Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Long chain polyunsaturated fatty acids and their possible interaction with phytoestrogens: Impact on bone and bone cell function in vivo and in vitro

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Biochemistry

at Massey University, Palmerston North,
New Zealand.

Raewyn Carol Poulsen

2007
Abstract

Inflammation is a major contributor to postmenopausal bone loss. Various long chain polyunsaturated fatty acids (LCPUFAs), particularly those of the n-3 family, are known to have anti-inflammatory activity and may have a role in minimising postmenopausal bone loss. The objectives of this thesis were to determine whether some LCPUFAs have greater bone-protective effects than others; to identify some of the mechanisms of action of LCPUFAs in bone and to explore the possibility that combined treatment with LCPUFAs and phytoestrogens offers greater bone-protective effects than either treatment alone. Using the ovariectomised rat model for postmenopausal bone loss, the relative effectiveness of eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) in minimising bone loss post-ovariectomy was investigated. GLA exacerbated bone loss post ovariectomy. In vitro, treatment of MC3T3-E1/4 osteoblast-like cells with GLA resulted in greater membrane-bound RANKL expression suggesting a possible stimulatory effect of GLA on osteoclastogenesis and osteoclast activity. EPA had no effect on overall bone mass in vivo. DHA significantly ameliorated ovariectomy-induced bone loss possibly by increasing plasma IGF-1 concentration, modulating vitamin D metabolism and, as observed in a second study, by increasing the concentration of gamma-carboxylated osteocalcin. In vitro both EPA and DHA reduced the prostaglandin E2 (PGE2)-induced increase in membrane-bound RANKL expression in MC3T3-E1/4 osteoblast-like cells. However as RANKL-independent pathways are believed to be largely responsible for the ovariectomy-induced increase in osteoclastogenesis in vivo, inhibition of RANKL expression may not significantly contribute to the prevention of ovariectomy-induced bone loss. In a second study in ovariectomised rats, combined treatment with DHA and 17β-oestradiol was associated with significantly higher femur bone mineral content than either treatment alone. However, no beneficial effects of combined treatment with DHA and either of the phytoestrogens genistein or daidzein, on bone mass were apparent. In vitro, co-treatment of TNF-α - exposed MC3T3-E1/4 cells with DHA and 17β-oestradiol was associated with a higher cell number compared to either treatment alone indicating a protective effect of combined treatment against the cytotoxic and/or anti-proliferative effects of TNF-α. In contrast, combined treatment of MC3T3-E1/4 cells with DHA and genistein, but not daidzein, was associated with significantly lower cell number than either treatment alone. As genistein, but not
daidzein, is a tyrosine kinase inhibitor, this may indicate that DHA requires tyrosine kinase activity for its protective effect on cell number in TNF-α-exposed osteoblasts. Whether DHA itself is bioactive in bone cells or whether lipid mediators formed from DHA are responsible for the observed bone-protective effects is unknown. Using lipid mediator lipidomic analysis, the presence of DHA-derived lipid mediators in bone marrow in quantities known to be physiologically significant in other tissues was confirmed. Further research into the effects of these lipid mediators in bone and confirmation of the mechanisms of action of DHA in bone cells is required. This thesis demonstrates that consumption of DHA provides some protection against ovariectomy-induced bone loss in vivo and mitigates the effects of inflammation on RANKL signalling and osteoblast cell number in vitro. The bone-protective effects of DHA are complemented by co-treatment with 17β-oestradiol but may be inhibited by co-treatment with the phytoestrogens daidzein or genistein.
Acknowledgements

This thesis would not have been possible without the guidance, support and encouragement of my three fantastic supervisors. I am sincerely grateful to Professor Marlena Kruger, my chief supervisor, for always being available any day, any time, for finding money from nowhere and for generally making the impossible possible. Special thanks to Distinguished Professor Paul Moughan for his expert advice and encouragement particularly with manuscript preparation and for always knowing the right person to ask for any problem. My grateful thanks to Dr Fran Wolber for all her time and assistance with the in vitro work and for always having an open door.

My grateful thanks to Fonterra Brands Ltd who provided funding for the study reported in Chapter 2 and the phytoestrogen work in Chapter 5. Special thanks also to the Palmerston North Hospital Medical Research Fund who provided funding towards the 17β-oestradiol work in Chapter 5.

