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ABSTRACT 

Determining the potential of densified forage as a prospective substitute to 

commercial feed in small ruminant production systems in the Caribbean is critical. 

This may lead to the development of more self-sufficient feeding systems which 

incorporate more locally available ingredients and reduce the dependence on imported 

commercial feeds. There is currently a lack of information on the use of, or effect of, 

densified forage on performance in regional small ruminant production.  Additionally, 

information is limited on the nutritive value of prospective forages, to which these 

technologies can be applied.   Therefore, the aims of the thesis were to 1) determine 

the nutritive value of a range of tropical forages in the Caribbean that are used in 

regional small ruminant production systems; 2) determine the effect of densified diets 

comprising different levels of forage on intake in growing lambs; and 3) determine 

the effect of densified diets comprising forage on growth performance and 

digestibility in lambs. The results of the thesis showed that there is a range of forages 

of varying nutritive value that can be used to develop more sustainable feed systems 

for small ruminants in the Caribbean.  Further, the results of the thesis showed that 

when Trichanthera gigantea (an abundantly available forage) was densified and fed 

to growing lambs, it resulted in similar intakes, digestibility and growth performance 

in growing lambs to that of commercial concentrates.  The findings of the research 

can be used as a platform for future studies on the application of densification 

technologies to feeding systems for small ruminants in the Caribbean. 
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The global demand for animal protein has increased and, by 2050, there will be an 

additional two billion people, raising this demand by 60 to 70% (FAO-UN, 2014).  

This observed trend is similar for the Caribbean Community (CARICOM) which may 

be a direct result of rising affluence and urbanisation, as well as a rapidly increasing 

population projected to rise from 18 million to 22 million by 2050 (Delgado et al., 

2001; FAO-UN, 2014; Valdes et al., 2017).  Further, small ruminants, including sheep 

and goats, are a significant component of the agricultural landscape in the Caribbean 

region and there is a high demand for animal protein from small ruminants (CFC and 

FIGMDP, 2010; FAO-UN, 2014; Hosein et al., 2013; Lallo, 2009; Lallo et al., 2016b).  

Nevertheless, local meat production from the sector only meets 20 to 25% of the 

regional demand and some of the major constraints to production may require 

addressing, particularly the high dependence on costly imported concentrate feeds 

(Lallo et al., 2016b; Singh et al., 2006b; Valdes et al., 2017). The increasing 

complexity and uncertainty in global grain markets, competing demands for grain 

supply (biofuel), higher frequencies of extreme weather events and growing foreign 

exchange volatility within the Caribbean Community (CARICOM), all increase the 

risks of depending on imported feed ingredients (Gaughan et al., 2009; Lallo, 2015; 

Prakash and l'agriculture, 2011).  One approach to addressing this challenge is 

increasing the utilisation of locally available feeds, including forages, which may 

allow for the development of more sustainable feeding systems for small ruminants in 

the Caribbean (Avril et al., 2011; Hughes et al., 2013; Miller et al., 2003).  

However, forages have various challenges which must be treated with, to improve their 

utility in regional, small ruminant, production systems. For example, unpredictable 

yields is a critical challenge of forages given the increasingly pronounced dry periods 

that are now a feature of Caribbean agriculture (Hughes et al., 2012; Lallo et al., 
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2016b). Further, the labour intensive nature of harvesting forages (John et al., 2010; 

Palmer et al., 1998) and the difficulties with storage and transportation are other 

challenges of the resource (Tumuluru et al., 2011; Tumuluru et al., 2010a). Moreover, 

inconsistent quality which is dependent on climate, geographic location, soil 

conditions, harvesting time and cultural practices are other challenges of forages 

(Assefa and Ledin, 2001; Ball et al., 2001; Newman et al., 2006).   These may all deter 

the adoption of forage as an alternative to imported concentrate feed despite its high 

cost.  In fact, approximately 62% of regional farmers use concentrates that account for 

up to 65% of the total feed rations (Lallo, 2009). This suggests that the Caribbean small 

ruminant production systems cannot be built simply on the introduction of highly 

nutritive tropical forages.   Therefore, there is a need for the adoption of a strategy that 

treats with these challenges. 

Forage conservation technologies, including pellets and cubes, have been used to 

address some of the previously outlined challenges of forage systems (ASABE, 2016; 

Tumuluru et al., 2011). This technology has been used to preserve abundant high-

quality forages yielded during the wet periods for improved access and use during the 

drier resource-scarce months (ASABE, 1997; Dougnon et al., 2012; Hau, 2014). 

Further, the technology improves the storage and transportation of bulky materials 

through conversion into more dense forms (Orden et al., 2014; Tumuluru et al., 2011; 

Wanapat et al., 2013).  Additionally, densified feeds are nutrient-dense and are 

associated with improved animal performance compared to feed offered in fresh low-

bulk density forms (Coleman and Lawrence, 2003; El-Deek and Brikaa, 2009b; Hau, 

2014).  This technology has been explored across both temperate and tropical farm 

systems, however, it has been seldom examined or applied to small ruminant 

production systems in the Caribbean. Therefore, the main objective of this study is to 
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determine the effect of forage densification (pelleting) on feeding systems for small 

ruminants in the Caribbean and the related aims are to: 

1. Review the literature on small ruminant production systems in the Caribbean 

and on the application of forage densification technologies to feed systems for 

ruminant production;  

2. Identify the range of forage species available and used in small ruminant 

production systems in the Caribbean and to describe these based on their 

nutritive value; 

3. Determine the nutritive value and effect of a densified diet comprised of 

different levels of forage on intake in growing lambs; 

4. Determine the effect of a densified diet comprised of forage on growth 

performance and digestibility in lambs; and  

5. To discuss the findings of the previous chapters and to conclude with 

recommendations on the way forward. 
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2.1 Overview 

The Governments of the Caribbean Community (CARICOM) regard small ruminants 

as significant to Caribbean agriculture (CFC and FIGMDP, 2010; Lallo, 2015; Singh 

et al., 2006a). The commodity is an important source of animal protein and calorie 

intake for the region and many derive income from it (Asiedu, 2001; FAO-UN, 2014).  

Further, small ruminants provide a model of livestock production which complements 

the geophysical and socioeconomic construct of the Caribbean islands (Hosein et al., 

2013; Mohammed, 2013). For instance, small ruminants have a lower requirement for 

land space compared to large ruminants, making them more suitable for the limited 

land resources of the Small Island Developing States (SIDS) of CARICOM (Maharaj 

and Singh-Ackbarali, 2014).  Additionally, the ability to thrive on marginal forages 

and the overall low investment per head when compared to large ruminants, makes the 

species suitable for small-scale farming systems which are common to the region 

(Lallo et al., 2016b).   Small ruminants provide a more economically viable livestock 

production system due to the lower dependence on costly grain imports compared to 

the swine and poultry livestock classes (Terrill, 1986).  They are a key part of regional 

cultural events and celebrations, as well as cuisine (Lallo et al., 2016b). With respect 

to religion, there are no religious taboos attached to small ruminant products which 

restrict their consumption (FAO-UN, 2014; Hosein et al., 2013; Singh et al., 2006a). 

Despite the great potential of the commodity, the region remains a large importer of 

small ruminant meat and meat products with a mere 25% of consumption being met 

by local production (Lallo, 2015).  One of the current efforts of CARICOM involves 

reducing the food import bill of US $5 billion, and, in 2011, the import of meat and 

meat products accounted for 10% of this bill (CARCIOM, 2020).  Improving regional 

production requires treating with the major challenges of the sector, a critical one being 
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the high dependence on costly imported concentrate feeds (FAO-UN, 2014; Hosein et 

al., 2013; Singh et al., 2006a). Currently, feed inputs account for over 60% of the cost 

of production for regional small ruminant systems (Singh et al., 2006a). The overall 

high cost of production has resulted in reduced price competitiveness when compared 

to that of imports (see Table 2.1) (Singh et al., 2006a).  
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Table 2.2 Comparison of costs between regionally produced and imported mutton/chevron 

Source: Singh et al. (2006a) 
a Cost includes 15% CET (Common External Tariffs) and Importers’ margin 

 

Country Average cost of regionally produced 

Mutton/Chevron (Wholesale 

(USD/kg)) 

Average cost of imported Mutton 

(Wholesale (USD/kg)) a 

Average cost of imported Chevron 

(Wholesale (USD/kg)) a 

Trinidad and Tobago 11.17 7.91 5.61 

Jamaica 8.88 5.62 3.32 

Barbados 8.8 5.59 - 

St Lucia 7.68 4.42 2.12 

Guyana 6.61 3.35 - 

Belize 5.87 2.61 - 

St. Vincent and the Grenadines 5.17 1.91 - 
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Forages have been identified as a potential alternative to costly feed imports. 

(Hernández and Sánchez, 2014; Patersen et al., 1992; Valdes et al., 2017).  Although 

there are many challenges related to the production, harvesting and feeding of forages, 

their utility in small ruminant systems may be improved through the application of 

forage densification technologies. However, there is a lack of information on the use 

or effect of forage densification on regional feed systems for small ruminants.  

Therefore, the objectives of the literature review are to:  

1) Define and describe small ruminant production systems within the Caribbean; 

and 

2) Assess the potential of forage densification for use in sheep and goat 

production systems by: 

i. Outlining the various ways to regulate the nutritive value of forage 

inputs prior to processing 

ii.  Describing forage densification technologies and the impact of these 

on ruminant production systems 

 

2.2 Characteristics of small ruminant production systems within the Caribbean  

 Scale of agriculture operations 

The land resources of the islands of the English-speaking CARICOM is less than that 

of the larger producers of small ruminants including Australia and New Zealand (See 

Tables 2.2 and 2.3). The comparably lower and more vulnerable land resources prompt 

the need for more rigorous management systems which encourage efficient utilisation 

of these limited resources (Lallo et al., 2016b).  
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Table 2.2 Land distribution for the Caribbean region and developed Oceania  

Country Total Land Area (ha) Total Agriculture Land (ha) 

Antigua and Barbuda 44,000 9,000 

Bahamas 1,001,000 14,000 

Barbados 43100 14,000 

Belize 2,296,600 160,000 

Cayman Islands 26,400 2,700 

Dominica 75400 25,000 

Grenada 34,400 8,000 

Guyana 19,685,000 1,680,000 

Jamaica 1,083,000 444,000 

Saint Kitts and Nevis 26,100 6,000 

Saint Lucia 61,600 10,600 

Saint Vincent and the Grenadines 38,900 10,000 

Trinidad and Tobago 512,800 54,000 

Australia 76,823,000 365,913 

New Zealand 26,331,000 11,116, 000 

  Source: (FAOSTAT, 2018; Trading Economics, 2018) 
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Table 2.3 Farm size distribution across the Caribbean 

Size (acres) % 

Landless 2.2 

1  33.3 

> 1 to 5 26.9 

>5 to 15 17.1 

>15 20.6 

  Source:  (Lallo et al., 2009; Lallo et al., 2016b) 

 

 

2.3 Production systems 

There are three main types of production systems for small ruminants within the 

Caribbean. These are intensive, semi-intensive and extensive production systems 

(Hernández and Sánchez, 2014; Lallo et al., 2009; Lallo et al., 2016b).  

In extensive production systems, animals are left to graze and browse all day with 

minimal to no supplemental feeding (Hernández and Sánchez, 2014).  These systems 

are associated with minimal management and are often low cost as a result (Hernández 

and Sánchez, 2014).  However, the generally poor quality of pasture and overgrazing 

results in lower production rates (Singh et al., 2006a).  Additionally, there is a higher 

risk of loss through praedial larceny and dog predation (Hernández and Sánchez, 

2014).  In addition to the increasing number of farmers who are either landless or have 

limited land resources, these challenges mean that such a system is becoming less 

popular with a minority of 13% farms practicing extensive sheep and goat production 

(Lallo, 2009).  
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Intensive systems are those where animals are housed throughout the day and forages 

are fed primarily through cut and carry. One of the challenges with cut and carry is 

that forages offered are typically selected on a volume rather than nutritional basis 

which may impact negatively on animal performance (Hernández and Sánchez, 2014; 

Singh et al., 2006a). Based on a region-wide survey conducted on small ruminant 

production systems, approximately 34% of farmers practice intensive production 

(Lallo, 2009).  Additionally, there is the semi-intensive production systems where 

animals are left to graze pastures primarily during the day and are housed at night 

where the risks of praedial larceny and dog predation increase (Hernández and 

Sánchez, 2014).  Lallo (2009) estimated that a total of 61% regional farmers operate 

under such systems.  Overall, approximately 97% of farms within the Caribbean 

implement housing structures for animals (Lallo, 2009).   

Of all the systems present, the intensive or variations of it (semi-intensive systems), 

are becoming more popular across the region (Hernández and Sánchez, 2014).  These 

systems are costly as they require more investment for the construction and 

maintenance of housing, as well as the purchase of costly concentrate feeds which 

support higher production to offset investment costs (Hernández and Sánchez, 2014; 

Thomas, 1997). 

 

2.4 Breeds of sheep and goats found within the region 

Increasing meat production has been the primary objective of small ruminant farming 

systems in the Caribbean (Asiedu, 2001; Mohammed, 2013).  As a result, most sheep 
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and goats in the region are crossbred primarily as a part of the regional strategy to 

improve meat production (Hernández and Sánchez, 2014; Mohammed, 2013).    

The main type of sheep found in the Caribbean is the tropical hair sheep. Some of the 

major breeds include the Barbados Blackbelly, Virgin Island White, West African, 

Katahdin and the Blackhead Persian (CARDI, 2006b; Thomas, 1997).  The most 

popular sheep breed used across CARICOM is the Barbados Blackbelly which was 

developed in the region (Hernández and Sánchez, 2014). This is the preferred breed 

because of the high prolificacy, high resistance to internal parasites and the superior 

meat quality (Hernández and Sánchez, 2014; Thomas, 1997). However, the Barbados 

Blackbelly is a smaller breed (live weight (adult ram): 60 to 90 kg; live weight (adult 

ewe): 40 to 60 kg) with low growth rates (90 g/d) (DAGRIS-IS, 2005; Thomas, 1997). 

Consequently, the Barbados Blackbelly is often cross-bred with the Dorper which has 

high growth rates (average daily gain: 180 g/d ; average weaning weight: 36 kg (three 

to four months)) and the Katahdin which is a larger breed (Adult ram: 82 to 144 kg; 

Adult ewe: 54 to 73 kg) (DAGRIS-IS, 2005; Thomas, 1997). This results in the 

production of animals with characteristically higher carcass yield (Hernández and 

Sánchez, 2014). Unlike the West African and the Virgin Island White, the more 

prolific Barbados Blackbelly requires high quality feed and careful management 

making them more suited for intensive systems where the nutrition and health of these 

animals are carefully managed.    

Some of the main goat breeds found in the region include the Native Creole Goat, 

Boer, Saanen, Anglo Nubian, British Alpine and Toggenburg (CARDI, 2006a).  The 

Native Creole goat and the Boer are meat breeds and low maintenance animals (Lallo, 

Unpublished ). In addition to the meat breeds, there are dairy breeds which are high 

maintenance animals which are typically housed and demand more nutrient-dense 
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diets to meet their higher nutrient requirements (Lallo, Unpublished ). The British 

Saanen, British Toggenburg, Anglo Nubian and British Alpine are some of the main 

dairy breeds (CARDI, 2006a). The Anglo Nubian and British Alpine are dual purpose 

animals which are reared for milk and meat  (CARDI, 2006a). The Saanen, 

Toggenburg and Alpine are high-milk producers and the combination of greater energy 

efficiency, higher milk production and good temperance make these some of the more 

preferred breeds in the region (Lallo, Unpublished ). 

 

2.5 Nutrition and Feeding 

Within the Caribbean and the wider tropics, feed is the principal factor limiting 

performance (Devendra, 1986; Patersen et al., 1992; Singh et al., 2006a). Therefore, 

inefficiencies in feed management often limit the full expression of the genetic 

potential of animals. 

 Forage resources in the Caribbean 

Forages are a significant source of food for sheep and goat production systems in the 

Caribbean (CFC and FIGMDP, 2010; FAO-UN, 2014; Valdes et al., 2017). The main 

forages include grasses, legumes and non-leguminous multipurpose trees which are 

commonly fed as either fresh forage, hay or silage (Devendra and Gohl, 1970; 

Hernández and Sánchez, 2014; Patersen et al., 1992).   

Grasses 

The main grass species found in the Caribbean include species of the Panicum, 

Bothriochloa, Dicanthium, Brachiaria, Digitaria, Cynodon, Panicum and Pennisetum 

genera (CARDI, 2008; CIFSRF, 2013; Patersen et al., 1992).  Generally, grasses in the 
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region like most tropical grasses, have higher yields and vigour than that of temperate 

grasses (Givens et al., 2000; Proverbs et al., 1992). This is related to their efficient C4 

photosynthetic pathway which allows more efficient use of sunlight, water and 

nutrients (Lara and Andreo, 2011). However, tropical grasses, in comparison to 

temperate grasses, are higher in crude fibre which accounts for 300 to 350 g/kg DM 

(Devendra and Gohl, 1970; Oyenuga, 1957; Proverbs et al., 1992).  The crude protein 

(CP) and metabolisable energy (ME) content of tropical grasses are within the range 

of 20 to 200 g/kg DM and 5 to 11 MJ/kg DM, respectively, which is lower than that 

of their temperate counterparts (7 to 13 MJ/kg DM and 60 to 250 g/kg DM for CP and 

ME, respectively) (Wilkins, 2000).  Under harsh conditions, the CP of native grasses 

may be reduced to 30 g/kg DM or less CP and, for improved species, to 50 g/kgDM 

CP which, in both instances, are lower than that of the minimum CP requirement of 

rumen micro-organisms (70 /kg DM CP).  Overall, the dry matter digestibility of these 

grasses is 10 to 13% lower than that of temperate species (Devendra and Gohl, 1970; 

Proverbs et al., 1992).  Few studies have investigated the mineral status of forages in 

the islands within the region and the concentration of calcium (Ca), phosphorus (P), 

potassium (K), magnesium (Mg), zinc (Zn) and manganese (Mn) were often reported 

as abundant in forages; iron (Fe) was frequently reported as being at high or at toxic 

levels; and sodium (Na) and copper (Cu), reported as being low or deficient in forages 

(Bernard et al., 2019; Devendra, 1977; Mohammed et al., 2017; Youssef and 

Brathwaite, 1987). Mineral licks and salt blocks are commonly used as mineral 

supplements across regional farm systems (Hernández and Sánchez, 2014).  With 

respect to vitamins, Vitamin A is of particular concern to the region in instances where 

animals are fed primarily on weathered hay, by-product-based diets, and roughages for 

prolonged periods, as these feeds are low in vitamin A.  Overall, poor quality pasture 
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fed alone, without supplements, will not support the body weight of even dry non-

productive animals (Paterson et al., 1992).  However, with appropriate management, 

fresh, green and actively growing grass will support high levels of animal growth and 

moderate levels of milk production (Proverbs et al., 1992).   

Legumes 

There is a range of leguminous forages available including the tree/shrub type legumes 

as Leucaena leucocephala and Gliricidia sepium and trailing vine-type legumes like 

Stylosanthes guianensis, Pueraria phaseoloides (Kudzu), Macroptilium 

atropurpureum (siratro) and Neonotonia wightii (glycine).  Legumes tend to have a 

higher protein and mineral content as well as an overall higher digestibility than 

grasses (Dianingtyas et al., 2017; Hau, 2014; Osuji and Odenyo, 1997). With their 

deeper root systems, legumes tend to be more robust than grasses, less susceptible to 

seasonal changes and more capable of supporting year around animal production 

(Patersen et al., 1992).  They are, therefore, an important supplement to poor quality 

pastures during the drier months of the year, and are recommended to occupy 25 to 

40% of grass-legume stands for maintaining animal production (Osuji and Odenyo, 

1997; Patersen et al., 1992). However, despite the higher nutrient value, digestibility 

and hardiness of legumes, the total dry matter yield is lower than that of grasses making 

grasses the mainstay of animal production for much of the year (Patersen et al., 1992).  

Multipurpose non-leguminous species  

Multipurpose trees may include both leguminous and non-leguminous species. Some 

of the common non-leguminous species may include Morus spp., Trichanthera 

gigantea and Moringa oleifera among others (Valdes et al., 2017).  The foliage of 

most multipurpose tree species contain CP levels two to three times (120 to 420 g/kg 
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DM CP) that of tropical grasses and, in some instances, higher than commercial 

concentrate feed which typically contains between 140 to 180 g/kg DM CP (Hernández 

and Sánchez, 2014; Patersen et al., 1992).  Further, the in-vitro digestibility of dry 

matter is high and may be comparable or superior to that of concentrates. 

