Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Genetic diversity and flowering in *Clianthus* and New Zealand *Sophora* (Fabaceae)

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

in

Plant Molecular Biology

at Massey University, Palmerston North,

New Zealand

Jiancheng Song

2005
Abstract

Clianthus and New Zealand *Sophora* species are woody legumes endemic to New Zealand, with high ornamental value and biodiversity significance. Research was conducted to address the fact that little is known about the details of their developmental characteristics, genetic structure and relatedness of the wild populations, and their molecular mechanism of flowering.

Genetic diversity and relatedness of all remaining wild populations of *Clianthus* and samples of all New Zealand *Sophora* species were investigated using ISSR and AFLP markers. Genetic relationships were established for *Sophora* species, *Clianthus* wild populations and cultivars, and most individuals in each of the wild *Clianthus* populations. The molecular evidence did not support the recent separation on morphological grounds of the two *Clianthus* species, *C. maximus* and *C. puniceus*.

Postharvest treatments were tested to extend vase life of the short-lived cut *Clianthus maximus* and *Sophora tetraperta* flowers. Appropriately treated *Clianthus* cut flowers lasted 10-12 days in the vase, with over 80% of flowers opening. Similar postharvest treatments did not improve the vase performance of cut *Sophora* flowers.

Detailed calendars of vegetative and reproductive growth, and of floral ontogeny were developed for *Clianthus* and *Sophora*. Contrasting behaviours of both vegetative and reproductive growth were observed between these two legumes. A long period of summer-autumn dormancy of vegetative and reproductive growth in *Sophora*, and mass abortion of initiated *Clianthus* inflorescences during most of the year were observed. Unusual floral ontogeny processes, with precocious carpel initiation and delayed petal development, were observed in both species.

An efficient two-step quantitative real-time RT-PCR protocol for detailed gene expression analysis of large numbers of samples was developed using SYBR Green DNA dye and a LightCycler instrument. The consistency of this protocol was optimised with regards to sample and template preparation, primer design, and determination of appropriate internal controls for gene expression quantification. Differences of gene expression in the range of 5-7 orders were effectively detected.
Putative partial homologues of *LEAFY, APETALAI, PISTILLATA*, and *AGAMOUS* were isolated from both *Clianthus* and *Sophora*. Detailed temporal and spatial expression of each floral identity gene was investigated using quantitative real-time RT-PCR. The expression patterns, together with the sequence similarity, showed that these new isolated gene fragments were most probably *LEAFY, APETALAI, PISTILLATA*, and *AGAMOUS* homologues in *Clianthus* and *Sophora*, and that the ABC model of floral development is generally applicable to both species. However, there were important variations in temporal expression patterns compared to those of herbaceous species. A bimodal expression pattern of *LEAFY* and *APETALAI* homologues was observed in *Sophora*, but not in *Clianthus*, coincident with their contrasting patterns of floral initiation and development.
Acknowledgements

I would like to thank my supervisor Dr John Clemens, who has been always available to meet my need and helpful to solve any problem during my PhD study. It was his constant encouragement that helped me achieve all that is in this thesis. I am also very much indebted to him for the acute corrections and valuable suggestions of the drafts.

It is also my great pleasure to express my thanks to Professor Paula E. Jameson, my co-supervisor, who was always helpful with discussions on the research programme. I am very thankful to her for the valuable suggestions and careful corrections of this work.

I would like to express my sincere thanks to Dr. Garry Burge of Crop & Food Research, my other co-supervisor, for his continued support, valuable suggestions and assistance especially with postharvest plant growth requirement.

Many thanks to Joanna Murdoch for collecting some Clianthus samples and doing the DNA extraction and RADP analysis. To Peter Heenan of Landcare Research for supply of Sophora tissue samples and determination of identities for Clianthus species. To Steve Benham of Auckland Regional Botanic Garden for supplying C. puniceus samples. To Dave King and other Department of Conservation staff for help in procuring samples from the field. To Huaibi Zhang of Crop & Food Research for his valuable suggestions and inspiring discussions for the research programme.

I would like to thank all those people in the Institute of Molecular BioSciences, especially Trish McLenachan, Peter Lockhart, Leon Perrie, Suzanne D’Arth, Lekha Sreekantan, Ivan Galis and all lab colleagues for their help and kindness.