I sincerely thank the Tertiary Education Commission New Zealand for their support in the form of a Bright Futures Top Achiever Doctoral Scholarship.

I would like to acknowledge the fantastic support of Mrs Anne Broomfield, IFNHH, Massey University who performed the ovariectomies, aided with DEXA scanning and assisted with blood sample collection. Thanks also to Mrs Chris Booth and Dr Wei-Hang Chua, IFNHH, Massey University who assisted with the ovariectomies; Ms Hilary McKinnon, IFNHH, Massey University who assisted with sample collection and Mrs Kim Wylie, IFNHH, Massey University who dissected the femurs in preparation for biomechanical testing. Special thanks to Ms Linda Frémon, visiting intern, IFNHH, Massey University who assisted with animal care for the work presented in Chapter 5.

I am sincerely grateful to Dr Du Toit Loots, School of Physiology, Nutrition and Consumer Science, North-West University, Potchefstroom, South Africa for the training and the use of his laboratory for the GC/MS measurement of phytoestrogen metabolites. Special thanks also to Mr Peet Jansen Van Rensburg, School of Environmental Sciences
and Development, Microbiology, North-West University, Potchefstroom, South Africa for the ICP/MS measurement of titanium in digesta samples.

The work described in Chapter 6 would not have been possible without Prof Charles Serhan and Ms Katherine (Katie) Gotlinger, Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine and Harvard Medical School, Boston, USA who not only trained me but allowed the use of their laboratory and resources for the lipidomic analyses of resolvin pathway lipid mediators in bone marrow.

Thanks to Prof Elwyn Firth, Dr Chris Rogers and Ms Rebecca Whelan, IVABS, Massey University for the pQCT scans of rat tibia and to Mr Michael Agnew, AgResearch, Hamilton for the GC analysis of red blood cell and bone marrow fatty acid composition.

I gratefully acknowledge the support of Dr Barbara Kuhn-Sherlock, Fonterra, Palmerston North, Mr Tim Ball, ITS, Massey University and Prof Hugh Morton, IFNHH, Massey University for advice with statistical analyses.

Thanks to Ms Felicity (Fliss) Jackson and the Nutrition Lab, IFNHH, Massey University for proximate analysis of diet samples and to Dr Phil Pearce, IFNHH, Massey University for assistance with radio-immunoassays used for the measurement of plasma Vitamin D, IGF-1 and 17β-oestradiol concentrations.
Table of Contents

Abstract ii
Acknowledgements iv
Table of Contents vi
List of Tables xii
List of Figures xiv
Abbreviations xvi

INTRODUCTION 1

CHAPTER 1 Literature Review 2

Part 1 Bone Structure and Metabolism: An Overview 3
Bone Structure 3
Bone Metabolism 5
Bone Cells 6
Osteoclasts 6
Osteoclast activity 9
Osteoblasts 10
Osteoblast activity 13
Osteoblast/Osteoclast cross-talk 13
Osteocytes 16
Initiation of Bone Remodelling 18
Mechanical strain 18
Calcium balance 19
Regulation of Bone Remodelling 20
Regulation of calcium balance 21
Regulation of bone cell formation and function 21
Misregulation of Bone Remodelling: Osteoporosis 24
Causes of osteoporosis 24
Structural changes in bone associated with Post-Menopausal Osteoporosis 25
Metabolic Changes associated with Post-Menopausal Osteoporosis 26

Part 2 Long Chain Polyunsaturated Fatty Acids and the Regulation of Bone Metabolism 29
Long Chain Polyunsaturated Fatty Acid Metabolism 29
Cyclooxygenase 30
Lipoxygenase and epoxygenase 31
Non-enzymatic oxidation 32
Long Chain Polyunsaturated Fatty Acids and Bone 32
Intervention Studies – Human 33
Intervention Studies – Animal 35
Studies in growing animals 35
Studies in ovariectomised animals 37
Mechanisms of Action 38
Effect on calcium balance 38
Effect on osteoblastogenesis and osteoblast activity 40
Effect on osteoclastogenesis and osteoclast activity 42
An increased need for LCPUFAs post-menopause? 44