Forages in the Caribbean are primarily rain fed or rely heavily on rainfall for growth 

(Lallo, 2015). The yield and quality of forages is seasonal being higher during the 

wetter periods of the year and lower during the drier periods (Hughes et al., 2012; Lallo 

et al., 2009; Lallo et al., 2016b).  The lower quality and yield during the drier months 

have often resulted in reduced livestock performance and the need for supplements to 

maintain production levels (Avril et al., 2012). With ‘Climate Change’ and the 

projected reduction in rainfall and extended dry periods, this challenge may be further 

exacerbated (Lallo et al., 2016b).  

 

 Alternative feedstuffs and supplements 

There are many alternative feeds and/or supplements that are used to replace or 

supplement fresh forages (Devendra and Gohl, 1970; Hernández and Sánchez, 2014).  

These include conserved forages, roots and tubers; crop and agro-industrial residues; 

miscellaneous and concentrates.   

Conserved forages 

Forages are conserved primarily as hay or silage (Patersen et al., 1992). Hay made 

from native grasses with a shorter growing period is difficult to produce as cutting 

takes place in the wet period where limited sunlight makes it hard to produce high 

quality hay. Consequently, hay made from these grasses contains about 50 g/kg DM 

CP or less. For the improved pasture species with a longer growth period, cutting takes 

place in the dry period which is more suitable for haymaking. Therefore, the quality 
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of this hay is higher as the CP content may be in excess of 70 g/kg DM.  Hay may 

include legumes which increases its feed value.  The coarse nature of grasses, as well 

as the low soluble sugar content makes it difficult to ensile. As a result, these coarse 

grasses are chopped and compressed mechanically to remove air and are often treated 

with a dilution of molasses to provide enough soluble sugar for ensiling. A good silage 

may contain up to 120 g/kg DM CP. 

Roots, tubers and their foliage 

Some of the main roots and tubers include cassava (Manihot dulcis; Manihot 

esculenta); dasheen (Colocasia esculenta); and sweet potato (Ipomoea batatas).  The 

tubers of these plants are highly palatable and are a good source of digestible energy 

for ruminants (Aregheore et al., 2002). The foliage provides high amounts of energy, 

degradable (sweet potato) and undegradable (cassava, taro) protein.  Cassava foliage 

has a good amino acid profile and is a rich source of calcium and trace minerals (Heuze 

and Tran, 2002). The fresh leaves of cassava (Onwuka and Akinsoyinu, 1989; 

Wanapat, 2009) and hay made from the leaves of sweet potato (Ishida et al., 2000) 

have a feeding value that is comparable to that of alfalfa (Inthapanya et al., 2011). 

Crop residues, agricultural by products and agro-industrial residues 

Crop residues and agricultural by-products are often high in fibre and low in protein.  

These can be supplemented with molasses-urea blocks which are a rich source of 

degradable protein, vitamins and minerals and are typically used to supplement poor 

quality roughage (Sansoucy et al., 1992).  With respect to agro-industrial residues, 

these are often combined with grain and crop residues to formulate diets that can meet 

the requirements of animals. The use of these may only be profitable if they are 

provided at a subsidised price, or for free (Hernández and Sánchez, 2014).   
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Grains and concentrates 

These are the primary and most effective forms of supplements to forage-based feeding 

and are used heavily in intensive or intensive-type systems across the region 

(Hernández and Sánchez, 2014; Thomas, 1997).  Imported concentrates are often used 

to supplement poor quality pasture during the drier periods of the year and are 

associated with higher animal performance when compared to other supplements used 

(Avril et al., 2012; Balraj et al., 2018). The cost of grains is high and has been rising 

for the past decade (Lallo, 2015).  This rise in price continues as a result of the 

competing use of grain for biofuel (Lallo, 2015).  In spite of the high cost, farmers 

continue to use these grains over other supplements or alternative feeds (Lallo, 2009). 

Ideally, it is recommended that grain constitutes 30 to 40% of the diet, however, 

inclusion may be up to 65% of diets (Asiedu, 2001; Lallo, 2015).  

The main ingredients used in concentrate feeds include maize, sorghum, soybean meal, 

and wheat middling imported mainly from USA, Brazil, Argentina and Belize (Lallo, 

2015). There is no known estimate of the percentage of feed cost that is accounted for 

by concentrate feed in regional small ruminant production systems, however, studies 

done by Duffus and Jennings (2005) revealed that between 2005 and 2010, concentrate 

feed accounted for 40% of the cost of milk production in Jamaica.  

The increased intensity of dryer periods projected for the region, and the consequent 

rise in dependence on costly grains by farmers, are challenges which must be 

addressed. There is a requirement for an unconventional approach which is sustainable 

and presents an alternative that incorporates locally available materials, providing 

feeds of comparable nutritive value and supporting similar performance in small 

ruminants as that of commercial concentrate.  
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2.6 The application of forage densification technologies to feed systems for 

ruminant production  

More recently, as with the wider tropics, forage conservation technologies including 

forage densification (pelleting and cubing) have been applied to improve the 

sustainability of forage systems across both temperate and tropical regions (ASABE, 

1997; Dougnon et al., 2012; Hau, 2014; Wanapat et al., 2013). However, prior to 

processing, the nutritive value of forage inputs must be quantified, which can be done 

through several methods of forage evaluation. 

 

 The evaluation of tropical forages 

The nutritive value of forages, compared to other feed resources available, varies 

considerably as a result of climatic and management conditions (Assefa and Ledin, 

2001; Ball et al., 2001; Wilkins, 2000). Therefore, regulating the nutritive value of 

forage inputs prior to processing is critical (Madsen, Hvelplund, and Weisbjerg 1997).  

This ensures that the nutritive value of inputs and end-products are consistent 

(Coleman and Lawrence, 2003; Madsen et al., 1997). Further, forage evaluation can 

be used to inform guidelines on how forages can be best managed to optimise their use 

(Madsen, Hvelplund, and Weisbjerg 1997).  However, with the lack of access to well-

equipped laboratory facilities as well as the characteristically low analytical capacity 

of laboratories within the Caribbean, the analysis of regional forage resources is not 

routinely done, nor is it extensively reported on in the literature  (Dardenne and 

Salgado, 2015). Therefore, one of the objectives of the thesis is to provide information 
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on the nutritive value of a range forage species used in small ruminant production 

systems in the region. 

There are various methods of forage evaluation which can be used to quantify the 

nutritive value of forages. These include physical or visual appraisal, in-vivo and 

laboratory methods which are briefly discussed in the following sections (Beever and 

Mould, 2000; Getachew et al., 1998a; Givens et al., 2000; Leng, 1996; Wheeler and 

Mochrie, 1981). 

 

Visual appraisal 

Visual appraisal, according to Schroeder (2009) is critical and the first step towards 

assessing the value of forages and normally precedes the more complex forage 

evaluation techniques.  It involves drawing conclusions from the value of forages 

based on the colour of leaves; presence or absence of odours; texture of leaves and 

stems; the stage of maturity; attack from weeds, insects and diseases; and palatability.  

In-vivo feed evaluation or digestibility studies 

The in-vivo method is the most precise approach for estimating the nutritional value of 

feedstuffs (Minson, 1981; Minson, 2012; Rymer, 2000; Schneider and Flatt, 1975).  It 

involves the estimation of value through the direct feeding of animals to observe the 

level of production achieved on any given feed (Rymer, 2000; Schneider and Flatt, 

1975).  However, because of the laborious, time-consuming and costly nature of the 

in-vivo method, it is an impractical approach for routine and large-scale feed 

evaluation efforts (Carro et al., 1994; Coelho et al., 1988; Jones and Barnes, 1996; 

Tilley and Terry, 1963).   

 

Laboratory methods 
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Prediction of in-vivo digestibility utilising statistical association between gross 

chemistry and in-vivo digestibility 

The gross chemistry can be obtained from wet chemistry methods like proximate 

analysis and the Van Soest method (Belanche et al., 2013; Getachew et al., 1998a).  

These involve a series of steps designed to quantify nutrient fractions of feeds 

(Belanche et al., 2013; Hart and Fisher, 1971; Van Soest, 1967). The advantages of 

these methods are the absolute values derived for the various fractions of feeds. 

Conversely, other methods rank feeds based on estimated digestibility that is 

dependent on animal and diet factors (Mould, 2003). Of the two methods, the Van 

Soest method is more reliable and robust because it entails a more practical partitioning 

of nutrient fractions in feeds (Marten, 1981; Van Soest, 1967).   

The reference library created through in-vivo studies has a range of forages with the 

concentration of their respective chemical fractions obtained from wet chemistry 

methods along with their respective in-vivo digestibility, both of which are used to 

establish statistical associations that can help predict the in-vivo digestibility of new 

feeds being analysed (Kitessa et al., 1999). These statistical associations are in the 

form of a simple correlation (regression equation) which is population-dependant and 

should not be used on samples outside the population used to derive the equation 

(Weiss et al., 1992).  They are in the form of a cause-effect relationship which is 

population-independent and can be applied across various feeds (Weiss, 1993).  Some 

of the main chemical fractions considered to have a major impact on digestibility 

include the cell wall fractions NDF, and ADF and lignin which are often used in 

regression equations to predict digestibility (Kitessa et al., 1999). Theoretically, the 

error of prediction decreases when the most indigestible fraction, lignin, is used. In 
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practice, however, this may not always be the case, and the approach is challenging 

when predicting the digestibility of feeds like grain that are low in lignin (Kitessa et 

al., 1999). Others have used a summative approach for calculating the total digestible 

nutrients (TDN) (Conrad et al., 1984; Weiss et al., 1992) which Aerts et al. (1977) saw 

as more accurate than utilising the single fibre fractions, when predicting digestibility.  

The advantage of equations based on chemical indices is that they are simple, rapid 

and relatively cheap (Kitessa et al., 1999; Weiss et al., 1992). However, one 

disadvantage of the method is that it does not account for variation as a result of 

extrapolation across feed type, differences in chemical fractions used as well as 

differences in methods used to determine chemical fractions.  

 

Prediction of in-vivo digestibility utilising fermentative methods  

In-vitro Method (Tilley and Terry 1963) 

The technique by Tilley and Terry (1963) is an important tool used for evaluating or 

analysing and predicting the digestibility of ruminant feedstuffs.  This is a two-stage 

method which involves the incubation of feed samples in strained rumen liquor (rumen 

liquor digestion – stage 1) representing digestion in the rumen followed by further 

digestion in acidified pepsin for 48 hours (pepsin digestion – stage 2) which represents 

digestion in the lower digestive tract. Once in-vitro digestibility for a sample is 

obtained, this is corrected using a regression equation relating in-vitro and in-vivo 

digestibility values obtained from a large sample set.  Such a method has been 

recognised as reliable for predicting the in-vivo digestibility of a range of ruminant 

feeds, however, there may be some limitations in predicting in-vivo dry matter 

digestibility of feeds with a low nutritive value (Khazaal et al., 1993).  The shorter 
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time of incubation under in-vitro conditions may limit the digestion of high fibre feeds.  

Animals may gradually proliferate more fibrolytic ruminal microbes in in-vivo studies, 

to digest the higher fibre feeds which is an opportunity that may be limited under in-

vitro conditions.  Some of the major sources of variation that can affect the precision 

of the method include sample preparation, microbial activity of inoculum and the 

donor animal (Tilley and Terry, 1963). One advantage of the method is that it is less 

susceptible to some of the disadvantages of predicting in-vivo dry matter digestibility 

from chemical indices. Factors such as heat treatment, alkali treatment of straws; 

associative effects and species of animals (once donor animal and test animal are the 

same species) can be accounted for with this method (Kitessa et al., 1999). However, 

one major disadvantage of the technique is that it is an endpoint method giving one 

result after both 48-hour incubation periods which are limited and inadequate for 

revealing information on the kinetics of fermentation unless extended and laborious 

time course studies are conducted (Getachew et al., 1998a; Mould, 2003; Tilley and 

Terry, 1963). Without information on the kinetics of digestion, feed cannot be 

differentiated based on the rate at which nutrients are made available. This is critical 

as feed degradability determines rumen retention time and, therefore, feed intake 

(Mould, 2003).  Other disadvantages of the technique include the need for costly donor 

animals and the associated animal welfare issues, susceptibility of rumen liquor to 

antibiotics in compound feeds, and the time-consuming nature of the method which 

requires at least two days per batch of sample.  The length of time has, however, been 

reduced in modifications to the technique (Weiss et al., 1992). 

Enzyme methods (in-vitro assay) 

The enzymatic methods utilise commercially produced enzymes instead of 

microorganisms for predicting the dry matter digestibility of forages and is an 



Chapter 2 

41 

 

alternative approach to the in-vitro Tilley and Terry (1963) method.  There are many 

variations of the method, one of which is described by Roughan and Holland (1977) 

and involves the digestion of feed substrate in acid pepsin enzymes followed by 

cellulase enzymes.  Once the cellulase digestibility is obtained, the prediction of its 

dry matter digestibility is done through the application of a regression equation 

established from correlating the cellulase digestibility of a range of reference forages 

to their in-vivo digestibility (Roughan and Holland, 1977).  An advantage of the 

technique is that it provides an alternative to the rumen liquor method of Tilley and 

Terry (1963) which depends on costly fistulated animals maintained solely for rumen 

liquor (Jones and Barnes, 1996; Macheboeuf et al., 1998). It is more rapid than the 

Tilley and Terry (1963) method (24 hours less) and enzyme preparations are more 

uniform providing greater repeatability than biological inoculum. However, these 

enzymatic methods like Tilley and Terry (1963), utilise endpoint digestibility 

procedures and, therefore, share similar disadvantages of endpoint measures of 

degradability.  One other disadvantage of the technique may be that the results of the 

system are not as extensively validated by in-vivo values as with the Tilley and Terry 

(1963) technique. Further, enzymes, unlike microorganisms, are insensitive to factors 

such as associative effects of toxins which can affect microbial degradation (Kitessa 

et al., 1999). Additionally, digestibility determined by these methods may not factor 

in possible interactions between microbial species in the rumen and the modification 

of this by the diet of the host animal (Getachew et al., 1998a).  With respect to more 

precision in the estimation of digestibility for diets with a low nutritive value, using a 

combination of fibrolytic enzymes for diets of low nutritive value or a starch-digesting 

enzyme for high starch diets, will improve estimations (Kitessa et al., 1999). 

In-vitro gas method  
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The in-vitro gas method measures both the extent and rate of degradability (primarily 

carbohydrates) through a measure of the volume of gas produced over time when 

substrate is incubated in rumen fluid (Herrero et al., 1996; Menke et al., 1979). 

Generally, all in-vitro gas methods share similar procedures requiring milled substrate 

(feed), an anaerobic medium and an inoculum with microbes from the rumen.  The 

substrate (feed) is weighed and placed into a medium which is warmed to ~39 OC and 

rumen fluid is added as inoculum. When feeds are incubated in rumen fluid in-vitro, 

the carbohydrates in the rumen are fermented into short-chain fatty acids or volatile 

fatty acids (VFAs) including acetate, butyrate, propionate and gases (primarily carbon 

dioxide (CO2) and methane) (Beuvink and Spoelstra, 1992; Getachew et al., 1998a).  

The resulting gas production is used as a measure of the degradability of substrate 

which can be recorded as an endpoint measurement, or at time intervals where a 

cumulative gas profile is plotted (Herrero et al., 1996; Menke et al., 1979; Rymer et 

al., 2005). The cumulative gas produced in-vitro can be fitted to mathematical models 

(France et al., 2000).  These models are used to estimate in-vitro gas production 

kinetics, or the rate and extent a substrate or feed has been fermented and/or degraded 

(France et al., 2005; Üçkardeş and Efe, 2014).The fermentation of carbohydrates 

results in the highest volume of gas, while protein and fats produce negligible gas 

volumes (Getachew et al., 1998b; Menke, 1988; Wolin, 1960). The gases produced are 

formed directly through fermentation or indirectly through buffering. The direct 

production occurs through the fermentation of substrate to acetate and butyrate 

(Getachew et al., 1998a). Substrate that is converted to propionate produces no gas 

and, as a result, in-vitro analysis requires a bicarbonate buffer that reacts with 

propionate to produce CO2.  Propionate can be measured indirectly from the CO2 

produced (Rymer et al., 2005).  Additionally, regression equations have been used to 
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correlate gas produced through in-vitro methods with in-vivo digestibility.  The 

technique was built on the assumption that gases produced during the fermentation of 

feed substrate incubated in rumen fluid in-vitro are related to in-vivo digestibility and, 

thus, the energy value of feeds for ruminants (Menke et al., 1979; Rymer et al., 2005).   

Some of the advantages of the techniques are that, unlike enzyme and in situ methods, 

they are not subject to errors from washing, filtration and weighing of residue (Kitessa 

et al., 1999). However, these may be offset by variances related to measurement and 

modelling of gas production.  The method is potentially susceptible to underestimating 

the in-vivo digestibility of feeds that may have slow gas production but are high in-

vivo digestibility (Getachew et al., 1998a; Kitessa et al., 1999).   

In situ, in sacco or nylon bag method 

In this method, feed samples and replicates are placed in porous bags (polyester, nylon 

or dacron) which are then placed in the rumen of a cannulated animal (Huntingdon and 

Givens, 1995). After incubation in the rumen for a predetermined time, the bags are 

taken out, washed, dried and DM loss recorded. This method is used to measure the 

rate and extent of degradation of feed constituents in the rumen (primarily protein and 

carbohydrates).  This gives an indication of the rate and extent to which nutrients from 

feed are made available to the microorganisms (rumen-degradable protein and rumen-

degradable carbohydrates) and the animal (microbial protein (amino acids), non-

degradable protein from feed and fermentable metabolisable energy (FME) from 

volatile fatty acids (VFAs)) (Mehrez and Ørskov, 1977; Orskov et al., 1980). The 

method has been used to measure the rate of degradation at different sections of the 

gastro-intestinal tract and the total tract digestibility which is determined from the 

relationship between in-vivo digestibility and dry matter disappearance (Kitessa et al., 

1999). Dry matter disappearance is either measured directly from a 48-hour incubation 
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(Gasa et al., 1989) and/or from a 48-hour incubation followed by digestion in acid 

pepsin (Aerts et al., 1977).  The data obtained may be fitted to models which describe 

the rate of degradability of substrate. For example,  p = a + b (1- e -ct ), where p is DM 

disappeared at time t, (a+b) represents the total potentially degradable DM (a and b 

representing the rapidly and slowly degradable fraction, respectively), and c represents 

the rate of DM degradation (Orskov and McDonald, 1979). Disadvantages of the 

technique include a lack of standardisation of procedures; the small number of samples 

processed at any given time; the requirement for fistulated animals; the laborious 

nature; and the requirement for a large number of samples.  These all make routine 

laboratory screenings of large numbers of sample difficult. Further, the method may 

be open to substantial error related to microbial contamination of samples which may 

increase weight and lead to an underestimation of dry matter loss (Dewhurst et al., 

1995; Getachew et al., 1998a).  Moreover, the technique may lead to an overestimation 

of fermentation for feeds that lose substrate before fermentation takes place, for 

example, feeds with a high soluble content (sugar and starch) and a high unfermentable 

fibre content (Dewhurst et al., 1995).  

 

Prediction of in-vivo digestibility utilising infrared technologies  

Infrared spectroscopy is a measure of molecular vibrations that occur when molecules 

interact with infrared radiation (IR) or energy (Belanche et al., 2013; Rodríguez, 2000).   

When a molecule is exposed to thermal energy coming from a hot source or source of 

infrared radiation, it absorbs heat at a frequency that stimulates vibrations unique to it 

(Belanche et al., 2013; Rodríguez, 2000). The absorption of IR by molecules is 

represented graphically as spectra which can be used to generate chemo-structural 
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information about substrate.  As a result, the technique has been applied to nutrition 

for determining the chemical composition of feeds.   

NIRS, which is one of the more commonly used methods of spectroscopy, provides a 

rapid and non-destructive physical technique for evaluating feeds (Stuth et al., 2003).  

It measures the chemical components of feeds including CP, neutral detergent fibre 

(NDF), acid detergent fibre (ADF), lignin and in-vitro dry matter digestibility with 

standard errors of 0.95, 3.1, 2.5, 2.1 and 3.5, respectively, as reported in studies by 

Brown et al. (1987) and Norris et al. (1976).  It has been used for the prediction of 

intake of forages from gross composition (Minson, 1982; Park et al., 1997; Steen et 

al., 1998); for the prediction of fermentable energy obtained through in-vitro gas 

production methods (Herrero et al., 1996); and for the prediction of the nitrogen 

degradable fractions derived in situ (Waters and Givens, 1992).  The method relies on 

chemometrics which utilises mathematical models to relate spectral data to the 

chemical composition of feeds. Some of the main advantages include the speed and 

overall convenience of the technique and the standardised network of equipment 

giving more uniform analyses from laboratories for digestibility and the different 

components and properties of feeds (Kitessa et al., 1999).   