Special thanks to my wife Lijun Jiang, not only for her continued support during my study, but also for her contribution in field and lab work and in preparation of this thesis.

Finally, I acknowledge Public Good Science Fund Native Ornamental Plants Programme for funding the project via subcontract from Crop & Food Research, and Massey University for the Doctoral Scholarship.
Table of contents

Abstract i
Acknowledgements iii
Table of Contents iv
List of Tables ix
List of Figures x
Abbreviation xiv

Chapter 1 Introduction
1.1 Overview 1
 1.1.1 Basic aspects and conservation status of Clianthus 1
 1.1.2 Basic aspects of Sophora 3
1.2 Molecular markers and their application in genetic diversity and
genetic relatedness determination of higher plants 5
 1.2.1 Genetic diversity and management of endangered species 5
 1.2.2 RAPD markers 6
 1.2.3 AFLP markers 7
 1.2.4 ISSR markers 10
1.3 Functions and expression of floral identity genes 13
 1.3.1 Floral meristem identity genes 13
 1.3.2 Floral organ identity genes and the ABC model 15
 1.3.3 Expression of floral identity genes in woody perennials 18
 1.3.3.1 Expression of LFY/FLO homologues 18
 1.3.3.2 Expression of A-class genes 20
 1.3.3.3 Expression of B-class genes 23
 1.3.3.4 Expression of C-class genes 24
1.4 Summary 26
1.5 Aims of the study 27

Chapter 2 Analysis of genetic diversity and genetic relatedness of
 Clianthus and Sophora populations using molecular markers
2.1 Introduction 28
2.2 Materials and methods 30
 2.2.1 Plant material 30
3.3.1 Developmental characteristics in *Clianthus* 76
 3.3.1.1 Vegetative development characteristics 76
 3.3.1.2 Reproductive development characteristics 78
 3.3.1.3 Microscopic observation of reproductive development in *Clianthus* 79
3.3.2 Vegetative and reproductive development cycles in *Sophora* 81
 3.3.2.1 Vegetative development characteristics 81
 3.3.2.2 Reproductive development characteristics 83
 3.3.2.3 Microscopic observation of reproductive development 83
3.3.3 Postharvest treatments of cut *Clianthus* flowering shoots 85
 3.3.3.1 Effect of sucrose holding solution on vase performance 85
 3.3.3.2 Effect of sucrose pulse on vase performance 86
 3.3.3.3 Effect of STS treatments on vase performance 90
 3.3.3.4 Effect of repetitious stem cutting and solution change 92
3.3.4 Postharvest treatments of cut *Sophora* flowering shoots 92
3.4 Discussion 95
 3.4.1 Vegetative and reproductive development 95
 3.4.2 Postharvest treatment 99

Chapter 4 Isolation and characterization of floral identity genes in *Clianthus* and *Sophora*

4.1 Introduction 102
4.2 Materials and methods 104
 4.2.1 Extraction of RNA 104
 4.2.1.1 Hot-borate extraction method 104
 4.2.1.2 Mini-preparation method 106
 4.2.2 Reverse transcription-polymerase chain reaction (RT-PCR) 106
 4.2.3 Isolation of the partial homologues of floral identity genes and housekeeping genes from *Sophora* and *Clianthus* 107
 4.2.3.1 Degenerate primer design 107
 4.2.3.2 Sequencing and sequence verification 109
 4.2.3.3 Sequence comparison and phylogenetic analysis 110
4.3 Results 112
 4.3.1 Analysis of *LFY* homologues *STLFY* and *CMLFY* 112
 4.3.2 Analysis of *APETALA1* sequences, *CMA1* and *STAPI* 118
4.3.3 Analysis of *PISTILATA* sequences, *CMPI* and *STPI* 124
4.3.4 Analysis of *AGAMOUS* sequences, *CMAG* and *STAG* 130
4.3.5 Isolation and verification of housekeeping gene sequences used as internal controls for gene expression studies 135

4.4 Discussion 136

Chapter 5. Temporal and developmental expression of floral identity genes in *Clianthus* and *Sophora* using real-time RT-PCR