Part 3 Phytoestrogens alone and in combination with Long Chain Polyunsaturated Fatty Acids: Impact on regulation of bone metabolism 45
Phytoestrogen Metabolism 45
Phytoestrogens and Bone 49
Intervention Studies – Human 49
Intervention Studies – Animal 52
Mechanisms of Action 53
Oestrogenic effects 53
Anti-oestrogenic effects 54
Other effects 54
Effect on calcium balance 55
Effect on osteoblastogenesis and osteoblast activity 55
Effect on osteoclastogenesis and osteoclast activity 56
A beneficial effect of combined supplementation with oestrogenic compounds and LCPUFAs on bone mass post-ovariectomy? 57

Motivation and Objectives for the Thesis 60
References 61

CHAPTER 2 Specific effects of gamma-linolenic, eicosapentaenoic and docosahexaenoic ethyl esters on bone post-ovariectomy in rats 81
Abstract 82
Introduction 82
Methods 84
Animals 84
Diets 84
Dual Energy X-Ray Absorptiometry (DEXA) Scans 85
Blood Sampling 86
Euthanasia and Dissection 86
Bone Marrow Fatty Acid Composition 87
Biomechanical Testing 87
Tibial Microarchitecture 88
Blood Parameters 88
Statistical Analysis 89
Results 89
CHAPTER 3 Long chain polyunsaturated fatty acids alter membrane-bound RANK-L expression and osteoprotegerin secretion by MC3T3-E1 osteoblast-like cells

Abstract 108
Introduction 109
Methods 110
Materials 110
Culture Conditions 111
Measurement of OPG secretion 111
Measurement of membrane-bound RANK-L 111
Determination of cell cycle stage 112
Statistical Analysis 112
Results 112
Membrane-bound RANKL expression in MC3T3-E1/4 cells 112
Cell cycle stage of MC3T3-E1/4 cells 113
Effect of LCPUFA treatment on membrane-bound RANKL expression in MC3T3-E1/4 cells 115
Effect of LCPUFA treatment on OPG secretion by Membrane-bound RANKL expression in MC3T3-E1/4 cells 116
Discussion 117
References 119

CHAPTER 4 Digestibility of daidzein and genistein and urinary excretion of the isoflavones and their metabolites in the ovariectomised rat

Abstract 123
Introduction 123
Methods 125
Materials 125
Animals 125
Diets 125
Feeding Regimen 126
Metabolic Balance and Sample Collection 127
Sample Extraction 127
Urine 127
Ileal digesta and faeces 128
Plasma 128
GC/MS analysis of isoflavone metabolites 128
Quantification of titanium dioxide in faeces and ileal digesta 129

Data analysis 129
Statistical analysis 130
Results 130
Isoflavones in ileal digesta, plasma, urine and faeces 130
Daidzein and genistein digestibility 131
Input/Output balances 132
Discussion 135
Acknowledgements 139
References 139

CHAPTER 5 Interaction between docosahexaenoic acid and oestrogens: Impact on bone mass post-ovariectomy in rats 144

Abstract 145
Introduction 146
Methods 146
Animals 146
Diets 148
Dual Energy X-Ray Absorptiometry (DEXA) Scans 149
Blood Sampling 150
Euthanasia and Dissection 150
Red Blood Cell Fatty Acid Composition 150
Plasma concentrations of 17β-oestradiol, IL-6 and Osteocalcin 151
Computed Tomography (pQCT) 151
Biomechanical Testing 152
Statistical Analysis 152
Results 153
Diets 153
Animal Body Weights and Food Intake 153
Red Blood Cell Fatty Acid Composition 156
Bone Densitometry – Lumbar Spine and Femur 156
Trabecular and Cortical Bone Mineral Content, Area and Density 160
Osteocalcin 160
Interleukin-6 161
Discussion 165
References 168

CHAPTER 6 Ovariectomy and omega-3 fatty acid supplementation alter the profiles of inflammatory and pro-resolving lipid mediators in murine bone marrow 171

Abstract 172
Introduction 172
CHAPTER 7 Mechanisms of action of DHA in MC3T3-E1/4 osteoblast-like cells