 

 Forage conservation using forage densification technologies 

Increasing the scope of forage conservation techniques in the Caribbean may improve 

forage-based feeding for small ruminant systems regionally.  Hay and silage making 

are the two most popular forms of forage conservation used in regional, small 

ruminant, production systems (Devendra and Gohl, 1970; Hernández and Sánchez, 

2014; Patersen et al., 1992). However, very limited work has been done on 

conservation techniques which involve the densification of forages into compressed or 
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densified packages including pellets which are an agglomeration of forage materials 

which have been ground or cubes which are an agglomeration of forage chops 

(ASABE, 2016; Samson et al., 2005; Sokhansanj and Turhollow, 2004).   

 

 Processing densified forages 

The densification process involves the compression of low-bulk density materials into 

more compact or dense forms through the application of pressure in the presence of 

moisture and temperature treatments (Thomas et al., 1997; Tumuluru et al., 2010b).  

Raw materials are first harvested, dried (mechanically or sun cured), ground if 

products are being pelleted; conditioned (treated with moisture in the form of steam 

(heat and moisture) or liquid to increase the compressibility of raw materials) and 

compressed through a perforated metal structure known as a die from which dried 

densified forage packages emerge. Figure 2.1 is a flow diagram of the major steps of 

the densification process.
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Figure 2.1 Major steps in the densification of forages (Source: Kaliyan and Morey (2009); Khoshtaghaza et al. (1999); Turner (1995))
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2.7 Advantages of forage densification technologies 

Densified forages may provide another means of conserving forage resources 

(Dianingtyas et al., 2017; Hau, 2014) in the Caribbean.  This type of conservation 

technology offers a more convenient system which has important advantages over 

systems that rely heavily on the low bulk density forms of preserved forage (hay and 

silage) (Bilanski et al., 1985; Coleman and Lawrence, 2003).   Some of these 

advantages include increased bulk density and, therefore, greater ease of handling, 

storage, transportation, distribution and feeding (Dianingtyas et al., 2017; Dobie, 1961; 

Long et al., 1955). If regional farm systems had access to these forage packages, it 

may reduce the demand for, and inconvenience of time-consuming harvesting of cut-

and-carry forage which may be both labour intensive and costly (John et al., 2010; 

Palmer et al., 1998). In fact, farmers may be more willing to pay a premium price for 

the convenience of these products, which may be lower than the price for pelleted grain 

feeds (Orden et al., 2014; Srivastava et al., 1981).  Cubes, which are comprised of 

longer fibrous forage chops (forage chops ≥ 20 mm in length (Dobie, 1975; Sokhansanj 

and Turhollow, 2004; Wallace et al., 1961), tend to be comparable in terms of physical 

quality and digestibility to cut forages. Forage cubes may, therefore, provide an 

alternative to cut-and-carry forages which are compressed and more easily handled; 

more consistent in quality; and potentially more cost effective (Coleman and 

Lawrence, 2003).   

More critically, densified forage packages improve animal performance (Dobie, 1975; 

Dougnon et al., 2012; Huyen et al., 2012; Magill et al., 1958).  For instance, the overall 

increase in feed intake has been emphasised in various studies (Coleman and 

Lawrence, 2003; Zhong et al., 2018).  This increased feed intake may be related firstly 
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to the higher acceptability and palatability of densified forages to ruminants in 

comparison to bulky loose forage forms (Dobie, 1975; Wallace et al., 1961).  The 

higher nutrient density and rapid passage rate through the gastro-intestinal tract result 

in the higher feed intake associated with densified forages (Blaxter and Graham, 1956; 

Minson, 1963). Feed intake in ruminants, particularly with younger animals, is often 

affected by both the unit dimensions and particle grind or chop size of forage packages 

(Mark, 1963; Tetlow and Wilkins, 1972; Wilkins et al., 1972). With the overall smaller 

physical dimensions (diameter: 4.8 to 19.1 mm; length: 12.7 to 25.4 mm (California 

Pellet Mill Co (CPM), 2012; Tumuluru et al., 2011) of pellets, feed intake tends to be 

higher than that of cubes with larger dimensions (Cross section: 25 to 32 mm; Length: 

40 to 100mm (Khoshtaghaza et al., 1999; Wilkins et al., 1972). Further, even with the 

higher unit density (961 to 1121 kg/m3) and, therefore, greater hardness of pellets, 

their smaller size makes pellets more preferred than wafers with a lower unit density 

(481 to 641 kg/m3).  Additionally, high acceptance of pellets may be due to the faster 

rate of satiety achieved with the characteristically higher intake of pellets (Minson, 

1963).  

However, finely ground material is often associated with compromised rumen health 

and reduced performance in ruminants (Mertens, 1997; Mertens, 2002). Some of these 

challenges related to finer particles may be addressed through increasing the particle 

size range or inclusion of coarser grinds (Mirzaei-Aghsaghali and Maheri-Sis, 2011).  

The inclusion of coarse grinds must never exceed the maximum levels required to 

support optimum rumen conditions, as above this level intake and access to nutrients 

may be limited (SRNS, 2016).  With respect to wafers, reducing size may improve 

palatability.  In studies done by Tetlow and Wilkins (1978), the smaller-sized wafers 
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were more prehensile and, therefore, more easily and readily eaten by young ruminants 

including lambs and calves compared to larger wafers.  

Densified rations result in a greater live weight gain for a given weight of feed 

compared to loose feeds (Minson, 1963; Wanapat et al., 2013). Both the increased feed 

intake and live weight gain associated with densified forages were strongly associated 

with the quality of the parent material, with lower quality forages having a greater 

increase in production when densified compared to its loose forms (Beardsley, 1964; 

Minson, 1963).  Further, feed intake, daily gain and feed efficiency can be increased 

by 25%, 100% and 35%, respectively, when densified forage of marginal quality is 

offered (Beardsley, 1964). Moreover, carcass yield, quality and milk production 

increased when densified forages were used (Al-Saiady et al., 2010).  This is often 

more pronounced with pellets than with cubes (Minson, 1963; Wallace et al., 1961).  

Forage densification technologies impact on the digestibility and energy efficiency of 

forages. Some studies found increases in digestibility (Huyen et al., 2012; Long et al., 

1955), whereas, others reported reduced digestibility, particularly of fibre fractions 

(Al-Saiady et al., 2010; Reynolds and Lindahl, 1960; Uden, 1988).  Densified forages 

may increase the energy utilisation of forages (Wainman et al., 1972).  For instance, 

metabolisable energy retained for production was 28% greater for pellets than for long 

dried grass and net availability for production was increased from 40% for the 

unpelleted ration to 52% for the pelleted ration.  Other benefits of densified forages 

include reduced ingredient segregation and less feed wastage (El-Deek and Brikaa, 

2009a; Fasina and Sokhansanj, 1996; Hau, 2014; Jones et al., 1958). 
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 Defining and assessing the quality of densified forage packages 

The quality of densified forage products can be expressed in terms of strength or 

durability which increases with stronger inter-particle bonding within densified 

materials (Kaliyan and Morey, 2009).  The strength (compressive resistance or 

hardness) of densified feeds is measured using the diametrical compression test. This 

test simulates compressive stress due to the weight of top pellets or cubes on the lower 

pellets or cubes during storage. This test simulates the crushing of pellets or cubes 

during mastication in animals.  The load or force at which the specimen breaks is 

recorded as the compressive strength.  The durability is the ability to withstand 

shearing and abrasive action during transportation.  It can be measured using the 

abrasive resistance test which simulates the shearing and abrasive action during 

transportation (Kaliyan and Morey, 2009; Thomas and Van der Poel, 1996).  This test 

can be done using the Tumbling can, the Holmen tester and the Ligno tester (ASABE, 

1997; Franke and Rey, 2006; Winowiski, 1988). Tumbling is the more commonly used 

of the three methods and it gives the Pellet Durability Index (PDI) or the percentage 

durability (Kaliyan and Morey, 2009).  This involves three steps including tumbling 

pellets in a tumbling can, followed by sieving these pellets and the fines produced as 

a result of tumbling, and measuring the weight of intact pellets or pellet pieces retained 

after sieving (ASABE, 1997; Kaliyan and Morey, 2009).  The PDI is the ratio of weight 

after tumbling to the weight before tumbling, expressed as a percentage (ASABE, 

1997).  

 Factors affecting quality 

There are various factors affecting the quality of densified products (Behnke, 1994, 

2001; Briggs et al., 1999; Thomas et al., 1997).  According to Behnke (1994), Turner 

(1995)Turner (1995) and Thomas et al. (1997), these factors contribute to pellet quality 
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in the following proportions: 1. Diet formulation (40%); 2. Particle size (20%); 3. 

Steam conditioning (20%); 4. Die specifications (15%) and cooling/drying (5%). 

Based on these proportions, the cumulative effect of factors, such as diet formulation 

as well as particle size and steam conditioning, have a significant impact on quality 

and are, therefore, emphasised in the following sections (Kaliyan and Morey, 2009).   

Diet formulation 

Physical composition of feed affects the quality of densified products.  For instance, 

the types of ingredients, the parts of the plant including leaves, stems and the 

percentage inclusion of these all impact on quality (Adapa et al., 2005a; Adapa et al., 

2005b; Loar II and Corzo, 2011; Loar et al., 2010; Reece, 1966; Rehkugler and 

Buchele, 1967; Theerarattananoon et al., 2011; Zarate et al., 2004). The chemical 

composition including starch, protein, fibre, fats, lignin and lignin extractives are other 

factors that affect the quality of densified products (Kaliyan and Morey, 2009; 

Muramatsu et al., 2015; Tumuluru et al., 2010a).  Starch, protein, lignin and lignin 

extractives are all natural binders (Bradfield and Levi, 1984; Briggs et al., 1999; Wood, 

1987) and all impact positively on the durability of densified products. Starch 

gelatinises when exposed to heat, moisture (Cai and Wei, 2013; Stevens, 1987) and 

shear friction when expelled through dies (Kaliyan and Morey, 2009).  Further, the 

combination of heat, moisture and shear friction during densification processes 

denatures and, subsequently, plasticise proteins which increase its binding capacity 

(Briggs et al., 1999; Hill and Pulkinen, 1988; Tabil et al., 1997; Thomas et al., 1998; 

Winowiski, 1988; Wood, 1987). Some sources of protein including wheat, rye, barley, 

sorghum and soybean meal have a higher binding effect (Stevens, 1987; Winowiski, 

1988) than that of corn or other sources (Cavalcanti, 2000).  During the conditioning 

process, lignin softens, developing natural binding properties (Kaliyan and Morey, 
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2009).  However, according to Bradfield and Levi (1984), above a threshold level 

(34%), both lignin and extractives decrease the durability of densified products. 

Fibre (Angulo et al., 1995; Hill and Pulkinen, 1988; Mohsenin, 1965) and fat 

(Cavalcanti, 2000; Richardson and Day, 1976) can have negative impacts on pellet 

quality. Fat functions as a lubricant and it reduces shear friction which is important for 

compression (Kaliyan and Morey, 2009).  Additionally, fat has hydrophobic properties 

that inhibit the binding properties of water soluble feed components including starch, 

protein and fibre (Thomas et al., 1998). However, natural fats released from the cell 

wall during conditioning were observed to sometimes have a positive impact on 

binding (Thomas et al., 1998).  Vest (1993) recommended an inclusion level of no 

more than 1.5% fats in densified products.  Fibres can be both water-soluble and water-

insoluble. Water-soluble fibres add to the viscosity of ingredients impacting positively 

on the quality of densified feeds (Kaliyan and Morey, 2009). Conversely, the high 

resilience of insoluble fibres reduces inter-particle binding, increases fragmentation 

and, therefore, reduces pellet quality (Rumpf, 1962; Thomas et al., 1998). High water 

content (10 to 23%) and chemical agents including NaOH, CaO and urea may help to 

reduce resilience of insoluble fibres.  Additionally, minerals impact on the quality of 

densified products (Behnke, 2006; Turner, 1995) as the degree of abrasiveness of 

different minerals may have varying effects on the compressibility of feeds (Kaliyan 

and Morey, 2009). 

Moisture content 

Moisture content of materials can either be in the form of bound moisture, processing 

moisture or final moisture (Kaliyan and Morey, 2009). The bound moisture is referred 

to as the inherent moisture of dehydrated raw materials (Turner, 1995). After being 

harvested, materials are wilted or dehydrated through mechanical drying (Coleman 
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and Lawrence, 2003; Hill and Pulkinen, 1988) or through sun-curing (Adapa et al., 

2005a; Adapa et al., 2005b) before conditioning and compression (Kaliyan and Morey, 

2009).  Dehydration is critical as higher bound moisture results in more resistant plant 

protoplasm, reduced compressibility of materials and, therefore, compromised product 

quality (Turner, 1995). Raw materials may be dried to 8 to 10%  moisture content  for 

the pelleting process (Kaliyan and Morey, 2009) or up to 15% (Castrillo et al., 2013; 

Mark, 1963) for materials being cubed.  During conditioning, moisture may be added 

at a rate of 1 to 2% for forage chops (cubing process) or 1 to 6% for ground materials 

(pelleting process) (Maier and Bakker-Arkema, 1992; Pfost, 1964). The processing 

moisture includes the moisture added during conditioning in addition to the bound 

moisture.  The maximum processing moisture for pelleting is 15% (Castrillo et al., 

2013) and up to 23% (Mark, 1963) for the cubing process.  During the pelleting 

process, the processing moisture is often in the form of steam (a combination of 

moisture and heat) (Thomas et al., 1997). There are optimum steam treatments for the 

densification of different types of feeds which is important for activating both inherent 

and added binders that are required for producing permanent bonds in densified feeds 

(Payne, 1978). Steam conditioning in the pelleting process is critical as the integrity of 

pellets depend heavily on the release of natural binders which results in the formation 

of inter-particle bonds in densified forage products.  These bonds are initially molten, 

but are later solidified during the drying and cooling process to form strong compact 

pellets (Kaliyan and Morey, 2009). For cubes, conditioning through the addition of 

water may suffice as the major bonds formed are primarily as a result of the interlacing 

and interlocking of long fibres and less through the activation of inherent binders 

(Mark, 1963; Pickard et al., 1961).   The final moisture is the moisture content of 

densified forage packages after the drying and cooling process.  The final moisture for 
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safe storage may range between 8 and 10% (Kaliyan and Morey, 2009) for pellets to 

between 10 and 12% for cubes (Khoshtaghaza et al., 1999; Sokhansanj and Turhollow, 

2004).   
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Binders 

Binders are any liquid or solid that forms a bridge, film, matrix, or that reacts 

chemically to form inter-particle bonds (Kaliyan and Morey, 2009). During 

processing, steam conditioning is essential for activating binders (Franke and Rey, 

2006). There are more than 50 different types of organic and inorganic binders 

employed during the densification process (Pietsch, 2002) and inclusion in the range 

of 0.5 to 5% have been used to improve and standardise pellet quality (Tabil, 1996).  

The commonly used ones in the feed industry include lignosulphonate, bentonite, 

modified cellulose, molasses, starches and proteins (Payne, 1978; Tabil, 1996; Thomas 

et al., 1997). Different binders have different levels of effectiveness in improving the 

quality of densified feeds (Behnke, 1994).  

Particle size        

The particle size impacts on the quality of densified feeds. For pelleting, particle size 

is commonly classified as either fine or coarse grind (Minson, 1982). In the pelleting 

process, the finer grinds result in higher quality pellets as finer grinds increase the 

surface area over which steam conditioning occurs, more readily stimulating the 

natural binding capacity of ingredients (Tabil, 1996). Finer grinds, however, have a 

higher energy requirement and may be more costly to obtain (Kaliyan and Morey, 

2009). With coarser grinds, the large particles are not as effectively conditioned as 

finer particles as there is more fissuring and air spaces which reduce compressibility 

and compromise quality (Tumuluru et al., 2010b).  The difficulty of compressing 

coarser grinds may be improved through using either dies with a larger length to 

diameter ratio, synthetic binders, or equipment that increase the compressibility of 

feeds.  These include double pelleting where feeds are pelleted in a two-phase pelleting 

system or the use of expanders which function to enhance the densification, shear and 
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mixing of feed mash (Kaliyan and Morey, 2009; Thomas et al., 1997). Both double 

pelleting and expanders, however, increase the cost of production (Kaliyan and Morey, 

2009).  One of the important advantages of cubing over pelleting is the capacity of 

systems to effectively compress raw materials with a larger particle size range (forage 

chops ≥ 20 mm in length (Dobie, 1975; Sokhansanj and Turhollow, 2004; Wallace et 

al., 1961).  Cubing is, therefore, the more desirable of the two processes, as the use of 

long chops eliminates the power-consuming grinding process of pelleting.  This makes 

cubing a more energy-efficient and cost-effective system than the pelleting process 

(Heimann, 2016; Pickard et al., 1961).      

 

2.8 Conclusion 

The Governments of the CARICOM regard the small ruminant sector as significant to 

Caribbean agriculture. Establishing more sustainable production systems requires 

addressing some of the major constraints to production, a critical one being the high 

dependence on costly imported commercial feed ingredients regionally. Forages have 

been identified as a potential cost-effective feed resource and substitute to costly 

concentrate feeds.  Further, the application of forage densification technologies to 

forages may improve the utilisation of forages and lead to the establishment of more 

self-sufficient feed systems in the region that are less dependent on costly commercial 

concentrate. Therefore, as previously outlined, the objectives of this research were to: 

i. Review the literature on small ruminant production systems in the 

Caribbean and on the application of forage densification technologies to 

feed systems for ruminant production;  
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ii. Identify the range of forage species available and are used, or have the 

potential to be used in small ruminant production systems in the Caribbean 

and to describe these based on their nutritive value; 

iii. Determine the nutritive value and effect of a densified diet comprised of 

different levels of forage on intake in growing lambs; 

iv. Determine the effect of a densified diet comprised of forage on growth 

performance and digestibility in lambs; and  

v. To discuss the findings of the previous chapters and to conclude with 

recommendations on the way forward. 



 

 

 

 Determining the chemical 

composition and in-vitro digestibility of forage 

species used in small ruminant production 

systems in the English-Speaking Caribbean  

Data from this Chapter have been published in: 

JACK, H.A., CRANSTON, L.M., BURKE, J.L., KNIGHTS, M., and MOREL, P.C.H. 

Determining the chemical composition and in-vitro digestibility of forage species used in 

small ruminant production systems in the English speaking – Caribbean. Tropical Agriculture 

(Trinidad) Vol. 97 No. 1 January 2020 



Chemical composition and in-vitro digestibility 

60 

 

3.1 Abstract  

The nutritional evaluation of tropical forages in the Caribbean is limited and the aim 

of this study is to provide information on the nutritive value of 12 forages used in 

regional small ruminant production systems, utilising three different methods of forage 

evaluation. Samples of seven grasses (Brachiaria arrecta, Brachiaria hybrid cv. 

Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens), Cynodon dactylon, 

Cynodon, nlemfuensis, Digitaria eriantha, Megathyrsus maximus and Pennisetum 

purpureum); two leguminous multipurpose tree species (LMPTs) (Gliricidia 

sepium and Leucaena leucocephala) and three non-leguminous multipurpose tree 

species (NLMPTs) (Moringa oleifera, Morus alba and Trichanthera gigantea) were 

analysed using proximate analysis, in-vitro assays and near infrared spectroscopy 

(NIRS).  Cynodon nlemfuensis had the highest (p <.0001) crude protein (CP) of the 

grasses and Leucaena leucocephala and Moringa oleifera the highest (p <.0001) CP 

of the multipurpose tree species (MPTs). Trichanthera gigantea had the highest (p 

<.0001) ash content of the MPTs. The NLMPTs, Morus alba and Moringa 

oleifera had the highest (p <.0001) starch, highest (p <.0001) in-vitro digestible 

organic matter in dry matter (IVDOMD) and metabolisable energy (ME) and the 

lowest (p <.0001) neutral detergent fibre (NDF) of the MPTs. There was a strong 

positive relationship between the IVDOMD and both the CP and starch fractions and 

a strong negative relationship between the IVDOMD and both the NDF and acid 

detergent fibre (ADF) fractions. The NIRS predicted values, generated from a 

calibration model built using temperate forages, had a strong relationship with the 

proximate CP and NDF and the IVDOMD and ME of the tropical forage species. The 

correlation of determination (R2) between proximate CP, NDF, ADF, IVDOMD, ME 
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and their respective NIRS values were 0.91, 0.86, 0.59, 0.7 and 0.8, respectively. 

Overall, the forage species were above the minimum CP, IVDOMD and ME required 

to be classified as good quality forages.   

Keywords: Caribbean, forage evaluation, small ruminants, Trinidad and Tobago
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3.2 Introduction 

There is a growing demand for livestock products within the Caribbean Community 

(CARICOM).  This is thought to be a direct result of rising affluence and urbanisation, 

as well as a rapidly increasing population which is projected to rise from 18 million to 

22 million by 2050. Further, there is a high regional demand for animal protein from 

small ruminants and local meat production from the sector only meets 20 to 25% of 

the regional demand (Avril et al., 2011; Lallo et al., 2016b).  Increasing production 

may require addressing some of the major constraints, particularly the high 

dependence on costly imported concentrate feed in the region (Singh et al., 2006b).   