5.1 Introduction 141
5.2 Materials and methods 142
 5.2.1 Plant materials 142
 5.2.2 RNA isolation 143
 5.2.3 cDNA synthesis 146
 5.2.4 Real-time PCR primer design 147
 5.2.5 Real-time PCR assay 148
 5.2.6 Determination of optimal MgCl₂ concentration 149
 5.2.7 PCR amplification efficiency determination 149
 5.2.8 Controlling sample variation 150
 5.2.9 Determination of appropriate internal controls 150
 5.2.10 Gene expression quantification 151
 5.2.11 Data analysis 152
5.3 Results 152
 5.3.1 Establishment and optimisation of real-time RT-PCR methodology for expression analysis of floral identity genes in *Clianthus* and *Sophora* 152
 5.3.1.1 RNA Isolation 152
 5.3.1.2 cDNA synthesis methods 154
 5.3.1.3 cDNA dilution 156
 5.3.1.4 MgCl₂ concentration determination 158
 5.3.1.5 Primer pair selection for *Sophora* and *Clianthus* floral identity genes and selected housekeeping genes 161
 5.3.1.6 PCR amplification efficiency determination for selected genes 164
 5.3.1.7 Controlling sample variation for gene expression quantification 165
5.3.2 Determination of appropriate housekeeping genes as internal controls

5.3.2.1 Stability of selected housekeeping genes in different developmental stages of Sophora floral tissues

5.3.2.2 Stability of selected housekeeping genes in different developmental stages of Clianthus floral tissues

5.3.3 Expression characteristics of floral identity genes in different tissue types of Sophora and Clianthus

5.3.3.1 Expression of floral identity genes in different vegetative and reproductive tissues of Sophora

5.3.3.2 Expression of floral identity genes in different vegetative and reproductive tissues of Clianthus

5.3.3.3 Expression of floral identity genes in different floral organs of Sophora

5.3.3.4 Expression of floral identity genes in different floral organs of Clianthus

5.3.4 Temporal and developmental expression characteristics of floral identity genes in Clianthus and Sophora

5.3.4.1 Expression profiles of floral identity genes in Sophora throughout the year

5.3.4.2 Expression profiles of floral identity genes in Clianthus throughout the year

5.3.4.3 Expression of Sophora floral identity genes at different developmental stages

5.3.4.4 Expression of Clianthus floral identity genes at different developmental stages

5.4 Discussion

5.4.1 Establishment and optimisation of real-time RT-PCR assay

5.4.2 Determination of housekeeping genes as internal controls

5.4.3 Expression characteristics of Sophora and Clianthus floral identity genes homologues

Chapter 6 Final discussion and Conclusions

References
List of Tables

Table 2.1 Samples of *Sophora* Section *Edwardsia* used for ISSR analysis 32
Table 2.2 Summary of ISSR PCR amplification results for *Clianthus* 43
Table 2.3 Genetic variation statistics for wild populations and cultivated accessions of *Clianthus* based on ISSR and RAPD loci 46
Table 2.4 Geographic distance and Nei's genetic distance for 12 wild populations of *Clianthus*, based on ISSR and RAPD loci 48
Table 2.5 Summary of AFLP amplification results for *Clianthus* 53
Table 2.6 Nei's genetic distance for 12 wild populations of *Clianthus*, based on 125 AFLP loci 55
Table 2.7 Genetic distance and genetic identity among *Sophora* species 59
Table 3.1 Composition of fixatives and stains 70
Table 4.1 Sequence similarities between *CMLFY, STL FY* and *LFY/FLO* homologue genes 116
Table 4.2 Sequence similarities between *CMAPI, STAPI* and selected *AP1/SQUA* homologue genes 122
Table 4.3 Sequence similarities between some *PI/GLO* homologue and orthologue genes 128
Table 4.4 Sequence similarities between some *AG/PLE* homologues 133
Table 5.1 *Sophora tetraptera* tissue samples for RNA preparation 144
Table 5.2 *Clianthus maximus* tissue samples for RNA preparation 145
Table 5.3 Comparison of RNA isolation methods 153
Table 5.4 Effect of MgCl₂ concentration on real-time PCR efficiency 159
Table 5.5 Sequences of real-time PCR primers for floral identity genes and housekeeping genes in *Sophora* and *Clianthus* 163
Table 5.6 PCR efficiencies of *Sophora* and *Clianthus* floral identity genes and selected housekeeping genes 164
Table 5.7 Comparison of gene expression stability for *Sophora* samples 169
Table 5.8 Normalization factors calculated based on geometric mean of housekeeping genes *18S, actin* and *GAPDH* 171
Table 5.9 Comparison of gene expression stability for *Clianthus* samples 173