Abstract 193
Introduction 194
Methods 195
Materials 195
Cell culture conditions 196
Concentration of DHA to be used for in vitro experiments 196
Effect of DHA with and without genistein, daidzein or 17β-oestradiol on cell number in TNF-α exposed cells 197
Determination of cell number 197
Measurement of Alkaline Phosphatase Activity 198
Determination of TGF-β1 and PGE2 in cell culture supernatant 198
Determination of nuclear membrane oestrogen receptor expression 199
Statistical Analysis 199
Results 199
Determination of DHA concentration for cell culture experiments 199
Effect of DHA on cell number following exposure to TNF-α 200
Effect of DHA and oestrogenic compounds on TGF-β1 secretion by TNF-α – exposed cells 201
Effect of DHA and oestrogenic compounds on PGE2 secretion by TNF-α – exposed cells 202
Effect of DHA on nuclear membrane oestrogen receptor expression 204
Discussion 204
References 207

DISCUSSION AND CONCLUSIONS 210
Recommendations for Future Research 213
References 214
APPENDIX 1 Phytoestrogens and Bone – Summary of Studies in Humans 217
References 223
APPENDIX 2 Phytoestrogens and Bone – Summary of Studies in Animals 227
References 237
APPENDIX 3 The ovariectomised rat model for post-menopausal bone loss 239
References 241
APPENDIX 4 The MC3T3-E1/4 cell line as a model for osteoblasts in vivo 242
References 243
LIST OF PUBLICATIONS 244
List of Tables

Chapter 1

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of known bioactivity of LCPUFAs and their metabolites on calcium balance and bone metabolism</td>
</tr>
<tr>
<td></td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td>43</td>
</tr>
</tbody>
</table>

Chapter 2

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingredient composition (% air-dry weight) of control and experimental diets</td>
</tr>
<tr>
<td>2</td>
<td>Fatty acid composition (%) of bone marrow lipid</td>
</tr>
<tr>
<td>3</td>
<td>Lumbar spine bone mineral content, area and density</td>
</tr>
<tr>
<td>4</td>
<td>Percentage change in lumbar spine and femur bone mineral content, area and density</td>
</tr>
<tr>
<td>5</td>
<td>Femur bone mineral content, area and density</td>
</tr>
<tr>
<td>6</td>
<td>Trabecular and cortical bone mineral content (BMC), area (BA) and density (BMD) and periosteal and endosteal circumferences of right tibiae</td>
</tr>
<tr>
<td>7</td>
<td>Biomechanical properties of right femurs</td>
</tr>
<tr>
<td>8</td>
<td>Biochemical marker, growth factor and hormone concentrations in plasma</td>
</tr>
<tr>
<td></td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ingredient composition (% air-dry weight) of control and experimental diets</td>
</tr>
<tr>
<td>2</td>
<td>Concentrations of genistein and known genistein metabolites, and daidzein and known daidzein metabolites in ileal digesta, plasma, urine and faeces</td>
</tr>
<tr>
<td>3</td>
<td>Ileal and faecal digestibility of daidzein and genistein</td>
</tr>
<tr>
<td>4a</td>
<td>Input/Output balance (24hr) for genistein and daidzein in ovariectomised rats.</td>
</tr>
<tr>
<td>4b</td>
<td>Estimated plasma quantities of genistein and daidzein and their metabolites</td>
</tr>
<tr>
<td></td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>135</td>
</tr>
</tbody>
</table>

Chapter 5

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allocation of treatments to study groups</td>
</tr>
<tr>
<td>2</td>
<td>Ingredient composition (% air-dry weight) of control and experimental diets</td>
</tr>
<tr>
<td>3</td>
<td>Mean daily food intake, final (week 18) body weight and plasma concentration of 17β-oestradiol measured at week 8</td>
</tr>
<tr>
<td>4</td>
<td>Percentage of long chain polyunsaturated fatty acids in total red blood cell lipids</td>
</tr>
<tr>
<td>5</td>
<td>Lumbar spine bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) as measured by DEXA</td>
</tr>
<tr>
<td>6</td>
<td>Femur bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) as measured by DEXA</td>
</tr>
<tr>
<td>7</td>
<td>Trabecular and cortical bone mineral content (BMC), bone area, (BA) and bone mineral density (BMD) and periosteal and endosteal circumferences of right tibia</td>
</tr>
<tr>
<td></td>
<td>Page</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>162</td>
</tr>
</tbody>
</table>
Chapter 6

1. Ingredient composition (% air-dry weight) of control and experimental diets 175
2. Quantity (μmol/g bone marrow) of LOX mediators in bone marrow 182
3. Percentage of LOX-generated lipid mediators in bone marrow 183
List of Figures