One approach to addressing this challenge is increasing the utilisation of locally 

available feeds including forages which may allow for the development of more 

sustainable feeding systems (Avril et al., 2011). 

There is a wide range of tropical forages that are used in small ruminant production 

systems in the Caribbean (Hernández and Sánchez, 2014).  These include tropical 

grasses which are often presented as cut-and-carry in the predominantly intensive 

production systems found in the region (Lallo, 2015). With their efficient C4 

photosynthetic pathway, tropical forages undergo faster maturation than their 

temperate counterparts, becoming more fibrous and less digestible over a short period 

of time (Leng, 1990).  This reduction in the nutritive value of grasses results in the 

need for supplementation with commercial feeds, especially during the dry season 

when the quality of grasses declines severely (Lallo, 2015). There is a wide range of 

fodder trees or multipurpose tree species (MPTs) which are known for their higher 

concentrations of protein, vitamins and minerals when compared to the grasses 

(Wilson, 1969).  The high and more consistent nutritive value of these MPTs make 
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them good supplemental forages which may improve the overall feeding value of the 

more fibrous tropical grasses (Topps, 1992; Wilson, 1969).   

The nutritive value of forages can vary significantly, depending on environmental 

factors including weather, cultural practices and land topography  (Caro-Costas et al., 

1976; Hughes et al., 2012; Radcliffe, 1982).  This necessitates the ongoing evaluation 

of these resources to inform their management and optimised use in farming systems.  

There are several ways to evaluate the quality of forages including in-vivo studies and 

laboratory methods.  In-vivo studies are often labour intensive, costly and time-

consuming and, consequently, laboratory methods which are faster and more cost-

effective are commonly used as alternatives to in-vivo methods (Carro et al., 1994). 

However, the application of these laboratory methods to tropical feed is limited 

because of a lack of access to well-equipped laboratory facilities as well as their 

characteristically poor analytical capacity  (Dardenne and Salgado, 2015). This may 

explain why the analysis of regional forage resources, utilising these laboratory 

methods, is not routinely done, nor is it extensively reported on in the literature. 

Understanding both the nutritive value of forages obtained from various methods of 

forage evaluation and how they compare, and/or relate, may give increased insight into 

the nutritive value of these resources. This information can be used to better inform 

how forages are handled, fed and supplemented for optimised use as feeds for small 

ruminants (Madsen et al., 1997).  Therefore, the following study aimed to provide 

current information on the nutritive value of a range of forage species (seven grasses, 

two leguminous multipurpose trees and three non-leguminous multipurpose trees) 

used in small ruminant production systems in the Caribbean utilising both Proximate 

analysis, Near Infrared Spectroscopy (NIRS) and in-vitro assays. Further, the study 
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aimed to determine how well the NIRS predicted values compared or related to the 

respective proximate and in-vitro values.
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3.3 Materials and Methods 

 Site description 

Samples for all species were collected from one of two sites (Site 1 and Site 2).  Site 

1 is the Forage Bank at the University of Trinidad and Tobago - Valsayn Campus, 

Trinidad and Tobago (10.63°N, -61.41°W) and Site 2 is the forage bank at New Wales 

Manchester, Central Jamaica (17.93°N, -77.52°W). The total rainfall for January 2018 

at Site 1 when samples were harvested was 60.8 mm; the minimum and maximum 

temperatures at the time of harvest were 22.25 and 30.140C, respectively (Trinidad and 

Tobago Meteorological Services (TTMS), 2018); and the predominant soil type was 

the Piarco soil series comprised of terrace sand and gravel clay (characterised as 

having imperfect drainage; waterlogged in the wet season; and desiccated in the dry 

season (Brown, 1965)). The total rainfall for January 2018 at Site 2, when samples 

were harvested, was 77.4 mm; the minimum and maximum temperatures at the time 

of harvest were 24.4 and 30.50C, respectively (Meteorological Service Jamaica, 2018); 

and the predominant soil type was the St. Ann’s clay loam which is deep, well-drained 

dark red to dark reddish brown, moderately fine-textured with a high content of organic 

carbon to a great depth. They have a good structure and are highly permeable (MoA 

Jamaica, 1987).      

 

 Selection of forage species 

Forage species were selected based on informal consultations with regional 

stakeholders across the Caribbean Community (CARICOM), including farmers who 

utilise these in their production systems and livestock scientists who have highlighted 

their potential use in small ruminant production systems in the region. A total of 12 
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species were selected including seven grass species; two leguminous multipurpose tree 

species (LMPTs) and three non-leguminous multipurpose tree species (NLMPTs).  

 

 Harvesting and preparation of forage samples 

On 16 January 2018, samples (n=3) for ten forage species were harvested from Site 1.  

These included the leaves and stems of five grasses: Brachiaria arrecta (B. arrecta), 

Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. 

decumbens), Digitaria eriantha (D. eriantha), Megathyrsus maximus (M. maximus) 

and Pennisetum purpureum (P. purpureum); young and mature leaves and stems of 

two leguminous multipurpose tree species (LMPTs): Gliricidia sepium (G. sepium) 

and Leucaena leucocephala (L. leucocephala); and young and mature leaves and stems 

of three non-leguminous multipurpose tree species (NLMPTs): Moringa oleifera (M. 

oleifera), Morus alba (M. alba) and Trichanthera gigantea (T. gigantea)). On 23 

January 2018, samples (n=3) of leaves and stem for two grass species (Cynodon 

dactylon (C. dactylon) and Cynodon nlemfuensis (C. nlemfuensis) were harvested from 

Site 2.  At both sites, plots for grass species were cut prior to the harvesting date so 

that all species had a regrowth of 35 days (Aumont et al., 1995). Samples (n=3) for 

each grass species were harvested (manually chopped with a machete) at five to seven 

cm above ground level with each of the three replicates comprising cuts from several 

individual plants in one of three different locations within plots.  Samples (n=3) for 

each tree species were harvested (manually chopped with a machete) from all parts of 

the tree canopy with each of the three replicates comprising cuts from several 

individual trees within the plots (Rosales, 1996). Immediately after harvesting, all 

samples collected were dried at 600C for 48 hours in a forced-air oven. The dried 

samples were ground before being packaged (wrapped in triple-plastic layers and 
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boxed) and exported (Export Permit no. 2017065045) to the Food and Nutrition 

Laboratory, Massey University, New Zealand for analysis. Upon arrival, the samples 

were ground further with a Thomas hammer mill (screen size:1 mm) and analysed 

using proximate analysis, in-vitro assays and near infrared spectroscopy (NIRS).   

 

 Proximate analysis  

Samples were analysed for dry matter (DM) by drying at 105°C in a convection oven 

(AOAC 930.15).  The total nitrogen (N) content was determined by combustion 

(AOAC 968.06) using a Leco CNS 200 Analyser (Leco Corporation, St Joseph, MI, 

USA), and the crude protein (CP) was computed by multiplying the N values obtained 

by a factor of 6.25. Starch was determined using an α-amylase Megazyme kit (AOAC 

996.11). The neutral detergent fibre (NDF) (with heat stable amylase) and acid 

detergent fibre (ADF) fractions were determined by the method of Van Soest et al. 

(1991) and the Tecator Fibretec System (AOAC 973.18). The ash content was 

determined by total combustion at 550°C (AOAC 942.05) and the organic matter was 

calculated as the difference between the dry matter content and the ash content. Fat 

was determined by using the Soxtec method (AOAC 2003.06) and the gross energy 

using a bomb calorimeter. 

 

 In-vitro digestibility 

The in-vitro dry matter digestibility (DMD) and in-vitro organic matter digestibility 

(OMD) were measured using the pepsin-cellulase method of Roughan and Holland 

(1977).  The digestible organic matter content in dry matter (IVDOMD) was calculated 

from the organic matter (percentage) in the diet multiplied by the OMD. The in-vitro 
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metabolisable energy (ME) of the forages (MJ ME/kg DM) was calculated as DOMD 

× 0.163 (AFRC, 1993).   

 

 Near Infrared Spectroscopy (NIRS)  

Near infrared spectroscopy (NIRS) was used to estimate the chemical components of 

forage samples including CP, NDF, ADF, lipid, OM, ash, digestible organic matter in 

dry matter (NIRS DOMD) and the metabolisable energy (NIRS ME). The tropical 

forage samples were scanned using a Bruker MPA NIR spectrophotometer (Ettlingen, 

Germany).  The resulting NIR spectra were then analysed using Optic user software 

(OPUS) version 5.0. (Ettlingen, Germany).  The calibrations for each component were 

developed using NIRS after scanning finely ground temperate pasture samples in the 

range of 400 to 2500 nm.   

 

 Statistical analysis 

Statistical analysis was done in the R environment for statistical computing and 

visualisation (Team 2013). Data on the nutritive value of forages was fitted to a linear 

model. An analysis of variance (ANOVA) was then applied to determine the level of 

significance of treatments in the model utilising both carr (Fox and Weisberg 2011) 

and Agricolae (de Mendiburu and de Mendiburu 2019) R packages.  Means and 

superscripts were generated using both emmeans (Lenth et al. 2019) and multcomp 

(Hothorn et al. 2016) R packages which help to separate significantly different means 

using the Tukey’s multiple comparison test. Differences were considered statistically 

significant if P ≤ 0.05. Pearson’s correlation between the digestibility data and the 

proximate chemical components, as well as the Pearson’s correlation between 
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proximate chemical components, IVDOMD, in-vitro ME and their respective NIRS 

values were generated using the Corrr package (version 0.2.1 (Jackson 2016)). A 

simple linear regression was carried out to investigate the relationship between the 

chemical composition values generated by the NIRS method and those obtained by 

proximate analysis.  Graphs were generated using the ggplot2 (Wickham, 2016) and 

ggpmisc (Aphalo, 2016) R packages were used to generate graphs. 
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3.4 Results 

 Proximate analysis and Near Infrared Spectroscopy (NIRS) 

Crude protein 

The chemical composition of forage species determined by proximate analysis is 

presented in Table 3.1.  The CP content for all species ranged between 67.6 to 263.6 

g/kg DM with grasses measuring between 67.6 to 191.2 g/kg DM and MPTs between 

171.1 to 263.6 g/kg DM.  The average CP content for the grasses was 113.4 g/kg DM 

and that of the MPTs was 213.0 g/kg DM.  The grass species C. nlemfuensis had the 

highest CP content of 191 g/kg DM. Brachiaria ruziziensis had the lowest (p <.0001) 

CP content of 67.6 g/kg DM and there was no significant difference between D. 

eriantha (87.1 g/kg DM) and M. maximus (90.3 g/kg DM).  The MPT L. leucocephala 

had the highest CP content (263.6 g/kg DM) and it was not significantly different from 

M. oleifera (232.5 g/kg DM).  Trichanthera gigantea was the MPT with the lowest (p 

<.0001) CP content (171.1 g/kg DM).   

The chemical composition of forage species determined by NIRS is presented in Table 

3.2.  Cynodon nlemfuensis had the highest (p <.0001) CP concentration (172.6 g/kg 

DM) of the grasses.  Brachiaria ruziziensis (51.8 g/kg DM) had the lowest (p <.0001) 

CP concentration which was not significantly different from those of D. eriantha (60.1 

g/kg DM) and M. maximus (93.6 g/kg DM).  Leucaena leucocephala had the highest 

(p <.0001) CP content (272.1 g/kg DM) of all the MPTs.  There was no significant 

difference in the CP concentration observed for the other MPTs which ranged between 

190 to 218 g/kg DM.   

Carbohydrates 
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The starch, NDF and ADF fractions for all forages ranged between 1.06 to 28.40, 380 

to 756 and 250 to 497 g/kg DM, respectively. Starch ranged between 1.06 to 12.58 

g/kg DM for the grasses and between 4.59 to 28.36 g/kg DM for the MPTs. The 

concentration of starch observed for the NLMPTs was significantly higher (p <.0001) 

than the concentrations obtained for the other species (23.68 to 28.36 g/kg DM).  The 

NDF content of the grasses and MPTs ranged between 699 to 756 g/kg DM and 380 

to 506 g/kg DM, respectively and that of ADF ranged between 383 to 497 for grasses 

and 250 to 363 g/kg DM for the MPTs. The average concentration of NDF for grasses 

was 722 g/kg DM and that of the MPTs was 455 g/kg DM.  Grasses averaged 434 g/kg 

DM and the MPTs averaged 316 g/kg DM in ADF concentration. The NDF fraction 

of the MPTs was variable with LMPTs and T. gigantea having significantly higher 

concentrations (p <.0001) than those of M. oleifera and M. alba.  The lignin content 

for all the MPTs except M. oleifera was higher (p <.0001) than the concentrations 

observed for the grasses. The concentration of NDF and ADF fractions for grasses 

using the NIRS method was between 696 to 783 g NDF/kg DM and 372 to 425 g 

ADF/kg DM, respectively and were higher (p <.0001) than the values obtained for the 

MPTs which ranged between 308 to 415 and 162 to 237 g/kg DM, respectively.  

Organic matter, ash and gross energy 

The OM, ash and GE for the species ranged between 684 to 847 g/kg DM, 92.8 to 

222.5 g/kg DM and 16.0 to 20.1 MJ/kg DM, respectively.  The ash content of T. 

gigantea (225.5 g/kg DM) was higher (p <.0001) and the GE significantly lower (p 

<.0001) than the concentrations obtained for the other MPTs. The OM and ash 

concentrations for all species, using the NIRS method, ranged between 809 to 894 g/kg 

DM, and 66.0 to 116.8 g/kg DM, respectively. The ash content of L. leucocephala, M. 
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alba and T. gigantea (112.0, 113.8 and 116.8 g/kg DM, respectively) were the highest 

(p <.0001) of all the MPTs.   
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Table 3.1 Gross chemical composition (g/k DM) (including the crude protein (CP), starch, neutral detergent fibre (NDF), acid detergent fibre (ADF), lignin, fat, 

organic matter (OM), ash) and gross energy (GE, MJ/kg DM) for grasses, leguminous multipurpose tree species (LMPTs) and non-leguminous multipurpose tree 

species (NLMPTs) (n=3 per forage species) 

  CP Starch NDF ADF Lignin Fat OM Ash GE 

Grasses                   

Brachiaria arrecta 109.5bc 3.71a 705cd 449def 77.3ab 17.9ab 820b 122.0bcd 17.4def 

Brachiaria hybrid*  67.6a 4.85a 715cd 414cdef 40.5a 18.8abcd 843b 94.1a 17.9f 

Cynodon dactylon 142.8cd 12.58ab 748cd 388bcdef 67.0a 12.3a 685a 126.3cd 17.2bcd 

Cynodon 

nlemfuensis 
191.2ef 1.06a 699c 383bcde 59.6a 18.3abc 804b 108.4ab 17.3cde 

Digitaria eriantha 87.1ab 3.92a 727cd 497f 78.5ab 21.8bcd 838b 95.5a 17.9f 

Megathyrsus 

maximus 
90.3ab 1.96a 756d 472ef 57.2a 18.6abcd 791b 137.1de 16.9bc 

Pennisetum 

pupureum 
105.5b 1.52a 704cd 436cdef 45.3a 26.1cde 757ab 146.4e 16.7b 

LMPTs                   

Gliricidia sepium 192.6ef 12.92ab 501b 335abc 188.1c 31.3e 807b 112.0bc 19.1g 

Leucaena 

leucocephala 
263.6h 4.59a 505b 347abcd 185.4c 26.3de 847b 92.8a 20.1h 

NLMPTs                   

Moringa oleifera 232.5gh 28.36c 386a 284ab 99.9ab 46.3f 836b 93.5a 19.8h 

Morus alba 205.3fg 25.36c 379a 250a 139.5bc 22.1bcd 755ab 146.8e 17.8ef 

Trichanthera 

gigantea 
171.1de 23.68bc 502b 363bcde 196.5c 22.4bcd 684a 225.5f 16.0a 

SEM 6.61 2.37 10.4 21.5 12.8 1.54 18.4 3.09 0.097 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

All means carrying the same superscripts within columns are not significantly different (P > 0.05) 
*Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens) 
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Table 3.2 NIRS predicted values for the chemical composition (g/kg DM) (including the crude protein, starch, neutral detergent fibre (NDF), acid detergent fibre 

(ADF), lignin, fat, organic matter (OM), ash) and in-vitro metabolisable energy ( IV-ME, MJ/kg DM) for grasses, leguminous multipurpose tree species  (LMPTs) 

and  non-leguminous multipurpose tree species (NLMPTs) 

  CP NDF ADF Fat OM Ash DOMD IV-ME  

GRASSES                

Brachiaria arrecta 104.4bc 715cd 403ef 17.80cd 889ef 76.8abc 0.507a 6.99ab 

Brachiaria hybrid* 51.8a 717cd 382e 27.29d 881def 70.1ab 0.517ab 7.08ab 

Cynodon dactylon 111.3c 699cd 394e 5.41a 894f 66.0a 0.595b 7.30abc 

Cynodon nlemfuensis 172.6d 696c 388e 6.85ab 881def 85.3cd 0.601b 8.25cd 

Digitaria Eriantha 60.1ab 709cd 373e 17.94cd 883def 72.7ab 0.570ab 7.69bcd 

Megathyrsus maximus 93.6abc 783e 425f 16.52bc 881def 68.9ab 0.496a 6.27a 

Pennisetum pupureum 120.8c 739d 372e 20.14cd 864cdef 80.7bcd 0.565ab 7.91bcd 

LMPTs                

Gliricidia sepium 215.6d 308a 200bc 38.84e 853cd 88.9d 0.728c 8.66de 

Leucaena leucocephala 272.1e 318a 162a 49.14f 846bc 112.0e 0.770cd 9.77ef 

NLMPTs                

Moringa oleifera 218.1d 415b 212cd 51.15f 860cde 92.0d 0.759cd 9.90f 

Morus alba 190.2d 311a 181ab 58.97f 815ab 113.8e 0.839de 12.21g 

Trichanthera gigantea 203.7d 374b 237d 38.55e 809a 116.8e 0.913e 10.25f 

SEM 8.96 8.1 6.1 1.95 6.35 2.33 0.017 0.227 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

All carrying the same superscripts within columns are not significantly different (P > 0.05) 
*Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens)
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 In-vitro digestibility and ME content of forages 

Table 3.3 summarises the digestibility and IV-ME of the different forage species. The 

IVDOMD for the grasses were between 0.496 to 0.530 and for the MPTs, between 

0.585 to 0.655.  Metabolisable energy ranged between 8.08 to 8.65 MJ/kg DM for 

grasses and 9.53 to 10.68 MJ/kg DM for the MPTs.  With respect to the MPTs, the 

digestibility of the NLMPTs was significantly higher (p <.0001) than those of the 

LMPTs. Morus alba had the highest IVDOMD which was not significantly different 

from that of M. oleifera. Trichanthera gigantea had the lowest IVDOMD (0.585) and 

ME (9.53 MJ kg DM) of all the MPTs.  

