of control group and that of the entire set of experimental groups. 195
Table 4.10. M_a’s and standard deviations of all experiments based on all three donors. 196
Table 4.11. Overall ANOVA for M_a. 197
Table 4.12. M_b’s and standard deviations of control groups and that of the entire set of experimental groups. 200
Table 4.13. M_b’s and standard deviations of all experiments based on all three donors. 201
Table 4.14. Overall ANOVA for M_b. 202
Table 4.15. Overall M_a of control and complex experiments of MN assay. 205
Table 4.16. Overall M_b of control and complex experiments of MN. 205
Table 4.17. Summary results of three parameters (Tail length, Tail moment and Olive tail moment) of the COMET assay experiments. 207
Table 4.18. t-tests for all three parameters (Tail length, Tail moment and Olive tail moment) between the three COMET assay experiments. 208
Table 4.19. Summary results of control and one FISH experiment. 209
List of Figures.

Figure 1.1. Showing the flow of current and magnetic field (Giancoli, 2000). 1
Figure 2.0. Pathways of reactive oxygen species (ROS) involvement in cellular reactions subjected to short- and long-term EMF-exposure. 14b
Figure 2.1. Biological signal transduction pathways involving first- and second-messenger systems. 16
Figure 2.2. Showing geographic and geomagnetic poles. 35
Figure 2.3. A c-metaphase chromosome spread of a dividing peripheral blood Lymphocyte showing 10 SCEs. 46
Figure 2.4. Showing how SCE staining method produces differentially stained chromatids by the incorporation of BrdU. 48
Figure 2.5. Showing “single” and “twin” sister chromatid exchanges. 50
Figure 2.6. Showing the single stranded (unineme) nature of chromosomes. 51
Figure 2.7. SCE model of Kato. 57
Figure 2.8. Multiple lesion pathways leading to a small number of SCE-inducing lesion states. 59
Figure 2.9. Replication crosslink bypass model of SCE. 60
Figure 2.10. Alternate rejoining processes for the replication bypass of SCE. 62
Figure 2.11. Model for possible effects of DNA-damaging agents on cluster replication and segregation. 64
Figure 2.12. Double-strand recombination at the junction between replicon clusters. 65
Figure 2.13. Showing the Cleaver’s SCE model. 67
Figure 2.14. Topoisomerase II subunit exchange model of SCE. 69
Figure 2.15. Replication detour SCE model of Ishii and Bender. 70
Figure 2.16. Strand switching by homologous displacement at blocked replication forks. 72
Figure 2.17. Strand switching in the model of Shafer. 75
Figure 2.18. SCE between replicated strands by two topoisomerase II-mediated strand switches. 76
Figure 3.1. A. Incubator apparatus. 146
Figure 3.2. Helmholtz coils. 148
Figure 3.3. Lollipop-plot of the resultant vectors in a longitudinal section through the ‘Z-axis’ of a Helmholtz coil.

Figure 3.4. Magnitude of resultant vectors in ‘mT’ for the pair of Helmholtz coils.

Figure 3.5. Magnitude of resultant vectors in ‘μT’ for the pair of Helmholtz coils.

Figure 3.6. Angles in Cartesian co-ordinates of resultant magnetic field vectors relating to the pair of Helmholtz coils.

Figure 3.7. A Giemsa-stained c-metaphase chromosome complement.
(2n = 46.)

Figure 3.8. Diagrammatic representation of various differential staining patterns observed after incorporation of BrdU into replicating DNA.

Figure 3.9. Cytokinesis-blocked (CB) binucleated cells (a-h) with varying numbers (0-7) of micronuclei.

Figure 3.10. Binucleate cells which can be scored for micronuclei.

Figure 3.11. Typical appearance and relative size of micronuclei in binucleated cells that meet the scoring criteria.

Figure 3.12. Cellular structures which resemble micronuclei but were not scored.

Figure 3.13. Illustrative diagram of what was observed after centrifugation of whole blood during isolation using Ficol, concentration gradient.

Figure 3.14. Diagram representing the dimensions of a haemocytometer counting chamber.

Figure 3.15. Illustrative image showing how the gel layers were formed using the pre-treatment method. Image not to scale.

Figure 3.16. Image indicating the placement of microscope slides in electrophoresis tank.

Figure 3.17. Image capturing hardware used in the current study.

Figure 3.18. Orientation of cell (directed left to right) for analysis by the CASP software.

Figure 3.19. Image outlining 7 of the 13 different variables that are measured by the CASP™ software.
Figure 4.1. Graph of mean SCE of control groups and EMF exposed groups of three donors in R1.

Figure 4.2. A c-metaphase chromosome spread from a sham exposed control showing 11 SCEs.

Figure 4.3. A c-metaphase chromosome spread from an EMF exposed experiment showing 20 SCEs.

Figure 4.4. A c-metaphase chromosome spread of a dividing peripheral blood lymphocyte that has undergone three rounds of DNA replication.

Figure 4.5. Graph of mean SCE of different Wave and Form in R1.

Figure 4.6. Graph of mean SCE of different Wave and Strength in R1.

Figure 4.7. Graph of mean SCE of different Form and Strength in R1.

Figure 4.8. Graph of mean SCE of different Wave and three Donors.

Figure 4.9. Graph of mean SCE of different Form and three Donors.

Figure 4.10. Graph of mean SCE of different Strength and three Donors.

Figure 4.11. Graph of mean SCE of control groups and EMF exposed groups of three donors in R2.

Figure 4.12. Graph of mean SCE of different Wave and Form in R2.

Figure 4.13. Graph of mean SCE of different Form and Strength in R2.

Figure 4.14. Graph of Ma of control groups and EMF-exposed groups for three donors.

Figure 4.15. Graph of Ma of different Wave and Strength.

Figure 4.16. Graph of Ma of different Form and Strength.

Figure 4.17. Graph of Ma of different Form and Wave.

Figure 4.18. Graph of Ma of different Wave and three Donors.

Figure 4.19. Graph of Ma of different Form and three Donors.

Figure 4.20. Graph of Ma of different Strength and three Donors.

Figure 4.21. Graph of Mb of control groups and EMF-exposed groups for three donors.

Figure 4.22. Graph of Mb of different Wave and Strength.

Figure 4.23. Graph of Mb of different Form and Strength.

Figure 4.24. Graph of Mb of different Form and Wave.

Figure 4.25. Graph of Mb of different Wave and three Donors.

Figure 4.26. Graph of Mb of different Form and three Donors.

Figure 4.27. Graph of Mb of different Strength and three Donors.
Figure 4.28. Photographs showing single-strand DNA migration pattern of individual peripheral blood lymphocytes. 206

Figure 4.29. Mean values for Tail length, Tail moment, Olive tail moment for control, Square continuous 1 mT and Square pulsed 1 mT. 208

Figure 4.30. Photographs showing a human peripheral blood lymphocyte cell with six whole chromosome (2, 3 and 5) labelled with FITC (green). 210