Chapter 1

1. The internal structure of long bones 4
2. Factors influencing the synthesis of RANK, RANKL and OPG 8
3. Coloured scanning electron micrograph (SEM) of an osteoclast resorbing bone 9
4. Coloured scanning electron micrograph (SEM) of growing human osteoblasts exuding long strands of extracellular matrix 13
5. Cartoon representation of examples of osteoblast/osteoclast cross-talk 15
6. Coloured scanning electron micrograph (SEM) of a freeze-fractured osteocyte surrounded by bone 17
7. Summary diagram of some of the key regulatory mechanisms governing osteoblast and osteoclast formation and differentiation 23
8. Structure of the vertebrae of a healthy 50 year old and an osteoporotic 70 year old as visualised by x-ray microtomography 26
9. Summary diagram showing the chain of events following menopause which ultimately can lead to increased bone fracture risk 28
10. Metabolism of long chain polyunsaturated fatty acids 31
11. Structure of daidzein, genistein and two mammalian oestrogens 45
12. Metabolism of genistein 46
13. Metabolism of daidzein 47

Chapter 3

1. Detection of membrane-bound RANKL by flow cytometry 113
2. Cell cycle stage of MC3T3-E1/4 cells as determined by flow cytometry 114
3. Percentage of viable and apoptotic/necrotic MC3T3-E1/4 cells expressing membrane-bound RANKL 115
4. Percentage of viable MC3T3-E1/4 cells expressing membrane-bound RANKL following treatment with arachidonic acid (AA) or gamma-linolenic acid (GLA) and the cyclooxgenase inhibitor indomethacin (indo) 115
5. Percentage of viable and apoptotic/necrotic PGE2-treated MC3T3-E1/4 cells expressing membrane-bound RANKL 116
6. Osteoprotegerin (OPG) secretion (pg/thousand cells) by MC3T3-E1/4 cells 117

Chapter 4

1. Diet, ileal digesta and faecal contents of unmetabolised daidzein and genistein and their known metabolites following dietary supplementation of ovariectomised rats 133

Chapter 5

1. Plasma concentration of IL-6 (pg/ml) in ovariectomised female rats 161
Chapter 6

1. Lipoygenase-catalysed lipid mediator formation from arachidonic acid and LC-MS/MS spectra for lipoxin pathway products 178

2. Concentrations of lipoxgenase-generated lipid mediators derived from arachidonic, docosahexaenoic and eicosapentaenoic acids in bone marrow from female rats 179

3. Lipoygenase-catalysed lipid mediator formation from docosahexaenoic acid and LC-MS/MS spectra for resolvin pathway products 180

4. Lipoygenase-catalysed lipid mediator formation from eicosapentaenoic acid and LC-MS/MS spectra for resolvin pathway products 181

Chapter 7

1. Effect of long chain polyunsaturated fatty acids (LCPUFA) on cell proliferation in MC3T3-E1/4 osteoblast-like cells 200

2. Effect of treatment with DHA and/or oestrogenic compounds on cell number in TNF-α – exposed MC3T3-E1/4 osteoblast-like cells 201

3. Effect of treatment with DHA and/or oestrogenic compounds on mean TGF-β1 secretion by TNF-α – exposed MC3T3-E1/4 osteoblast-like cells 202