List of Figures

Figure 1.1 The traditional and expanded ABC models of floral development 16
Figure 2.1 Distribution of *Clianthus* populations used for DNA extraction and analysis. 29
Figure 2.2 Representative RAPD and ISSR profiles for *Clianthus* wild populations and cultivars 44
Figure 2.3 Correlation between size of wild *Clianthus* populations and polymorphisms and number of multilocus genotypes 45
Figure 2.4 Effect of geographical separation of wild *Clianthus* populations on Nei's interpopulation genetic distance 47
Figure 2.5 Genetic relatedness dendrogram for individual plants of wild *Clianthus* populations based on ISSR/RAPD data 50
Figure 2.6 Genetic relatedness dendrogram of wild *Clianthus* populations and commercial cultivars 51
Figure 2.7 Representative AFLP profiles generated using the E-AAA/M-CAA primer combination 54
Figure 2.8 Genetic relatedness dendrogram of wild *Clianthus* populations based on AFLP data 56
Figure 2.9 Representative ISSR profiles of nine *Sophora* species from section *Edwardsia* using UBC primer 866 58
Figure 2.10 Genetic relatedness dendrogram of *Sophora* species on individual level based on ISSR data 60
Figure 2.11 Genetic relatedness dendrogram of *Sophora* species on species level based on ISSR data 61
Figure 3.1 Flow chart of tissue dehydration and wax infiltration for paraffin embedding of *Clianthus* and *Sophora* samples 71
Figure 3.2 Staining schedule with safranin and fast green 72
Figure 3.3 Mid- and late developmental stages of *Clianthus* flower buds 74
Figure 3.4 Mid- and late developmental stages of *Sophora* flower buds. 74
Figure 3.5 Annual mean shoot growth and leaf number per shoot in *Clianthus maximus* 77
Figure 3.6 Leaf emergence and development in *Clianthus* 77
Figure 3.7 Inflorescence emergence and elongation in *Clianthus* 78
Figure 3.8 Inflorescence and flower bud initiation and development in *Clianthus*

Figure 3.9 Annual mean shoot growth and leaf number per shoot in *Sophora teptratera*

Figure 3.10 Leaf emergence and development in *Sophora*

Figure 3.11 Inflorescence and flower bud initiation and development in *Sophora*.

Figure 3.12 Effect of sucrose holding solution treatment on percentage of open flower buds and vase life in *Clianthus*

Figure 3.13 Effect of sucrose holding solution treatment on water uptake, shoot weight and petal growth rate in *Clianthus*.

Figure 3.14 Effect of sucrose pulse treatment on flower bud abscission, the percentage of open flowers, and vase life in *Clianthus*

Figure 3.15 Effect of sucrose pulse treatment on shoot weight and water uptake in *Clianthus*

Figure 3.16 Effect of 2 mM STS pulse treatment on vase life and percentage of open flowers in *Clianthus*

Figure 3.17 Effect of 2 mM STS pulse treatment on shoot weight and water uptake in *Clianthus*

Figure 3.18 Effect of solution change and stem cut on water uptake, shoot weight, vase life and percentage of open flowers in *Clianthus*.

Figure 3.19 Postharvest treatments for *Clianthus* cut flowers.

Figure 4.1 Comparison of amino acid sequences of *STLFY* and *CMLEY* with some FLO/LFY-like proteins

Figure 4.2 Phylogenetic relationship of some *LFY* homologues from a wide range of angiosperm and gymnosperm species.