The NIRS DOMD ranged between 0.496 to 0.601 for the grasses, 0.728 to 0.770 for 

the LMPTs and 0.759 to 0.913 for the NLMPTs.  The MPTs, T. gigantea and M. alba 

had the highest NIRS DOMD values (0.913 and 0.839, respectively).  The NIRS ME 

values ranged between 6.27 to 8.25 MJ /kg/DM for grasses; 8.66 to 9.77 MJ /kg/DM 

for LMPTs; and 9.90 to 12.21 MJ /kg DM for NLMPTs.  Morus alba had the highest 

(p<.0001) NIRS ME concentration (12.21 MJ ME/kg/DM).  
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Table 3.3 Digestibility (in-vitro dry matter digestibility (IVDMD, g/g DM ); in-vitro organic matter digestibility (IVOMD, digestibility coefficient); in-vitro 

digestible organic matter in dry matter (IVDOMD, g/kg DM ) and metabolisable energy (ME, MJ/kg DM) of grasses, leguminous multipurpose tree species 

(LMPTs) and non-leguminous multipurpose tree species (NLMPTs) that are used in small ruminant production systems in the Caribbean (n=3 per forage species) 

   IVDMD  IVOMD   IVDOMD  ME * 

GRASSES         

Brachiaria arrecta 0.581b 0.574ab 0.515ab 8.40ab 

Brachiaria hybrid** 0.582b 0.582b 0.526b 8.58b 

Cynodon dactylon 0.575ab 0.571ab 0.511ab 8.32ab 

Cynodon nlemfuensis 0.592b 0.591b 0.530b 8.65ab 

Digitaria eriantha 0.572ab 0.572ab 0.517b 8.42b 

Megathyrsus maximus 0.560a 0.553a 0.496a 8.08ab 

Pennisetum pupureum 0.586b 0.580b 0.517b 8.42b 

LMPTs         

Gliricidia Sepium 0.662c 0.671c 0.599cd 9.76cd 

Leucaena leucocephala 0.668c 0.683c 0.614d 10.01d 

NLMPTs         

Moringa oleifera 0.705d 0.726d 0.651e 10.62e 

Morus. Alba 0.729e 0.749d 0.655e 10.68e 

Trichanthera gigantea 0.696d 0.687c 0.585c 9.53c 

SEM 0.004 0.005 0.004 0.066 

p-value <.0001 <.0001 <.0001 <.0001 

All means carrying the same superscripts within columns are not significantly different (P > 0.05) 
* ME = in-vitro digestible organic matter (IVDOMD) x 0.163  
**Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x Brachiaria brizantha x Brachiaria decumbens) 
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 Correlation coefficients between proximate components and in-vitro 

digestibility 

Correlation analysis between chemical components and digestibility parameters 

showed that CP and starch had a strong positive relationship (0.82 and 0.74, 

respectively, P < 0.05) with the IVDOMD.  However, the NDF and ADF fractions had 

a strong negative correlation with the IVDOMD (-0.98 and -0.86, respectively, P < 

0.05) (Table 3.4).    
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Table 3.4 Correlation coefficients between proximate components and in-vitro digestibility of forages used in small ruminant production systems in the Caribbean 

                    Chemical composition and the respective correlation coefficients* 

Variable Ash CP Fat Starch NDF ADF Lignin 

IVDMD 0.27 0.78 0.58 0.80 -0.98 -0.84 0.72 

IVOMD 0.17 0.80 0.61 0.78 -0.99 -0.85 0.69 

IVDOMD 0.02 0.82 0.66 0.74 -0.98 -0.86 0.65 

* Correlation coefficients ≥ 0.310 or ≤ -0.310 are significant at P ≤ 0.05 

Terms used: CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; IVDMD: in-vitro dry matter digestibility; IVOMD: in-vitro organic matter 

digestibility; IVDOMD: in-vitro digestible organic matter in dry matter
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 Correlation Coefficients between Gross chemical composition and In-vitro 

metabolisable energy values predicted by Near Infrared Spectroscopy 

(NIRS) 

The NIRS predictions for crude protein (CP) and NDF were strongly correlated with 

the respective values generated by gross chemical analysis having coefficients of 0.94 

and 0.94 (P < 0.05) respectively (Table 3.5). The correlation between the NIRS-ME 

and the in-vitro assay ME was 0.89 (P < 0.05). 

 

 

Table 3.5 Correlation coefficients between Gross chemical composition and in-vitro 

metabolisable energy values predicted by Near Infrared Spectroscopy (NIRS) for 12 forage 

species used in small ruminant systems in the Caribbean 

Variable Correlation Coefficients* 

Dry matter 0.50* 

Ash 0.86* 

Crude protein 0.94* 

Fat 0.11 

Neutral Detergent Fibre 0.94* 

Acid Detergent Fibre 0.79* 

In-vitro metabolisable energy 0.89* 
* Correlation coefficients ≥ 0.310 is significant at P ≤ 0.05 
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 Linear Relationship between NIRS and the chemical composition 

The linear relationship between NIRS and the chemical composition of forages is 

presented in Figures 3.1 and 3.2.  The correlation of determination (R2) between the 

proximate CP, NDF, ADF as well as the IVDOMD and IV-ME and their respective 

NIRS values were 0.91 (P < 0.05), 0.86 (P < 0.05), 0.59 (P ≤ 0.05), 0.7 (P < 0.05) and 

0.8 (P < 0.05), respectively. 



Chapter 3 

81 

 

 

 
Figure 3.1 The relationship between gross chemicals CP, NDF and NDF with their respective near infrared spectroscopy (NIRS) values  
*Terms used: proxCP: proximate crude protein;  NIRSCP: crude protein determined by near infrared spectroscopy;  proxNDF: proximate neutral detergent fibre;  

NIRSNDF: neutral detergent fibre determined by near infrared spectroscopy; proxADF; proximate acid detergent fibre;  NIRSADF: acid detergent fibre determined 

by near infrared spectroscopy; LMPTs: leguminous multipurpose tree species; NLMPTs: non-leguminous multipurpose tree species 
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 Figure 3.2 The relationship between the in-vitro digestible organic matter in dry matter (DOMD) and metabolisable energy (ME) with 

 their respective near infrared spectroscopy (NIRS)-predicted values 
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3.5 Discussion 

In the current study, the CP concentration observed for the MPTs was high with an 

average proximate CP and NIRS CP concentration of 213.0 and 219.9 g/kg DM, 

respectively.  MPTs are typically known for their high CP content when compared to 

tropical grasses which makes them suitable high-protein forage supplements, 

particularly during the drier parts of the year when both the quality and yield of tropical 

grasses decline severely (Wilson, 1969).   

There were differences in the concentration of CP among the various grass species.  

For example, C. nlemfuensis was ranked as having the highest proximate and NIRS 

CP concentrations for the grass species despite the lower values reported for the 

species in the Caribbean (98 to 140 g/kg DM) (Aumont et al., 1995; Miller et al., 2004). 

The differences in the concentration of CP between the studies may be implicated in 

differences in plant factors (samples comprising leaves or stem; maturity; cultivars) 

and environmental factors including weather and cultural practices (Hughes et al., 

2012; Sarwar, 1999).  Conversely, values up to 242 g CP/kg DM have been reported 

for the species in other tropical regions (Caro-Costas et al., 1976). The Brachiaria 

hybrid (cv.) Mulato II had the lowest proximate CP and NIRS CP (67 and 51.8 g/kg 

DM, respectively) of all the grass species which, by both methods, were comparable 

to those of D. eriantha (87.1 and 60.1 g/kg DM, respectively) and M. maximus  (90.3 

and 93.6 g/kg DM, respectively).  The lower values obtained for M. maximus and D. 

eriantha despite the early regrowth (35 days), were consistent with the literature for 

the species at a similar stage of regrowth (5.3 to 12.0 g CP/kg DM for D. eriantha 

(Chaiwang et al., 2011; Fanchone et al., 2012)) and between 86 to 140 g/kg DM for 

M. maximus (Lima et al., 2013; Melesse et al., 2017) which may indicate the low 
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quality of these grass species.  However, the Brachiaria hybrid is one of the improved 

tropical cultivars and CP concentrations between 110 to 160 g/kg DM, and sometimes 

up to 210 g CP/kg DM, have been reported for this forage (Argel et al., 2007; Guiot, 

2005). The differences in values observed between the studies for the Brachiaria 

hybrid may be implicated in environmental factors, including weather, cultural 

practice and soil type, as these impact on the nutritive value of forages (Hughes et al., 

2012; Sarwar and Saeed, 1999). 

With respect to the MPTs, L. leucocephala had the highest concentration of proximate 

CP which was comparable to that of M. oleifera.  A similar pattern was observed for 

the NIRS method where L. leucocephala had the highest NIRS CP concentration 

among the MPTs.  Both L. leucocephala and M. oleifera are rich in CP which may 

contain up to 260 g/kg DM for L. leucocephala and over 300 g CP/kg DM for M. 

oleifera (Gill et al., 2007; Heuze et al., 2019). Values obtained were comparable to 

values reported for L. leucocephala (302 to 318 g/kg DM) and M. oleifera (160 to 205 

g/kg DM) in the Caribbean (Edwards et al., 2012; López et al 2017). The proximate 

CP-value for T. gigantea was the lowest recorded for the MPTs, however, the NIRS 

value was high (203.7 g CP/kg DM) and comparable to the NIRS CP-value s of other 

protein-rich species like G. sepium (215.6 g CP/kg DM), M. oleifera (218.1 CP/kg 

DM) and M. alba (190.2 g CP/kg DM).  The CP-value s obtained by both methods for 

these MPTs were within the range reported in the literature for these MPTs (Fadiyimu 

et al., 2016; Martín et al., 2007; Rodríguez et al., 2017; Rosales, 1997a).  

Carbohydrates are critical precursors to volatile fatty acids (VFAs) which are the main 

sources of energy for ruminants (Faverdin, 1999; Rosales, 1997b). Tropical grasses, 

in comparison to other forages, are often higher in the fibrous carbohydrate fractions 

(Devendra and Gohl, 1970; Oyenuga, 1957). For instance, the proximate NDF 
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observed for grasses ranged between 699 to 756 g/kgDM. Similar results were 

observed for the NIRS method where the concentration of both NIRS NDF ranged 

between 696 to 783 g/kg DM. The proximate NDF values for the MPTs ranged 

between 379 to 505 g/kg DM and 308 to 415 g/kg DM for NIRS. Unlike the MPTs, 

the NDF values obtained for grasses were above the critical levels for these fractions 

(650 g/kg DM) which are associated with restricted intake in ruminants (Van Soest et 

al., 1991). For the MPTs, the proximate NDF concentrations for the LMPTs (501 to 

505 g/kg DM) and T. gigantea (502 g/kg DM) were higher than those typically 

reported for these species.  For instance, in studies done by Rosales (1997b), G. 

sepium, L. leucocephala and T. gigantea had the lowest concentration of the cell wall 

fractions ranging between 294 to 308 g/kg DM for NDF and between 217 to 248 g/kg 

DM for ADF when compared to that of other MPTs which ranged between 318 to 613 

g/kg DM for NDF and 264 to 620 for ADF.  The lower values obtained by Rosales 

(1997b) were more comparable to the NIRS NDF and NIRS ADF values reported (308 

to 374 g/kgDM and 162 to 237 g/kg DM, respectively). The observed differences 

between the proximate values of the current study and those of  Rosales (1997b) may 

be as a result of differences in samples used which were comprised of both stems and 

leaves in the current study and leaves only for the study done by Rosales (1997b).  

The generally low CP and high NDF concentration in grasses may limit both dry matter 

and energy intake and subsequently reduce performance (Arthington and Brown, 

2005; Islam et al., 2003). However, supplementation of tropical grasses with the MPTs 

may increase the CP concentration; reduce the concentration of the cell wall fractions 

and, therefore, improve the overall intake of diets comprising mainly fibrous tropical 

grasses of low nutritive value (Wilson, 1969).  
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The IVDOMD and ME obtained in this study were within the range reported in the 

literature for tropical grasses and MPTs (Durmic et al., 2017). The IVDOMD is the 

digestibility parameter most closely related to the ME of feeds (CSIRO, 2007).  The 

average IVDOMD and ME obtained for the MPTs was high, which may be as a result 

of the characteristically high concentrations of CP and the lower concentrations NDF 

observed for the MPTs (Arthington and Brown, 2005).  The positive impact of CP on 

the IVDOMD may be demonstrated by the strong positive relationship between CP 

and the IVDOMD (r = 0.82, P <  0.05) and the negative effect of cell wall fractions on 

the IVDOMD may be demonstrated by the strong negative relationship between the 

NDF (r = - 0.98, P < 0.05) and ADF (r = -0.86, P <  0.05) with the IVDOMD. 

Conversely, the low concentrations of CP and high concentrations of NDF in grasses 

may have resulted in the overall lower digestibility of these species. This negative 

relationship between both NDF and ADF with the IVDOMD was reported by other 

authors (Kamalak et al., 2005).  

Lignin had a positive relationship with the IVDOMD (0.65, P < 0.05), unlike that of 

the NDF and ADF fractions. Throughout the literature, there have been conflicting 

reports on the accuracy of using the concentration of lignin to predict the digestibility 

of feeds.  For instance, in some studies, lignin was not as strongly correlated with 

digestibility as the ADF fraction (Moss and Givens, 1990) whereas, for other authors, 

lignin was the cell wall fraction more strongly correlated with digestibility (Jung and 

Allen, 1995). The contradictions in reports may be because the spatial distribution of 

lignin in the cell wall matrix impacts more readily on the digestibility of feeds rather 

than its concentration. Therefore, feeds with a higher lignin concentration may not 

always be the least digestible (Reeves, 1987). 
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The IVDOMD and ME of grasses were comparable across species, but varied for the 

MPTs.  However, for the MPTs, M. oleifera and M. alba had the highest IVDOMD 

(0.651 and 0.655, respectively) and ME (10.62 and 10.68 MJ/kg DM, respectively) 

which may be related to the overall higher nutritive value of these species in 

comparison to the other MPTs.  Trichanthera gigantea and G. sepium had the lowest 

IVDOMD and ME which were comparable to the values reported in the literature for 

these species (Durmic et al., 2017).  The low IVDOMD obtained for T. gigantea 

(0.585) may be better explained by the lower proximate CP (171.1 g/kg DM), and 

higher proximate NDF (502 g/kg DM).  Trichanthera gigantea also had the highest 

ash content of all the MPTs (225.5 g/kg DM). Greater proximate ash content has also 

been associated with lower digestibility and energy in forage and may also explain the 

lower IVDOMD obtained for the species (225.5 g/kg DM) (Faverdin, 1999; Lazzarini 

et al., 2009; Negesse et al., 2009).  The lower proximate CP (192.6 g/kg DM) and 

higher concentrations of proximate NDF (501 g/kg DM) for G. sepium compared to 

M. alba and M. oelifera may be more aligned to the lower IVDOMD (0.599) than the 

higher DOMD of the NIRS method (0.728).  Although the NIRS DOMD and NIRS 

ME values obtained for the grasses were comparable to their respective in-vitro values, 

those for the MPTs were higher and the ranking of the species differed between the 

methods. For instance, based on the in-vitro method, both M. oleifera and M. alba 

ranked the highest, and T. gigantea the lowest, in terms of their IVDOMD and ME, 

however, for the NIRS method, the DOMD and ME of T. gigantea was comparable to 

that of M. alba and higher than that of M. oleifera. Overall, species were above the 

minimum IVDOMD (0.500) and 7.5 MJ/kg DM required for tropical forage species to 

be classified as good quality forage (Bediye et al., 2007). 
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There was a strong relationship between the proximate CP (r = 0.94, P < 0.05), 

proximate NDF (r=0.94, P ≤  0.05), IVDOMD (r = 0.84, P <  0.05) and ME (r=0.89, 

P <  0.05) and their respective NIRS values. The high correlations suggest that even 

with a NIRS calibration model built primarily on temperate pasture, reasonable 

predictions can be obtained for tropical forages (Figures 1 and 2).  The high coefficient 

of correlation between the proximate CP and NDF with their respective NIRS values 

was expected as the NIRS prediction models for these are typically precise because of 

the extensive use of NIRS to measure these components (Dardenne and Salgado, 

2015). Further, the results of the study suggest that the NIRS model was effective at 

predicting the IVDOMD and the in-vitro ME of tropical forages.   There was a high 

R2 between proximate CP, proximate NDF, IVDOMD, in-vitro ME and their 

respective NIRS values. In the case of NDF and ADF, the high R2 was due to the vast 

differences in the values obtained for both grasses and MPTs.  When the forage type 

was included in the model as a covariate, the relationship between proximate and NIRS 

for NDF and ADF was not significant. 
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3.6 Conclusion 

Overall, forage species varied in terms of their nutritive values. The multipurpose tree 

species (MPTs) compared to grasses were generally of higher nutritive value in terms 

of their crude protein (CP), neutral detergent fiber (NDF), digestibility and 

metabolisable energy (ME).  This may indicate their potential to improve the quality 

of diets comprised of grasses with inherently lower CP, higher NDF and generally 

lower digestibility and ME.  Moreover, the MPTs, particularly Moringa oleifera and 

Morus alba, having the highest reported digestibility and ME of all the species, may 

be used as partial alternatives or substitutes to the costly commercial concentrate feed. 

Further, studies may be required to determine the spatial and temporal effect of 

management (cutting intervals, fertilizer application, irrigation) and environmental 

factors (soil, precipitation, temperature) on the nutritive value of forages established 

under tropical conditions in the Caribbean.  The high correlation between NIRS and 

proximate values may indicate the potential of NIRS to provide routine, rapid and cost-

effective evaluation of a range of forages in the Caribbean which may indirectly lead 

to optimised livestock management and productivity. Overall, although the species 

varied in terms of their nutritive value, they were generally above the minimum 

CP, IVDOMD and ME required to be classified as intermediate to good quality 

forages.  
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4.1 Abstract  

Understanding the concentrations of minerals in forages is critical as it informs which 

and how species can be used to improve the mineral content of diets. Regulating the 

mineral composition of forages through ongoing forage evaluation is important as 

deficient minerals can be identified and supplemented.  Therefore, the aim of this study 

was to provide information on the mineral profiles for 12 forages used in small 

ruminant production systems in the Caribbean.  The forages included seven grasses 

(Brachiaria arrecta, Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. 

brizantha x B. decumbens), Cynodon dactylon, Cynodon, nlemfuensis, Digitaria 

eriantha, Megathyrsus maximus and Pennisetum purpureum); two leguminous 

multipurpose tree species (LMPTs) (Gliricidia sepium and Leucaena leucocephala) 

and three non-leguminous multipurpose tree species (NLMPTs) (Moringa oleifera, 

Morus alba and Trichanthera gigantea).  Trichanthera gigantea had the highest (p 

<.0001) concentration of calcium (Ca) for the MPTs.  Brachiaria arrecta and Digitaria 

eriantha had the highest (p <.0001) sodium concentration of all the grasses.  

Pennisetum purpureum, Brachiaria arrecta and Cynodon nlemfuensis had the highest 

(p <.0001) concentration of potassium (39.1, 34.0 and 32.6 g/kg DM, respectively).  

Copper concentrations were highest in grasses including Brachiaria arrecta, Cynodon 

dactylon and Cynodon nlemfuensis and in MPTs including Leucaena leucocephala and 

Trichanthera gigantea. Cynodon dactylon had the highest (p <.0001) concentration of 

iron (3340 g/kg DM). The concentration of molybdenum in the Cynodon species were 

higher (p <.0001 than that of the other grasses. The results of the study suggest that 

forages varied in mineral concentrations and inclusion levels must be carefully manged 
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to ensure that the mineral concentrations of diets offered are within the range required 

for small ruminants.   

Keywords: Caribbean, forage, minerals, small ruminants
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4.2 Introduction 

One of the major sources of minerals for small ruminants is forage (McDowell and 

Arthington, 2005).  Minerals are inorganic nutrients that are required for growth and 

development, and under-nutrition, as a result of mineral imbalances, has long been 

held responsible for low production in ruminants of the tropics  (McDowell and 

Arthington, 2005).  Few studies have been done primarily on the mineral status of 

forages in several of the islands within the region.  Generally, the concentration of 

minerals including calcium (Ca), phosphorus (P), potassium (K), magnesium (Mg), 

zinc (Zn) and manganese (Mn) were often reported as abundant in forages; iron (Fe) 

was frequently reported as being at high or at toxic levels; and sodium (Na) and copper 

(Cu) reported as being low or deficient in forages (Bernard et al., 2019; Devendra, 

1977; Mohammed et al., 2017; Youssef and Brathwaite, 1987).  Some of the major 

challenges experienced in the region as a result of mineral imbalances include 

nutritional disorders that result in wasting diseases, high mortality, low fertility and 

non-infectious abortions (Devendra, 1977). These may lead to severe economic losses 

to farms and the careful management of mineral intakes is required to ensure that the 

requirements of animals are met and that losses are minimised (Hernández and 

Sánchez, 2014).  

There are within and between variations in the mineral concentration of grasses and 

multipurpose tree species (MPTs) (Dongall and Bogdan, 1958; Topps, 1992).  Even 

though there are limited reports on the mineral status of MPTs established under 

tropical conditions in the Caribbean, they are known to be good sources of macro-

minerals in comparison to grasses (Goodchild and McMeniman, 1994; Rosales, 

1997b; Topps, 1992). This may be related to the relatively deeper root systems of 
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MPTs, which allows for the exploitation of mineral reserves across the soil profile 

(Rosales, 1996).  Several studies reported variations in the mineral concentrations 

between different grasses and different MPTs despite being subject to similar growth 

conditions (Dongall and Bogdan, 1958; Rosales, 1997b).  Further, some accumulator 

species may be more inclined to absorb extremely high levels of specific micro-

minerals (metals), although at high concentrations that may be detrimental to the health 

of animals (McDowell and Arthington, 2005). As a result, understanding the 

concentration of minerals in forages is critical as it informs which and how species can 

be used to improve the mineral content of the diet.  Assessing the mineral composition 

through ongoing forage evaluation is important as deficient minerals can be identified 

and supplemented (Youssef, 2000). Therefore, the aim of the following study is to 

provide current information on the concentration of  minerals (macro-minerals: Ca, P, 

Mg, Na, K; and micro-minerals: Fe, Cobalt, Mn, Molybdenum, Zn and Cu) for both 

grasses and multipurpose tree species (MPTs) used in small ruminant production 

systems in the Caribbean.    
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4.3 Materials and Methods 

 Site description 

The site description was described in Chapter 3 of this thesis. Samples for all species 

were collected from one of two sites (Site 1 and Site 2).  Site 1 was the Forage Bank 

at the University of Trinidad and Tobago - Valsayn Campus, Trinidad and Tobago and 

Site 2 was the forage bank at New Wales Manchester, Central Jamaica. 