4. Effect of treatment with DHA and/or oestrogenic compounds on mean PGE2 secretion by TNF-α – exposed MC3T3-E1/4 osteoblast-like cells 203
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-HEPE</td>
<td>12-hydroxy-eicosapentaenoic acid</td>
</tr>
<tr>
<td>12-HET E</td>
<td>12-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid</td>
</tr>
<tr>
<td>14-HDHA</td>
<td>14-hydroxy-4Z,7Z,10Z,12E,16Z,19Z-docosahexaenoic acid</td>
</tr>
<tr>
<td>15-HEPE</td>
<td>15-hydroxy-eicosapentaenoic acid</td>
</tr>
<tr>
<td>15-HET E</td>
<td>15-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid</td>
</tr>
<tr>
<td>18-HEPE</td>
<td>18-hydroxy-eicosapentaenoic acid</td>
</tr>
<tr>
<td>5-HEPE</td>
<td>5-hydroxy-eicosapentaenoic acid</td>
</tr>
<tr>
<td>5-HET E</td>
<td>5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid</td>
</tr>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha-linolenic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATPase</td>
<td>Adenosine triphosphatase</td>
</tr>
<tr>
<td>BA</td>
<td>Bone Area</td>
</tr>
<tr>
<td>BMC</td>
<td>Bone Mineral Content</td>
</tr>
<tr>
<td>BMD</td>
<td>Bone Mineral Density</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenic protein</td>
</tr>
<tr>
<td>BRU</td>
<td>Bone Remodelling Unit</td>
</tr>
<tr>
<td>c-AMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CaR</td>
<td>Calcium receptor</td>
</tr>
<tr>
<td>Cbfal (RUNX2)</td>
<td>Core binding factor 1</td>
</tr>
<tr>
<td>C/EBP-alpha</td>
<td>CAAT enhancer binding protein-alpha</td>
</tr>
<tr>
<td>c-GMP</td>
<td>Cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>COX</td>
<td>Cyclooxygenase</td>
</tr>
<tr>
<td>CTX</td>
<td>C-terminal telopeptide of type 1 collagen</td>
</tr>
<tr>
<td>Dai</td>
<td>Daidzein, 4',7-Dihydroxyisoflavone 7-Hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 7-Hydroxy-3-(4-hydroxyphenyl)chromone</td>
</tr>
<tr>
<td>DEXA</td>
<td>Dual Energy X-Ray Absorptiometry</td>
</tr>
<tr>
<td>DGLA</td>
<td>Di-homo-gammalinolenic acid</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DMI</td>
<td>Dry matter intake</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DPyd</td>
<td>Deoxypyridinoline cross links</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>eph</td>
<td>Ephrin</td>
</tr>
<tr>
<td>ER</td>
<td>(O)estrogen receptor</td>
</tr>
<tr>
<td>F</td>
<td>Femur</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FGF</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GC/MS</td>
<td>Gas chromatography mass spectrometry</td>
</tr>
</tbody>
</table>
Genistein, 4',5,7-Trihydroxyisoflavone 5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

Gamma-linolenic acid

High performance liquid chromatography

Hormone Replacement Therapy

Interferon

Insulin-like growth factor

Interleukin

Indomethacin

Inducible nitric oxide synthase

Kilogram

Litre

Linoleic acid

Liquid chromatography tandem mass spectrometry

Long chain polyunsaturated fatty acid

Lipoxygenase

Low density lipoprotein receptor related proteins 5/6

Lumbar spine

Leukotriene B4

Lipoxin A4, 5S,6R,15S-trihydroxy-7E,9E,13E,11Z-eicosatetraenoic acid

Lipoxin B4, 5S,14R,15S-trihydroxyl-7E,9E,13E11Z-eicosatetraenoic acid

Mitogen activated protein kinase

Macrophage colony stimulating factor

Minimum essential media

Millilitre

Millimetre

Matrix metalloproteinase

Mole

Messenger ribonucleic acid

Nicotinamide adenine dinucleotide phosphate

Nuclear factor kappa B

Nitric oxide

PD1 generated in neural systems

o-desmethylangolensin

17β-oestradiol

Osteoprotegerin

Osterix

Ovariectomised

Platelet derived growth factor

Phycoerythrin

Prostaglandin

Peroxisome proliferator-activator receptors

Peripheral Quantitative Computed Tomography
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RANK</td>
<td>Receptor activator of nuclear factor kappa B</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa B ligand</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RIA</td>
<td>Radio immunoassay</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>Rv</td>
<td>Resolvin, resolution phase interaction product</td>
</tr>
<tr>
<td>RvD1</td>
<td>7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid;</td>
</tr>
<tr>
<td>RvE1</td>
<td>5S,12R,18R-trihydroxy-eicosa-6Z,8E,10E,14Z,16E-pentaenoic acid</td>
</tr>
<tr>
<td>RvE2</td>
<td>5S,18(R/S)-dihydroxy-eicosapentaenoic acid</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X receptor</td>
</tr>
<tr>
<td>s.c.</td>
<td>Sub-cutaneous</td>
</tr>
<tr>
<td>Sham</td>
<td>Sham-operated</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming Growth Factor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TRAFs</td>
<td>Tumour necrosis factor receptor activated factors</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tartrate resistant acid phosphatase</td>
</tr>
<tr>
<td>Tx</td>
<td>Thromboxane</td>
</tr>
<tr>
<td>Wnt</td>
<td>Wingless type</td>
</tr>
</tbody>
</table>