Figure 4.3 Deduced gene structure of *STLFY* and *CMLFY*

Figure 4.4 Comparison of amino acid sequences of CMAPl and STAPl with some AP1/SQUA-like proteins

Figure 4.5 Phylogenetic relationship of some *AP1* homologues and of *PI* and *AG* from a wide range of angiosperm species

Figure 4.6 Deduced gene structure of *STAP1* and *CMAPl*

Figure 4.7 Comparison of amino acid sequences of STPI and CMPI
with some PI-like proteins and AP3 protein

Figure 4.8 Phylogenetic relationship of some PI homologues and paralogues from wide range of angiosperm species

Figure 4.9 Deduced gene structure of STPI and CMPI

Figure 4.10 Comparison of amino acid sequences of STAG and CMAG with some AG/PLE-like proteins

Figure 4.11 Phylogenetic relationship of some AG homologues, and of PI and AP1, from a wide range of angiosperm species

Figure 4.12 Deduced gene structure of STAG and CMAG

Figure 5.1 Total RNAs isolated using the mini-preparation protocol

Figure 5.2 LightCycler quantification curves of STAP1 for different cDNA synthesis ingredients

Figure 5.3 Comparison of the Ct values of cDNAs synthesized using different primers and DTT combinations

Figure 5.4 Effect of cDNA dilution on real-time PCR performance of Sophora floral identity genes

Figure 5.5 Effect of cDNA dilution (10- to 100-fold) on real-time PCR performance of Sophora floral identity genes

Figure 5.6 Effect of MgCl₂ concentration on PCR efficiency of Clianthus floral identity genes and housekeeping genes

Figure 5.7 Effect of MgCl₂ concentration on LightCycler real time PCR efficiency of the CMLFY gene

Figure 5.8 Real-time PCR performance of floral identity genes in Sophora and Clianthus

Figure 5.9 Comparison of variation during different steps of gene quantification

Figure 5.10 Variation of LightCycler quantification curves resulted from three different RNA extractions and three cDNA synthesis reactions in the same PCR run

Figure 5.11 Variation in relative expression of housekeeping genes and target gene within the same tissue sample of Sophora

Figure 5.12 Expression variation of Sophora housekeeping genes at different developmental stages

Figure 5.13 Normalization effect on STAG expression using
different housekeeping genes in *Sophora* 172
Figure 5.14 Variation in relative expression of housekeeping genes and target gene within the same tissue sample for *Clianthus* 175
Figure 5.15 Expression variation of *Clianthus* housekeeping genes at different developmental stages 176
Figure 5.16 Normalization effect on *CMLFY* expression using different housekeeping genes for *Clianthus* 176
Figure 5.17 Relative expression (logarithmized scale) of four *Sophora* floral identity genes in vegetative and reproductive tissues 179
Figure 5.18 Relative expression (logarithmized scale) of four *Clianthus* floral identity genes in vegetative and reproductive tissues 181
Figure 5.19 Expression of *Sophora* floral identity genes in different floral organs at the same developmental stage 184
Figure 5.20 Expression (logarithmized scale) of *Sophora* floral identity genes in different floral organs at the same developmental stage 184
Figure 5.21 LightCycler quantification of the *Sophora STAPI* gene in different floral organs 185
Figure 5.22 Expression of *Clianthus* floral identity genes in different floral organs at the same developmental stage 188
Figure 5.23 Expression (logarithmized scale) of *Clianthus* floral identity genes in different floral organs at the same developmental stage 188
Figure 5.24 LightCycler quantification of the *Clianthus CMAG* gene in different floral organs 189
Figure 5.25 Temporal expression profiles of *Sophora* floral identity genes in inflorescences, and individual flower buds 192
Figure 5.26 Temporal expression profiles of *Clianthus* floral identity genes throughout year 195
Figure 5.27 Floral identity gene expression in *Sophora* tissues at different developmental stages 198
Figure 5.28 Floral identity gene expression in *Clianthus* tissues at different developmental stages 201
Figure 6.1 Summarised comparison of vegetative and reproductive development, and floral gene expression in *Sophora tetrapetra*, *Clianthus maximus* and *Metrosideros excelsa* 221
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>amplified fragment length polymorphism</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>c.</td>
<td>approximately</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>cpDNA</td>
<td>chloroplast DNA</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>ISSR</td>
<td>inter-simple sequence repeats</td>
</tr>
<tr>
<td>ITS</td>
<td>internal transcribed spacer</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>l</td>
<td>litre</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>nmol</td>
<td>nanomole</td>
</tr>
<tr>
<td>nr DNA</td>
<td>nuclear DNA</td>
</tr>
<tr>
<td>P</td>
<td>probability</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>RAPD</td>
<td>randomly amplified polymorphic DNA</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>STS</td>
<td>silver thiosulfate</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>ºC</td>
<td>degrees Celsius</td>
</tr>
</tbody>
</table>