 

 Selection of forage species and harvesting and preparation of samples 

The selection of forages and the harvesting and preparation of forage samples are 

described in Chapter 3. 

 Proximate analysis  

Samples were analysed for dry matter (DM), nitrogen (N), starch, neutral detergent 

fibre (NDF), acid detergent fibre (ADF), ash, organic matter, fat and the gross energy 

(GE). The analyses are described in Chapter 3. 
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 Mineral profile of forages 

Dried ground samples were digested with concentrated nitric acid and hydrochloric 

acid at 105 °C for 1 hour; made to volume with Type 1 water and filtered. Elements in 

the digest including calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), 

potassium (K); and micro-minerals including iron (Fe), cobalt (Co), manganese (Mn), 

molybdenum (Mo), zinc (Zn) and copper (Cu) were measured by inductively coupled 

plasma optical emissions spectrometry (ICP-OES) with internal standard (ISTD) 

correction against matrix-matched standards using a  Perkin Elmer NexION 300D 

system in accordance with in-house procedures based on APHA 3030F and 3125. 

Elements including Mo and Co were measured by inductively coupled plasma mass 

spectrometry (ICP-MS) with internal standard (ISTD) correction against matrix-

matched standards using a Thermo Scientific iCAP 6500 system in accordance with 

in-house procedures based on APHA 3030F and 3120. 

 

 Statistical analysis 

A statistical analysis was done in the R environment for statistical computing and 

visualisation (Team 2013). An ANOVA was used to obtain the p-value for the model 

differences.  Where significant differences between the treatment groups were 

detected, means were separated using the Tukey’s test. Differences were considered 

statistically significant if p < 0.05.
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4.4 Results 

 Macro-mineral profile of forages 

The macro-mineral concentrations of the twelve forage species are presented in Table 

4.1.  There was no significant difference in the concentrations of Ca observed for the 

grasses. The concentration of Ca for the MPTs was wide-ranging. Trichanthera 

gigantea had the highest (p <.0001) Ca concentration (55.68 g/kg DM) among the 

MPTs measuring up to twice the average Ca value for the other MPTs (29.82 g/kg 

DM).  Morus alba had the highest (p <.0001) P concentration (8.28 g/kg DM) of all 

the MPTs. The P concentration of the LMPTs (2.15 g/kg DM) was lower (p <.0001) 

than those of the other MPTs except for that of T. gigantea (3.19 g/kg DM). The 

concentration of Mg reported for T. gigantea (9.08 g/kg DM) and G. sepium (5.81 g/kg 

DM) were highest (p <.0001) of all the MPTs.  All forages were generally low in Na 

except for B. arrecta (0.9626 g/kg DM) and D. eriantha (4.4281 g/kg DM). The 

concentration of K observed for P. purpureum (39.1 g/kg DM) was significantly higher 

(p <.0001) than those reported for all other grass species except B. arrecta (32.6 g/kg 

DM) and C. nlemfuensis (34.0 g/kg DM).  The Ca:P ratio of grasses ranged between 

1:1 to 2:1 and between 3:1 to 17:1 for the MPTs. 
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Table 4.1 Macro-mineral content (g/kg DM) (calcium, phosphorus, magnesium, sodium, potassium) and calcium to phosphorus ratio of grasses and leguminous 

multipurpose tree species (LMPTs) and non-leguminous multipurpose tree species (NLMPTs) used in small ruminant production systems in the Caribbean (n=3 per 

forage species) 

  Calcium Phosphorus Magnesium Sodium Potassium Ca:P ratio 

Grasses           
 

Brachiaria arrecta 5.06a 3.65bcd 2.06a 0.9626b 32.6efg 1:1 

Brachiaria hybrid * 4.91a 4.94cde 3.84c 0.0871a 19.2ab 1:1 

Cynodon dactylon 6.80a 4.67cde 2.05a 0.3134a 28.4def 1:1 

Cynodon nlemfuensis 6.29a 5.70e 3.03abc 0.2072a 34.0fg 1:1 

Digitaria eriantha 4.50a 4.54bcde 1.95a 4.4281c 14.7a 1:1 

Megathyrsus maximus        5.58a 3.55abc 3.95c 0.1670a 26.2cde 2:1 

Pennisetum pupureum 5.90a 5.54e 2.47ab 0.0760a 39.1g 1:1 

LMPTs            

Gliricidia sepium 30.49d 2.15a 5.81d 0.1959a 16.0a 14:1 

Leucaena leucocephala 20.65c 2.15a 2.95abc 0.0660a 19.8abc 10:1 

NLMPTs            

Moringa oleifera 16.04b 5.02de 3.01abc 0.2158a 25.1bcd 3:1 

Morus alba 26.24d 8.28f 3.58bc 0.1432a 28.5def 3:1 

Trichanthera gigantea 55.68e 3.19ab 9.08e 0.1377a 24.6bcd 17:1 

SEM 0.837 0.279 0.227 0.122 1.31 - 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 - 

Requirement** 2.0 - 8.2 1.6 - 3.8 1.6 - 1.8 0.9 - 1.8 5.0 - 8.0 1:1 - 2:1 

Maximum tolerable levels** 20 6 5 90 30 - 

All means carrying the same superscripts within columns are not significantly different (P > 0.05) 
*Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens) 

Terms used: Ca:P ratio*: Calcium to Phosphorus ratio; McDowell and Arthington (2005); LMPTs: Leguminous multipurpose tree species; NLMPTs: Non-leguminous 

multipurpose tree species 

**Mineral requirement for small ruminants (g/kg DM) NRC (1985); Maximum tolerable levels of macro-minerals for small ruminants (g/kg DM) Kearl (1982)
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 Micro-minerals 

Table 4.2 presents the micro-mineral content of the twelve forages.  Cynodon dactylon 

had the highest (p <.0001) Fe concentration (3340 g/kg DM) which was over 10 times 

the average value for the other grass species (237 mg/kg DM). Cynodon dactylon had 

the highest (p <.0001) Co (1.0477 mg/kg DM), Mn (173.7 mg/kg DM) and Zn (89.7 

mg/kg DM) concentrations of all the grass species.  Among the grasses, both C. 

dactylon and C. nlemfuensis had the highest (p <.0001) concentration of Mo (8.615 

and 7.722 mg/kg DM, respectively).   All species were low in Cu except for C. dactylon 

(11.50 mg/kg DM), C. nlemfuensis (20.24 mg/kg DM), B. arrecta (11.95 mg/kg DM), 

L. leucocephala (8.16 mg/kg DM) and T. gigantea (16.60 mg/kg DM).  
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Table 4.2 Micro-mineral content (iron, cobalt, manganese, molybdenum, zinc, copper (mg/kgDM)) and the copper to molybdenum ratio of grasses and 

multipurpose tree species used in small ruminant production systems in the Caribbean (n=3 per forage species) 

  Iron Cobalt Manganese Molybdenum Zinc Copper 
Cu: Mo 

ratio* 

Grasses               

Brachiaria arrecta        174a 0.0672ab 27.0ab 1.288a 55.6f 11.50c 8.15:1 

Brachiaria hybrid **       160a 0.0533ab 20.9ab 2.422a 29.9bcd 3.34a 1.49:1 

Cynodon dactylon        3340b 1.0477e 173.7e 8.615b 89.7g 20.24e 1.82:1 

Cynodon nlemfuensis        435a 0.2416cd 49.8cd 7.722b 49.4ef 11.95c 1.32:1 

Digitaria eriantha        235a 0.0715ab 24.7ab 3.002a 37.9cde 6.46b 2.64:1 

Megathyrsus maximus        351a 0.0825ab 29.5ab 1.659a 42.0def 5.90b 4.26:1 

Pennisetum purpureum        288a 0.1328abc 40.2bcd 2.712a 36.5cde 7.59b 2.71:1 

LMPTs              

Gliricidia sepium        154a 0.1923bcd 14.2a 0.106a 15.5a 3.34a 38.70:1 

Leucaena leucocephala        112a 0.1597abcd 34.4bc 0.873a 20.6ab 8.16b 6.33:1 

NLMPT              

Moringa oleifera        123a 0.0215a 27.2ab 1.237a 24.7abc 7.75b 4.58:1 

Morus alba        173a 0.0406a 40.0bcd 0.507a 34.4bcd 6.91b 13.71:1 

Trichanthera gigantea        400a 0.2749d 58.6d 0.675a 37.0cde 16.60d 19.26:1 

SEM 154 0.028 3.87 0.59 2.79 0.479 - 

p-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 - 

Requirement*** 30 - 50 0.05 - 0.1 20 - 40 0.01 20 - 33 8 - 25 2:1 - 4:1 

Maximum tolerable levels*** 500 10 1000 5 300 25  - 

All means carrying the same superscripts within columns are not significantly different (P > 0.05) 
*Co:Mo ratio or cupper to molybdenum ratio 
**Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens), Cu:Mo ratio*: copper to molybdenum ratio  
 ***Micro-mineral requirement (mg/kg DM) for small ruminants (Miltimore and Mason, 1971; NRC, 1985); Maximum tolerable levels of micro-minerals (mg/kg DM) 

for small ruminants (Kearl, 1982) 
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4.5 Discussion  

The aim of this study was to examine the mineral composition of a range of forage 

species used in small ruminant production systems in the Caribbean. This information 

is important as there are limited reports on the mineral composition of forages 

(particularly MPTs), found in the Caribbean.   

Overall, the concentrations of all macro-minerals in forages, except for Na, were above 

the minimum concentrations required by small ruminants (NRC, 1985).  Both 

Devendra (1977) and Bernard et al. (2019) report adequate concentrations of Ca, Mg 

and P in tropical forages found in Trinidad and Tobago and Jamaica. Even though the 

values obtained by Devendra (1977) were higher than those observed in the current 

study, those of  Bernard et al. (2019) were more comparable.  Overall, both the 

observed and reported values  were within the ranges required by small ruminants  for 

Ca (2.0 to 8.2), Mg (1.6 to 1.8) and P (1.6 to 3.8 g/kg DM) (NRC, 1985).  One of the 

key roles of these minerals is their contribution to bone and skeletal development 

(Kearl, 1982). Further, Mg plays a critical role in neuromuscular function and 

carbohydrate metabolism (Kearl, 1982).  Further, Leng (1990) emphasise the 

importance of these minerals to the health of rumen microbes, the efficiency of 

degradation and intake of feeds.  Therefore, supplying adequate concentrations of 

these minerals is fundamental to maintaining high performance in animals.  

Multipurpose tree species are often known to be good sources of macro-minerals 

having concentrations that are typically within the range required by livestock (Smith, 

1992). All MPTs were high in Ca, P, Mg and K.  Trichanthera gigantea had the highest 

Ca concentration with a value twice the average Ca concentration for the other 
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multipurpose tree species (MPTs).   The high Ca concentration may be explained by 

the presence of calcium-rich cystoliths on the surface of epidermal cell walls of the 

leaves and upper stems of T. gigantea (Benton and Benton, 1963; Rosales, 1997b).   

Sodium is considered to be the mineral most limiting to livestock production 

worldwide (Whitehead, 2000). This may have explained the low values obtained for 

ten out of the twelve species examined in this study (< 0.9 to 1.8 g/kg DM required for 

small ruminants). For instance, low forage Na was reported by Bernard et al. (2019) 

for Jamaica (0.41 to 0.58 g/kg DM).  The requirement for Na is high in the tropics as 

a result of the elevated temperatures which lead to losses through perspiration 

(McDowell and Arthington, 2005). The requirement is further increased in rapidly 

growing and high-producing animals (McDowell and Arthington, 2005). This gap 

between forage Na and the animal requirement for the mineral indicates that 

supplementation of Na is required in the diet of ruminants in tropical regions such as 

the Caribbean.  Although most forages had low Na concentrations, that of B. ruzizensis 

and D. eriantha were above the minimum concentration required by small ruminants.  

Further, the Na content of D. eriantha was almost five times that of B. arrecta which 

was expected as D. eriantha has relatively high concentrations of Na in its tissues 

(Heuzé V. et al., 2015). Both species may be used to improve the intake of Na in the 

diets of small ruminants.  

Potassium is typically high in forage which may be linked to the overall complex 

transport systems of plants which allows access to the mineral in conditions of low and 

abundant soil K  (Arroyo-Aguilu and Coward-Lord, 1974; Morgan and Connolly, 

2013).  The typically high concentration of plant K reported in the literature was 

consistent with the results obtained in the current study. For instance, K concentration 
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in P. purpureum, C nlemfuensis and B. arrecta were above the maximum tolerable 

levels. These values, although high, were lower than the range reported by Arroyo-

Aguilu and Coward-Lord (1974) (30 to 73 g/kg DM) for tropical grasses. The 

differences in the K concentrations obtained between the studies may be as a result of 

the differences in species evaluated, age of material, cultural practices and soil type 

which are some of the major factors that impact on the mineral composition of forages 

(Dongall and Bogdan, 1958; Topps, 1992).  Further, the current K values obtained for 

the MPTs were high, yet within the range reported by Guerrero-Cervantes et al. (2012) 

for MPTs (3 to 56 g/kg DM). In some instances, high K may lead to reduced absorption 

of Mg and Ca which may predispose animals to hypoglycaemia and hypocalcaemia, 

especially in high-producing animals, however, the generally high concentration of K 

in forage may not lead to toxicosis as excess K is often rapidly excreted in animals 

(McDowell and Arthington, 2005). Potassium (K) plays a role in nerve and muscle 

health as well as carbohydrate metabolism (Kearl, 1982; McDowell and Arthington, 

2005) and, therefore, providing adequate amounts may be critical for optimising 

performance in animals. 

Calcium and P are closely related and a dietary excess or deficiency in one can impact 

on the utilisation of the other (McDowell and Arthington, 2005).  The Ca:P ratio is 

important and affects various aspects of performance, more critically, growth and bone 

formation.  Ruminants may thrive on a wide range of Ca:P ratios, however, the most 

optimum ratio ranges between 1:1 to 2:1 (McDowell and Arthington, 2005). In this 

study, the Ca:P ratio of the MPTs was high, but that of the grasses was between 1:1 

and 2:1, which was well within the range required by small ruminants.  
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The concentration of all micro-minerals except Cu, were above the minimum 

concentration required by small ruminants (NRC, 1985). Micro-minerals including Fe, 

Co, Mn and Zn were comparable to those reported by McDowell et al. (1977) for 

tropical forages:  75% of forages had Fe concentrations between 31 to 500 mg/kg Fe; 

49% forages had Co concentrations between 0.06 to 0.20 mg/kg DM; 53% forages had 

Mn concentrations between 21 to100 mg/kg DM and 44% forages had Zinc 

concentrations between 31 to 75 mg/kg DM.  In the current study, the concentration 

of Fe in C. dactylon was high and above the maximum tolerable levels for small 

ruminants (500 mg/kg DM) (NRC, 1985).  This may be related to the iron-rich bauxitic 

soils (St. Ann’s clay loam) at Site 2 which may have resulted in the high absorption 

and, therefore, high concentration of Fe observed for C. dactylon.  The 

characteristically high  pH and Fe concentration of these soils may have resulted in the 

high absorption of Mo observed for both C. dactylon and C. nlemfuensis (Greenberg 

and Wilding, 2007; Schulte, 1992).   The ability of these Cynodon species to 

bioaccumulate metals has been reported and may explain the above-average metal 

concentration (Fe and Mo) observed for these species (Franco et al., 2013).    

The Fe concentrations obtained for other species in this study were similar to those 

reported in the literature (up to 619 g/kg) (Guerrero-Cervantes et al., 2012; Mtui et al., 

2006).  The Cu concentrations of several species were below the minimum 

concentrations (8 to 25 mg/kg DM) required by small ruminants.  This was expected 

as Cu is typically low in tropical forages (McDowell and Arthington, 2005; 

Mohammed et al., 2016). However, the Cynodon species, B. arrecta, L. leucocephala 

and T. gigantea had concentrations of Cu that were within the range required for small 

ruminants and may be used to improve the Cu concentration in diets.   
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4.6 Conclusion 

Overall, the Ca, P, Mg, Co, Mn, and Zn were within the range required for small 

ruminants.  Although most species were low in Na, adequate concentrations of Na in 

B. arrecta and D. eriantha may indicate the potential of these species to improve the 

Na concentration in diets. Similarly, C. dactylon, C. nlemfuensis, B. arrecta, L. 

leucocephala and T. gigantea had adequate concentrations of Cu, unlike most other 

forage species, and may be used to improve Cu concentrations in diets for lambs.  The 

concentration of K in P. purpureum, B. arrecta, and C. nlemfuensis, the concentration 

of Fe in C. dactylon and Mo in both Cynodon species were above the maximum 

tolerable levels for small ruminants which may require limiting their inclusion in diets. 

The results of the study suggest that forages varied in mineral concentrations and the 

toxic and marginal concentrations of specific minerals in various forage species elicits 

the careful management of inclusion in diets, to ensure that the mineral concentrations 

are within the range required for small ruminants.   
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5.1 Abstract  

The in-vitro fermentation kinetics and digestibility of six tropical grasses and five 

multipurpose tree species (MPTs) found in the Caribbean were determined in the 

current study. Forage samples were dried, ground and incubated at 39oC in rumen-

buffer inoculum for 48 hours. The in-vitro gas production was measured continuously 

using an automated pressure transducer system and fitted to a dual and single pool 

model to determine the fermentation kinetics of these forages. The average rate of the 

fast pool (C1) for grasses was over 20% higher than that of the MPTs. The volume of 

the fast pool by the dual pool model (V1) for grasses was 40% lower and slow pool 

(V2) 30% greater than that of the MPTs.  There was a strong negative relationship 

between the fast pool of the dual pool model (V1) and the NDF (r= - 0.781) and ADF 

(r = - 0.655) concentrations and a positive relationship between the V1 and the 

digestible organic matter in dry matter (DOMD) (r =0.537).  Based on the single pool 

model, the average rate of fermentation (c) of the slowly fermentable pool (b) for the 

grasses was 0.043%/hr and that of the MPTs 0.086%/hr. The average b for the grasses 

was 15% higher than that of the MPTs.  Moringa oleifera produced the greatest amount 

of total gas at 48 hours according to the dual pool model (Vtscho) (132.1 ml/g DM) and 

single pool model (Vtorsk) (131.5 ml/g DM) at 48 hours which was followed by that of 

Gliricidia sepium (116.1 and 113.5 ml/g/DM, respectively) and Morus alba (116.9 and 

113.7 g/kg DM, respectively). At 48 hours, the Vtscho and Vtorsk for Trichanthera 

gigantea and Leucaena leucocephala produced the least amount of gas (Trichanthera 

gigantea: 70.8 and 65.7 ml/g DM and Leucaena leucocephala: 89.1 and 86.2 ml/g DM 

for the dual and single pool models, respectively). The microbial biomass yield of 

Trichanthera gigantea was approximately 60% above the average yield for the other 

species.  Moringa oleifera had the greatest total VFA concentration, whereas 
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Trichanthera gigantea had the lowest. All MPTs except Trichanthera gigantea and 

Leucaena leucocephala, were more fermentable than the grasses and based on 

chemical composition, in-vitro digestibility, fermentation parameters and end 

products, Moringa oleifera and Morus alba demonstrated overall high performance, 

whereas Trichanthera gigantea performed poorly. 
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5.2 Introduction 

The nutritive value of feeds for ruminants is determined by both the concentration of 

its chemical components as well as the rate and extent to which the feed is digested 

(Getachew et al., 2004).  The in-vitro gas method is used to determine the rate and 

extent to which feed is digested and has been based on measured relationships between 

in-vivo digestibility of feeds; in-vitro gas production; and the chemical composition of 

feeds (Menke, 1988). 

The in-vitro gas method involves the incubation of feedstuffs with buffered rumen 

fluid in-vitro primarily for measuring the digestion of soluble and insoluble 

carbohydrates (Menke et al., 1979).  When incubated, the carbohydrates in feeds are 

fermented to produce volatile fatty acids (VFAs) including acetate, propionate and 

butyrate (Menke et al., 1979). In addition to VFAs, other gases (primarily including 

CO2 and CH4) are produced and the microbial biomass (MBM) is increased through 

the microbial fermentation of substrate (Getachew et al., 1998b).  The close association 

between the cumulative gas production and the fermentation of carbohydrates to VFAs 

is well known and gases produced are used to reflect the production of these short 

chain fatty acids (Getachew et al., 2002). Measuring the production and/or 

concentration of VFAs is critical as these represent a major source of energy for the 

ruminant, providing up to 80% of their energy requirement (Annison, 1970).  Both 

protein and fats produce gases, but in small and negligible amounts, respectively 

(Getachew et al., 2004; Wolin, 1960).  

The cumulative gas produced in-vitro can be fitted to mathematical models (France et 

al., 2000).  These models are used to estimate in-vitro gas production kinetics or the 

rate and extent a substrate or feed has been fermented and/or degraded which can be 



Chapter 5  

111 

 

used to estimate the potential animal performance when that feed is fed (France et al., 

2005; Üçkardeş and Efe, 2014).  Both the dual pool logistic model by Schofield et al. 

(1994) and single pool model by Orskov and McDonald (1979) are commonly used to 

estimate the kinetics of ruminal fermentation (Peripolli et al., 2014). However, 

information on the fermentation kinetics, in-vitro digestibility and how these relate to 

the nutritive value of forages in the Caribbean, is lacking.  Therefore, the study aimed 

to determine and report on the fermentation kinetics of a range of tropical forages 

including six grasses, two leguminous multipurpose tree species (LMPTs) and three 

non-leguminous multipurpose species (NLMPTs). This was done using the using both 

the dual pool logistic model by Schofield et al. (1994) and the single pool model by 

Orskov and McDonald (1979). Additionally, the study aims to determine the in-vitro 

digestibility and fermentation end products including the VFAs and MBM and to 

determine how the fermentation kinetics of forages relate to their nutritive value.   
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5.3 Materials and Methods 

 Site description 

Site description was described in Chapter 3 of this thesis. Samples for all species were 

collected from one of two sites (Site 1 and Site 2).  Site 1 was the Forage Bank at the 

University of Trinidad and Tobago - Valsayn Campus, Trinidad and Tobago and Site 

2 was the forage bank at New Wales Manchester, Central Jamaica. 

 

 Selection of forage species and harvesting and preparation of samples 

The selection of forages and the harvesting and preparation of forage samples are 

described in Chapter 3. 

 

 Proximate analysis  

Samples were analysed for dry matter (DM), nitrogen (N), starch, neutral detergent 

fibre (NDF), acid detergent fibre (ADF), ash, organic matter, fat and the gross energy 

(GE). The analyses have been described in Chapter 3. 

 

 Fermentation kinetics parameters and end products 

Forage samples (n = 2) were analysed using the Alltech IFMTM system.  About 1.4 L 

of rumen fluid was collected approximately two hours post-morning feed from a 

lactating dairy cow fed a typical diet consisting of pasture, grass silage and maize 

silage, 0.5 kg of molasses and 1.5 kg of a pelleted compound feed as part of the regular 

management of cows through a robotic system (Lely Astronaut). Once collected, the 

rumen fluid was strained using two layers of cheese cloth and mixed with 250 ml of a 
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reducing agent and 5.6 L of McDougall (1948) buffer solution resulting in a rumen 

fluid to buffer ratio of 20:80.  For each forage species, approximately 0.5 g of dried 

sample, ground to a size of  2 mm was weighed into 250 ml bottles in duplicates and 

incubated at 39oC in 100 ml of rumen-buffer inoculum for 48 hours (Mould et al., 

2005).  During the incubation period, gas production was measured continuously 

using an automated pressure transducer system by Pell and Schofield (1993). 

The cumulative gas production (ml/g DM) after 48 hours was fitted to a dual pool  

logistic model by Schofield et al. (1994) to estimate the rate of gas production of the 

fast pool (fast rate, FR %/hour, %/hr); the rate of gas production of the slow pool (slow 

rate, SR, %/hr); and the respective gas production volumes, including the fast pool (FP 

ml/g DM) and slow pool (SP ml/g DM) for each forage species. The 

total gas production after 48 hours (hrs) (Vtscho) was calculated as FP+SP (ml/g DM).  

The cumulative gas production over 48 hours was fitted to the single pool  model by 

Orskov and McDonald (1979) where the gas production from the immediately soluble 

fraction (a ml/g DM), gas production from the soluble fraction (b ml/g DM), the gas 

production rate constant (c %/hr) and the total gas production (Vtorsk) at 48 hours were 

determined.  The apparent dry matter digestibility (aDMD, %) or the percent of 

incubated feed DM left after the 48h incubation (undigested residue that contains 

microbial biomass (MBM, mg/g DM), was determined by the Tilley and Terry (1963) 

method.  The true dry matter digestibility (tDMD, %) was measured after the 

solubilisation of the MBM in the undigested residue and was estimated using the batch 

culture in-vitro digestibility method (Mould et al., 2005; Tilley and Terry, 1963) after 

treating the residue with a neutral detergent solution (Goering and Van Soest, 

1970).   The MBM synthesis was estimated as the difference between the aDMD and 
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the tDMD (Goering and Van Soest, 1970).  The DOMD was generated from the tDMD 

utilising the following formula:   

𝐷𝑂𝑀𝐷 =  
[𝑂𝑀 𝑤𝑒𝑖𝑔ℎ𝑡 −  (𝑁𝐷𝑅 𝑤𝑒𝑖𝑔ℎ𝑡 −  𝐴𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡)] 

𝐷𝑀 𝑤𝑒𝑖𝑔ℎ𝑡
 

Where NDR weight = Neutral detergent residue weight (the residues after 48 hr 

fermentation were treated with NDR solution to remove MBM);  

Ash weight = Ash of NDR residue;  

OM weight = OM, % substrate x substrate weight;  

DM weight = DM, % substrate x substrate weight 

 

The metabolisable energy (ME, MJ/kg DM) was calculated as the DOMD x 0.163 

(AFRC, 1993).  After 48 hours of incubation of the forage samples, individual and 

total VFA concentrations (mmol/L) were determined by gas chromatography 

according to Erwin et al. (1961) using an Agilent GC 7890B (FID detector).  

 

 Statistical analysis 

Statistical analysis was conducted in the R environment for statistical computing and 

visualisation (Team, 2013). Data on the nutritive value of forages, in-vitro 

digestibility, fermentation kinetics and fermentation end products were fitted to a 

linear model. An ANOVA was used to obtain the p-value for the model differences.  

Where significant differences between the treatment groups were detected, means 

were separated using least significant difference (LSD, P ≤ 0.05). Pearson’s correlation 

between the digestibility data and the proximate chemical components, as well as the 

Pearson’s correlation between proximate chemical components and fermentation 
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parameters were generated using the Corrr package (version 0.2.1(Jackson, 2016)). 

Correlations were considered significant if P ≤ 0.05.  

Cumulative gas production data for both samples were fitted to the dual pool and single 

pool models using R environment for statistical computing and visualisation (Team 

2013) to determine the fermentation kinetics: 

 

Dual  pool  logistic model by Schofield et al. (1994): 

𝑉𝑡𝑠𝑐ℎ𝑜  = [
𝑉1

1 + 𝑒𝑥𝑝(2+4 × 𝐶1 𝑥 (𝐿−𝑇))
] + [

𝑉2

1 + 𝑒𝑥𝑝(2+4 𝑥 𝐶2 𝑥 (𝐿−𝑇))
] 

 

where 𝑉𝑡𝑠𝑐ℎ𝑜  = the measured gas volume at time t; V1 and C1, = the asymptotic 

cumulative gas volume and fractional degradation rate for pool 1; and V2 and C2 = the 

respective parameters for pool 2. T is the time (hours) and L is the lag time (hours) for 

both pools. One value for each parameter V1, C1, V2, and C2 was obtained for forage 

samples (n=2 for each species) and averaged to obtain predicted cumulative gas 

volumes using the dual pool logistics model (Schofield et al., 1994). The cumulative 

gas volumes were illustrated by graphs using ggplot2 (Wickham, 2016). 

 

The single pool  model by Orskov and McDonald (1979): 

𝑉𝑡𝑜𝑟𝑠𝑘  =  𝑎 +  𝑏 (1 −  𝑒−𝑐(𝑡))                                               

 

where 𝑉𝑡𝑜𝑟𝑠𝑘  = the measured gas volume at time t, a = gas production from the 

immediately soluble fraction, b = gas production from the soluble fraction, a+b = the 

potential gas production and c = gas production rate constant.  The above fermentation 

parameters including a, b and c were predicted by fitting original gas volumes to the 
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single pool model of Orskov and McDonald (1979).  The averages of the parameters 

a, b and c were used to predict cumulative gas fitted to the  single pool  model (Orskov 

and McDonald, 1979) and were illustrated by graphs using ggplot2 (Wickham, 2016)
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5.4 Results 

 Chemical composition 

The chemical composition of the forage species were described in Chapter 3 and are 

presented in Table 5.1.   
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Table 5.1 Gross chemical composition (g/kg DM) (including the crude protein (CP), starch, neutral detergent fibre (NDF), acid detergent fibre (ADF), lignin, fat, 

organic matter (OM), ash and gross energy (GE, MJ/kg DM)) for grasses, leguminous multipurpose tree species (LMPTs) and non-leguminous multipurpose tree 

species (NLMPTs) used in small ruminant production systems in the Caribbean (n=3 per forage species)* 

  CP Starch NDF ADF Lignin Fat OM Ash GE 

GRASSES                   

Brachiaria arrecta 109.5bc 3.71a 705cd 449def 77.3ab 17.9ab 820b 122.0bcd 17.4def 

Brachiaria hybrid
**

 67.6a 4.85a 715cd 414cdef 40.5a 18.8abcd 843b 94.1a 17.9f 

Cynodon dactylon 142.8cd 12.58ab 748cd 388bcdef 67.0a 12.3a 685a 126.3cd 17.2bcd 

Cynodon 

nlemfuensis 
191.2ef 1.06a 699c 383bcde 59.6a 18.3abc 804b 108.4ab 17.3cde 

Digitaria eriantha 87.1ab 3.92a 727cd 497f 78.5ab 21.8bcd 838b 95.5a 17.9f 

Megathyrsus 

maximus 
90.3ab 1.96a 756d 472ef 57.2a 18.6abcd 791b 137.1de 16.9bc 

LMPTs                   

Gliricidia sepium 192.6ef 12.92ab 501b 335abc 188.1c 31.3e 807b 112.0bc 19.1g 

Leucaena 

leucocephala 
263.6h 4.59a 505b 347abcd 185.4c 26.3de 847b 92.8a 20.1h 

NLMPTs                   

Moringa oleifera 232.5gh 28.36c 386a 284ab 99.9ab 46.3f 836b 93.5a 19.8h 

Morus alba 205.3fg 25.36c 379a 250a 139.5bc 22.1bcd 755ab 146.8e 17.8ef 

Trichanthera 

gigantea 
171.1de 23.68bc 502b 363bcde 196.5c 22.4bcd 684a 225.5f 16.0a 

SEM 6.61 2.37 10.4 21.5 12.8 1.54 18.4 3.09 0.097 

p-value  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 
*Table obtained from Chapter 3 of this thesis 

Means carrying the same superscripts within columns are not significantly different (P > 0.05) 
** Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens)) 
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 In-vitro digestibility 

In the current study the aDMD, tDMD, DOMD and ME were measured for all species 

(Table 5.2).  The aDMD ranged between 40.4 to 55.1% for grasses and 34.7 to 61.5% 

for the MPTs. The tDMD ranged between 55.2 to 64.9% and 59 to 77.4% for grasses 

and MPTs, respectively.  The DOMD for grasses was between 51.2 to 65.1% and for 

MPTs was between 55.3 to 73.9%.  The ME was estimated and ranged between 8.18 

to 10.42 MJ/kg DM and 8.85 to 11.83 MJ/kg DM for grasses and MPTs, respectively.  
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Table 5.2 The apparent dry matter digestibility (aDMD, %), true dry matter digestibility (tDMD, %), digestible organic matter in dry matter (DOMD, %) and 

metabolisable energy (ME MJ/kg DM) for grasses, leguminous multipurpose tree species (LMPTs) and non-leguminous multipurpose tree species (NLMPTs) used 

in small ruminant production systems in the Caribbean 

Grasses aDMD tDMD DOMD ME 

Brachiaria arrecta 46.8 58.6 54.8 8.8 

Brachiaria hybrid * 45.5 57.4 56.6 9.1 

Cynodon dactylon 47.8 60.6 65.1 10.4 

Cynodon nlemfuensis 55.1 64.9 62.8 10.1 

Digitaria eriantha 47.1 58.9 58.3 9.3 

Megathyrsus maximus 40.4 55.2 51.2 8.2 

LMPTs         

Gliricidia sepium 46.2 65.5 66.1 10.6 

Leucaena leucocephala 37.5 59.0 59.4 9.5 

NLMPTs         

Moringa oleifera 61.5 73.7 73.9 11.8 

Morus alba 56.9 77.4 73.9 11.8 

Trichanthera gigantea 34.7 64.2 55.3 8.9 

LSD 5.96 5.27 11.11 1.77 

p-value <.0001 <.0001 0.011   0.011 

* Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens) 



Chapter 5  

121 

 

 Fermentation parameters and gas production 

The fermentation parameters after fitting the dual pool  logistic model of Schofield et 

al. (1994) and the single pool model of Orskov and McDonald (1979) to the cumulated 

gas volumes are presented in Table 5.3. In the dual pool model, the L ranged between 

1.24 to 1.93 hrs for the grasses and 0.50 to 1.19 hrs for the MPTs. There was no lag 

time calculated for the single pool model. The fast pool rates (C1) observed for the dual 

pool logistic model ranged between 0.22 to 0.37%/hr for grasses and 0.20 to 0.27%/hr 

for the MPTs, and the slow pool rates (C2) were between 0.03 to 0.04%/hr for grasses 

and 0.04 to 0.06%/hr for the MPTs. The rate of gas production (c) for the single pool 

Orskov model ranged between 0.02 to 0.06%/hr for grasses and 0.04 to 0.13%/hr for 

the MPTs. The total gas production at 48 hours for grasses determined by the dual pool 

logistic model (Vtscho) and the single pool model (Vtorsk) was 90.3 to 108.1 and 89.8 to 

111.5 ml/g DM, respectively, and for the MPTs were 70.8 to 132.1 ml/g DM and 65.7 

to 131.5 ml/g DM, respectively. 
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Table 5.3 The fermentation parameters of the dual pool logistic model by Schofield et al. (1994) and the single pool  model by Orskov and McDonald (1979)  for 

grasses, leguminous multipurpose tree species (LMPTs) and non-leguminous multipurpose tree species (NLMPTs) used in small ruminant production systems in 

the Caribbean 

  Dual pool logistic model            Single pool model  

 

L V1 V2 C1 C2 Vtscho a b c Vtorsk 

Grasses           

Brachiaria arrecta 1.93 22 74.3 0.268 0.038 96.6 4.39 103.4 0.047 95.8 

Brachiaria hybrid* 1.18 28 75.1 0.220 0.036 102.7 11.66 105.6 0.043 101.8 

Cynodon dactylon 1.41 16 91.9 0.235 0.037 108.1 6.78 127.4 0.036 111.5 

Cynodon nlemfuensis 1.60 16 90.2 0.261 0.031 105.9 8.7 154.5 0.023 107.7 

Digitaria eriantha 1.78 21 81.3 0.369 0.043 102.5 6.54 108.4 0.053 102.8 

Megathyrsus maximus 1.24 21 69.2 0.290 0.044 90.3 7.48 88.4 0.058 89.8 

LMPTs                    

Gliricidia sepium 0.50 40 76.6 0.269 0.058 116.1 5.06 108.7 0.121 113.5 

Leucaena leucocephala 1.18 28 61.2 0.257 0.047 89.1 5.33 82.6 0.081 86.2 

NLMPTs                    

Moringa oleifera 0.51 51 81.3 0.219 0.060 132.1 2.23 129.6 0.126 131.5 

Morus alba 1.14 43 73.7 0.2 0.049 116.9 1.44 114.2 0.09 113.7 

Trichanthera gigantea 1.19 26 44.8 0.26 0.038 70.8 14.07 59.1 0.043 65.7 

LSD 0.79 15.6 22.64 0.18 0.01 18.89 6.42 37.53 0.03 21.50 

p-value 0.037 0.006 0.033 0.797 0.008 0.002 0.031 0.011 <.0001 0.003 

 * Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens) 

Terms used:L: lag time (hrs); V1: Fast pool (ml/g DM), V2: Slow pool (ml/g DM),  C1: Fast rate (%/hr),  C2: Slow rate (%/hr); Vtscho: total  gas production by Schofield 

1994;  a: gas production from the immediately soluble fraction (ml/g DM); b: gas production from the insoluble or slowly degradable fraction (ml/g DM); c: rate of 

gas production from the slowly degradable fraction (%/hr); Vtorsk: total gas production by Orskov and Mcdonald (1979) (ml/g DM) 
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Figure 5.1 The mean cumulative gas volume for all forage species using the dual pool logistic model 

by Schofield et al. (1994)   

Terms used: Ba: Brachiaria arrecta; Bh: Brachiaria hybrid (Cv. Mulato II (Brachiaria ruziziensis x B. 

brizantha x B. decumbens)); Cd: Cynodon dactylon; Cn: Cynodon nlemfuensis; De: Digitaria eriantha; 

Gs: Gliricidia sepium; Ll: Leucaena leucocephala; Ma: Morus alba; Mm: Megathyrsus maximus; Mo: 

Moringa oleifera; and Tg: Trichanthera gigantea
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Figure 5.2 The mean cumulative gas volume for all forage species using the single pool model by 

Orskov and McDonald 1979 

Terms used: Ba: Brachiaria arrecta; Bh: Brachiaria hybrid (Cv. Mulato II (Brachiaria ruziziensis x B. 

brizantha x B. decumbens)); Cd: Cynodon dactylon; Cn: Cynodon nlemfuensis; De: Digitaria eriantha; 

Gs: Gliricidia sepium; Ll: Leucaena leucocephala; Ma: Morus alba; Mm: Megathyrsus maximus; Mo: 

Moringa oleifera; and Tg: Trichanthera gigantea
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 Relationship between chemical composition and fermentation parameters 

The relationship between the chemical components of forages and fermentation 

parameters can be observed in Table 5.4.  There was a strong positive relationship 

between the concentration of fat and the size of the slow pool determined by the dual 

pool model (V2) (r = 0.725, P < 0.05) and the gas pool of the slowly degradable fraction 

for the single pool model (b) (r = 0.811, P < 0.05). The relationship between the NDF 

concentration and the V2 and b gas pools were negative (r = -0.651 and -0.75,1 

respectively, P < 0.05). There was a significant positive relationship between the Vtscho 

at 48 hours and fat concentration, GE and the DOMD (r = 0.428, 0.473 and 0.773, 

respectively, P < 0.05). The relationship between the ash and the Vtscho and the Vtorsk 

at 48 hours were negative (r =- 0.547 and -0.578, respectively, P < 0.05).  There was a 

significant and negative relationship between the Vtscho at 48 hours and the ADF 

concentration (r = -0.428, P < 0.05).
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Table 5.4  The correlation between chemical components (g/k DM) (including crude protein (CP), fat, starch, neutral detergent fibre (NDF), acid detergent fibre 

(ADF), lignin, ash), gross energy (GE, MJ/kg DM), digestible organic matter in dry matter (DOMD, %) and the fermentation parameters for the dual and single 

pool models 

  Dual pool Logistic Model (Schofield et al. 1994) Single pool Model (Orskov and McDonald 1979) 

  V1 V2 C1 C2 Vtsch a b c Vtorsk 

CP 0.47* -0.163 -0.265 0.414 0.195 -0.284 0.046 0.518* 0.135 

Starch 0.592* -0.236 -0.194 0.477* 0.219 -0.151 -0.14 0.500* 0.144 

NDF -0.781* 0.301 0.265 -0.651* -0.298 0.359 0.122 -0.751* -0.197 

ADF -0.655* 0.047 0.476* -0.363 -0.428* 0.335 -0.176 -0.488* -0.352 

Lignin 0.359 -0.539* 0.009 0.476* -0.21 0.002 -0.481* 0.521* -0.290 

Fat 0.746* -0.074 -0.136 0.725* 0.469* -0.341 0.058 0.811* 0.400 

Ash  -0.055 -0.585* -0.05 -0.188 -0.547* 0.431* -0.517* -0.216 -0.578* 

GE 0.526* 0.111 -0.116 0.615* 0.473* -0.491* 0.134 0.705* 0.428* 

DOMD 0.537* 0.448* -0.14 0.524* 0.773* -0.553* 0.476* 0.556* 0.742* 
* P ≤ 0.05 (n=22); Terms used: V1: fast pool (ml/g DM), V2: slow pool (ml/g DM),  C1: fast rate (%/hr),  C2: slow rate (%/hr); Vtscho: total  gas production at 48 hours 

by Schofield et al. (1994); a:gas production from  the immediately soluble fraction (ml/g DM); b: gas production from the insoluble or slowly degradable fraction 

(ml/g DM); Vtorsk: total gas production at 48 hours by Orskov and Mcdonald (1979)  (ml/g DM); c: rate of gas production from the slowly degradable fraction (%/hr); 

LMPTs: leguminous multipurpose tree species; NLMPTs: non-leguminous multipurpose tree species
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 Fermentation end products 

The total VFAs ranged between 13.1 to 17.09 mmol/L for grasses and 8.92 to 20.81 

mmol/L for the MPTs (Table 5.5).  The MBM values obtained for grasses ranged 

between 112 to 170 mg/g DM and MPTs between 140 to 340 mg/g DM. The MBM 

yield of T. gigantea was 129 mg/g DM higher than the average MBM yield (211 mg/g) 

of the other MPTs.  
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Table 5.5 The volatile fatty acid concentrations (% molar proportions); total volatile fatty acid (TVFA, mmol/L); the acetate to propionate ratio (A:P); and 

microbial biomass (MBM) yield (mg/g DM) after 48-hour incubation of grasses, leguminous multipurpose tree species (LMPTs) and non-leguminous multipurpose 

tree species (NLMPTs) used in small ruminant production systems in the Caribbean 

Grasses Ac Pr Isobut But Isoval Val TVFA A:P MBM 

Brachiaria arrecta 58.7 30.6 0.361 8.70 0.563 1.050 15.05 1.92 136 

Brachiaria hybrid* 53.2 36.7 0.292 8.33 0.324 1.185 15.00 1.45 137 

Cynodon dactylon 60.7 31.8 0.368 5.96 0.522 0.668 13.82 1.93 147 

Cynodon nlemfuensis 63.7 31.1 0.383 3.65 0.466 0.707 17.09 2.05 112 

Digitaria eriantha 58.4 31.9 0.258 8.28 0.295 0.835 15.68 1.83 135 

Megathyrsus maximus 60.4 31.0 0.390 6.63 0.558 1.061 13.16 1.95 170 

LMPTs                   

Gliricidia sepium 66.1 26.2 0.304 5.77 0.560 1.069 16.01 2.53 222 

Leucaena leucocephala 64.9 27.0 0.388 6.07 0.682 0.897 13.09 2.41 247 

NLMPTs                   

Morus alba 63.0 25.0 0.386 9.48 0.737 1.369 18.32 2.52 235 

Moringa oleifera 60.1 26.2 0.469 11.14 0.846 1.242 20.81 2.30 140 

Trichanthera gigantea 73.2 24.9 0.126 1.31 0.208 0.253 8.92 2.94 340 

LSD 3.94 3.02 0.11 1.29 0.19 0.24 2.15 0.34 21.56 

p-value <.0001 <.0001 0.003 <.0001 0.0004 <.0001 <.0001 <.0001 <.0001 

p ≤ 0.05 (n=22);*Brachiaria hybrid cv. Mulato II (Brachiaria ruziziensis x B. brizantha x B. decumbens)) 

Terms used: Ac: acetate; Pr: propionate; Isobut: isobutyrate; But: butyrate; Isoval: isovalerate and Val: valerate  
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5.5 Discussion 

Fermentation parameters were derived using the dual pool logistics model of Schofield 

et al. (1994) and the single pool model of Orskov and McDonald (1979). The different 

parameters from each of the models gave critical insight into the fermentation kinetics 

of a range of tropical forages.  Tropical grasses are typically high in fibrous fractions 

which decreases fermentability of forages and in the current study the NDF and ADF 

content were generally high (NDF: > 650 g/kg DM and ADF: > 400 g/kg DM)  

(Gemeda and Hassen, 2014; Nussio et al., 1998; Van Soest et al., 1991).  From the 

dual pool model, the size of the slow and fast pools was determined, and the more 

fibrous grasses had a 40% smaller fast pool (V1) and a 30% larger slow pool (V2) than 

the MPTs.  A correlation analysis between the fermentation parameters and chemical 

composition of the forages in this study suggests that the more digestible species (eg. 

MPTs) with lower ADF and NDF fractions were strongly associated with a larger V1 

pool, than the generally less digestible grasses with higher fibre fractions.  The size of 

the different pools must be considered in combination with rates of gas production.  

Surprisingly, the average C1 for the grasses was over 20% higher than that of the 

MPTs. There is no clear explanation for the higher C1 observed for the grasses given 

their less fermentable nature. However, if the average size and rates of the individual 

gas pools are considered, grasses were, overall, slower to ferment and produce less gas 

compared to the MPTs.   

Further, fitting the single pool model to the accumulated gas production data provided 

additional information about the fermentation of the forages studied. An overall 

estimate of the rate of fermentation (c) of the slowly fermentable pool (b) was obtained 

and the MPTs fermented (0.086%/hr) twice as fast as the grasses (0.043%/hr).  The 
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lower rate of degradation estimated by the model for grasses may further indicate the 

lower fermentability of grasses compared to the MPTs. Additionally, the average b 

pool for the fibrous grasses was approximately 16% higher  than that of the MPTs 

which was expected and consistent with the literature (Bezabih et al., 2014). Moreover, 

the different pattern of the exponential increase in the gas volumes for grasses and 

MPTs is noted in Figures 1 and 2 which illustrates the rate of fermentation of the 

different forages.  The gas production of the MPTs increased exponentially but 

plateaued, or was near plateauing, before 48 hours, whereas, the grasses did not appear 

to plateau until 48 hours, or after. The low degradability of grasses over time may 

indicate that nutrients are not as readily accessed in tropical grasses. This may explain 

the generally lower animal performance on these forages and the importance of 

supplementing with MPTs of higher degradability, to ensure that there is an adequate 

supply of both bypass and rumen degradable nutrients (Soliva et al., 2008).  

The Vtscho and Vtorsk at 48 hours of incubation for the grasses were within the range 

reported in the literature for tropical species (65.6 to 174.2 ml/g DM) (Gemeda and 

Hassen, 2014; Teguia et al., 1999). The Vtscho and Vtorsk observed for the MPTs at 48 

hours (Table 5.3 as well as Figures 5.1 and 5.2) were wide-ranging.  This may be 

linked to differences in the chemical composition of the individual species and the 

presence or absence of anti-nutritional factors in the MPTs (Apori et al., 1998; 

Kafilzadeh and Heidary, 2013). The Vtscho and Vtorsk at 48 hours for M. oleifera was at 

the higher end of the range for gas production which was followed by G. sepium and 

M. alba. The comparably greater fermentability of these species is not surprising given 

their higher nutritive value in comparison to other tropical MPTs (Hernández and 

Sánchez, 2014; Valdes et al., 2017). At 48 hours, the Vtscho and Vtorsk for T. gigantea 

and L. leucocephala were at the lower end of the range for the MPTs. However, 
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Nguyen and Le (2003) reported a total gas production of 113 ml/g DM after 48 hours 

of incubation for T. gigantea which was almost 60% higher than the value observed in 

the current study of only 70.8 and 73.2 ml/g DM for the dual and single pool models, 

respectively. The comparably higher volumes reported by Nguyen and Le (2003) may 

be primarily as a result of the more digestible leafy samples used compared to the 

combination of leaf and stems used in the current study. Adiwimarta et al. (2017) 

reported a total gas production of 234 ml/g DM for L. leucocephala after 48 hours of 

incubation which was almost three times the value observed in the current study (89.1 

ml/g DM and 87.9 ml/g DM in the dual and single pool model, respectively). Although 

the observed values were low, the higher values reported by other studies may indicate 

the potential of these species as feeds for ruminants.  

Further, the lower values observed for the G. sepium and L. leucocephala may be 

explained by the high MBM yield. Digestible substrate is either partitioned towards 

the synthesis of MBM or fermentation gases and there is often an inverse relationship 

between gas production (or VFA production) and the synthesis or yield of MBM 

(Blümmel and Bullerdieck, 1997). Microbial biomass represents an important source 

of amino acids (70 to 80% of supply (AFRC, 1992)) and bypass protein required to 

support production in ruminants (Nolan, 1981). Therefore, the higher MBM yield of 

T. gigantea may indicate that the species is a good source of bypass protein.  Having 

the right balance of both protein and energy supports high microbial efficiency (Clark 

et al., 1992). Therefore, forages must be selected on a combination of gas production 

potential as well as the potential to yield microbial biomass (Hoover and Stokes, 1991; 

Makar, 2004).   

Volatile fatty acids constitute the major source of energy for the ruminant providing 

70 to 80% of its energy requirements (Annison, 1970; Bergman et al., 1965; Warner, 
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1964).  In the current study, the total VFA production ranged between 13.1 to 17.09 

mmol/L for grasses and 8.92 to 20.81 mmol/L for MPTs. Based on the ranking of 

feedstuffs by Negesse et al. (2009), all forages in the current study, except M. oelifera, 

had low VFA production which, according to the author, ranged between 11.5 to 19 

mmol/L.  Further, the values observed for grasses and MPTs were lower than those 

reported by Singh et al. (2014) for tropical grasses (37.3 to 39.8 mmol) and MPTs 

(38.6 to 43.1 mmol/L). The overall, lower VFA concentration observed for the forages 

may indicate the low energy concentration and the requirement to supplement with 

digestible feeds that may improve the energy of diets comprising these forages 

(Gemeda and Hassen, 2014).  

The molar proportions of VFAs produced is influenced by the substrate fermented 

which, in turn, influences the amount of gas produced (Beuvink and Spoelstra, 1992).  

High concentrations of fermentable substrate yield higher concentrations of propionate 

resulting in lower A:P ratios compared to less rapidly fermented substrate that yield 

higher concentrations of acetate and butyrate; and lower propionate leading to higher 

A:P ratios (Janssen, 2010). However, the A:P ratios observed for the more fibrous 

grasses was at a lower range compared to that of the MPTs in the current study. There 

is no clear explanation for this as the higher nutritive value and fermentability of the 

MPTs was expected to result in lower A:P ratios than the tropical grasses of low 

nutritive value and fermentability.  The unexpected A:P ratios observed is similar to 

other studies where there was no clear relationship between the chemical composition 

of forages and the molar proportions measured using in-vitro incubations (Niderkorn 

et al., 2011; Rivero et al., 2020).  The time at which values were measured may have 

affected the observed values of the current study and those reported by other authors. 

For example, Niderkorn et al. (2011) and Rivero et al. (2020) observed that the A:P 
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ratios was lower at earlier (3.5 hrs) compared to later sampling times (24 hours). 

Therefore, it is possible that the A:P ratio would have been different if molar 

proportions were measured at earlier sampling times where there is a greater 

breakdown of the more fermentable fractions that lead to the production of propionate.  

Overall, the absolute values obtained for the fermentation parameters measured may 

have been different if samples were analysed using donor animals from the tropics 

(Bueno et al., 2015). Tropical sheep may be better adapted to the higher concentrations 

of fibre in tropical grasses and the likely presence of anti-nutritional factors in the 

MPTs than donor animals from temperate regions (Khazaal et al., 1993; Makkar, 

2003).   Several studies have demonstrated significant differences in fermentability of 

forages based on the species of donor animals used (Bueno et al., 2015). Forage 

fermentability may also vary intra-species, depending on the previous dietary history 

of donor animals (Khazaal et al., 1993; Leng, 1989).  Although using tropical animals 

may result in differences in the absolute values obtained, the ranking of the forage 

species observed in the current study may be similar.  

 

5.6 Conclusion 

Overall, the MPTs were more fermentable than the grasses based on the fermentation 

parameters derived using the dual and single pool models.  The correlation analysis 

between fermentation parameters and chemical composition of the forages observed 

indicated that the more digestible species (eg. MPTs) with lower ADF and NDF 

fractions were more rapidly fermented than the species with high fibrous fractions and 

low digestibility. Overall, the Vtscho and Vtorsk for the grasses at 48 hours were within 

the range reported in the literature for tropical species. At 48 hours of incubation the 
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Vtscho and Vtorsk observed for the MPTs were wide-ranging and, on average, higher than 

those of the grasses.  Moringa oelifera was at the higher end of the range for total gas 

production at 48 hours followed by G. sepium and M. alba. Trichanthera gigantea and 

L. leucocephala were at the lower end of the range for total gas production at 48 hours. 

Although the observed values for T. gigantea and L. leucocephala were low in the 

current study, the higher values reported by other studies may indicate the gas 

production potential of these species. The microbial biomass (MBM) yield of T. 

gigantea was the highest among all species.  Based on the overall chemical 

composition, in-vitro digestibility, fermentation parameters and end products, M. 

oleifera and M. alba demonstrated high performance, whereas T. gigantea performed 

poorly. Overall, the absolute values of the species may have been higher if the donor 

animal used in the analysis were tropical sheep as these may be better adapted to the 

higher fiber content of tropical grasses and the presence of anti-nutritional factors, 

particularly in the MPTS, however, the ranking of the forage species may have been 

similar to that observed in the current study. 
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6.1 Foreword 

In the previous chapters on the nutritive value of forages, although Trichanthera 

gigantea (T. gigantea) performed poorly compared to the other multipurpose tree 

species (MPTs), the species was selected for subsequent chapters aimed to determine 

the effect of densification technology on small ruminant production systems in the 

Caribbean.  Its selection was merited to its overall, acceptable concentrations of crude 

protein, fiber and minerals as well as its fermentability in terms of its microbial 

biomass yield.  Further, the species had been recently targeted by the Government of 

Trinidad and Tobago as one of the more favourable forage species in terms of its ease 

of establishment and higher dry matter yield compared to other MPTs of higher 

nutritive value as M. oleifera and M. alba.  Additionally, the ease of access to materials 

in organised plantations in Trinidad contributed to its selection for the following intake 

study (Chapter 6) and subsequent studies on the effect of densified forage on 

digestibility and growth performance in lambs (Chapter 7). 

6.2 Abstract  

Currently, there is limited information on the effect of increasing the concentration of 

dry, fallen Trichanthera gigantea (T. gigantea) leaves on the nutritive value and intake 

of pelleted diets offered to growing lambs reared under tropical conditions in the 

Caribbean. Twelve crossbred Barbados Blackbelly rams aged five months were 

randomly assigned to a treatment diet of 4kg (as fed basis) of chopped Pennisetum 

purpureum (9:00hrs) and one of five pelleted diets (500 g (as fed basis)) comprised of 

either 100% intact commercial pellets or a mixture of ground commercial pellets and 

fallen T. gigantea leaf grinds mixed in the following ratios (T. gigantea leaves: ground 

Commercial pellets): 20%: 80 % (T20); 40%:60 % (T40); 60%: 40 (T60); 80% :20% 
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(T80) and 100%: 0% (T100).  The total intake of the different treatment pellets was 

measured after 15 minutes (TPI15) and at the end of each day (TPI), and the average 

daily nutrient intakes of the different treatment diets were calculated. Treatment, day 

and treatment by day interactions had an effect on the TPI15 (p = 0.0001) and treatment 

had an effect on both the TPI (p <.0001) and nutrient intakes.  Overall, the more 

ingestive response to and the adequate intake of nutrients for the pellet treatments with 

lower inclusion concentrations of T. gigantea, suggest that dry fallen T. gigantea 

should replace no more than 40% of commercial concentrate in pelleted small 

ruminant diets.   

Key words: Barbados Blackbelly, Caribbean, pellet, sheep, Trichanthera gigantea, 

West African 
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6.3 Introduction 

The nutritive value of  fresh intact Trichantera gigantea leaves is attributed to its high 

protein content which ranges between 150 to 220 g/kg DM (Rosales, 1997a; Rosales 

and Rios, 1999). The presence of hydrolysable tannins in T. gigantea may increase 

rumen undegradable or bypass protein which is a direct benefit to ruminants when 

consumed (Edwards et al., 2012b; Rosales, 1997a). Compared to other MPTs at the 

same stage of maturity, freshly harvested T. gigantea is typically higher in non-

structural and storage carbohydrates and lower in structural carbohydrate which results 

in its high rumen degradability (Rosales and Rios, 1999). Trichanthera gigantea has 

cystoliths on the surface of its leaves and stems which results in a high ash content and 

a large percentage of calcium which is typically over 20% DM (Benton and Benton, 

1963; Rosales, 1997b). The higher ash content may be used to improve the mineral 

concentrations in the diets of livestock in the tropics where mineral deficiencies in 

tropical pasture is prevalent (McDowell and Arthington, 2005). Despite the potentially 

lower nutritive value to fresh T. gigantea leaves, owing to senescence, leaf fall may be 

a potential dry season feed for animals (Charlton et al., 2003). During periods of 

prolonged drought, there is often an abundance of biomass available as leaf fall 

(Wright and Cornejo, 1990).  This may be significant, particularly in the Caribbean 

where longer and more severe dry periods are projected (Lallo et al., 2016b). While 

several studies have focused on the use of fresh intact T. gigantea leaves, few have 

evaluated the use of fallen leaves as a prospective feed ingredient for lambs. Further, 

there is currently no information on the nutritive value and the effect of increasing the 

concentration of dry fallen T. gigantea on the quality of pelleted diets offered to 

growing lambs reared under tropical conditions in the Caribbean. Therefore, the 
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objective of this study was to determine the effect of increasing the concentration of 

dry fallen T. gigantea on the nutritive value and intake of pelleted diets offered to 

growing lambs.   

6.4 Materials and Methods 

The study was conducted at the Eastern Caribbean Institute for Agriculture and 

Forestry (ECIAF) – University of the Trinidad and Tobago (Latitude 10.56°N, 

Longitude -61.32°W) with approval from the Massey University Animal Ethics 

Committee (MUAEC 18/91). The effect of replacing commercial pellets with dry 

fallen T. gigantea leaf grinds included 0% (T0), 20% (T20), 40% (T40), 60% (T60), 

80% (T80) and 100% (T100) in pelleted diets on intake in lambs was examined over 

two periods; period 1 (10 - 15 May 2019) and period 2 (22 - 28 May 2019). Owing to 

limitations with the facilities (spacing), all six treatments could not have been 

compared at the same time and, therefore, the intakes of treatments T0, T20 and T40 

were measured during period 1 and the intakes of treatments T60, T80 and T100 were 

measured during period 2. The intakes of all treatment groups were compared in this 

study.   

 Harvesting and pelleting material 

Dry fallen T. gigantea leaves were collected prior to each study period from the 

plantation at the “Up the Hill Farms” located in Moruga, Trinidad (Latitude 10.11°N; 

Longitude -61.29°W).  The total rainfall for May was 45.2 mm; the minimum and 

maximum daily temperatures were 24.3°C and 32.8°C, respectively (AccuWeather, 

2019); and the dominant soil types at the site were a combination of the La Retraite 

and Basseterre soil series (Khan, 2020).   
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Fallen leaves and a commercial pellet were the primary ingredients used to produce 

the diets examined in this study. The control diet (T0 or 100% commercial pellets) 

comprised intact commercial pellets made of 80% wheat middlings and 20 % corn 

(DM basis), and a vitamin and mineral mix.  The other diet treatments included ground 

commercial pellets and dry fallen T. gigantea mixed in the following ratios (T. 

gigantea leaves: ground commercial pellets): 20%: 80 % (T20); 40%:60 % (T40); 

60%: 40 (T60); 80% :20% (T80) and 100%: 0% (T100).  Firstly, the commercial pellet 

and dry fallen T. gigantea were ground separately to pass through a 0.635 cm screen 

(the screen was initially 2.54 cm and modified to a 0.635 cm screen) of a Craftsman 

shredder-hammer mill (Model 247.776380). The ground materials were weighed (as 

fed basis) according to the ratios for the different pellet treatments.  For example, the 

T20 pellet treatment included 20% T. gigantea (dry fallen leaves) and 80% commercial 

pellet ingredients and was therefore mixed at a ratio of 80% ground commercial pellets 

to 20% ground T. gigantea leaves.  After weighing, according to the respective ratios 

for the different treatment groups, the ground materials were mixed manually for 10 

to 15 minutes and pelleted using a Changchai-ZS1115 Pellet Mill (22 Horse-Power 

Diesel Engine) with a die length and diameter of 2.54 cm and 1.27 cm, respectively. 

One week prior to periods 1 and 2, one batch of the required amount of treatment 

pellets was produced and fed throughout the respective periods.   

In addition  to the pellets, mature (> six to eight weeks regrowth) Pennisetum 

purpureum was manually harvested with a machete each day at a height of 1.5 m from 

the Eastern Caribbean Institute for Agriculture and Forestry Campus – University of 

Trinidad and Tobago (ECIAF-UTT) according to Gemeda and Hassen (2014).   

Pennisetum purpureum was used as the basal feed for both periods 1 and 2. For the 

period of harvest (May 2019), the total rainfall at the location was 50.5 mm; the 
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average daily minimum and maximum temperatures for the site was 24.3ºC and 

32.8ºC, respectively (Trinidad and Tobago Meteorological Services (TTMS), 2019); 

and the predominant soil type was the Piarco soil series comprised of terrace sand and 

gravel clay (characterised as having imperfect drainage; waterlogged in the wet 

season; and desiccated in the dry season (Brown, 1965)).  Once harvested, the P. 

purpureum (including leaves and stem) was manually chopped to lengths of about 5 

to 10 cm according to Schnaider et al. (2014), for daily feeding. 

 Lambs and diets 

The same 12 crossbred (Barbados Blackbelly and West African) intact rams, aged five 

months, were used in both periods (periods 1 and 2) to measure the intake of the 

treatment diets. At the start of the study, the mean live weight of the lambs in Period 

1 was 22 kg (± 2.17) and in Period 2 was 27 kg (± 2.38).  Before the commencement 

of the experiments the lambs were subject to a 19-day adaptation period where they 

were examined; treated for internal parasites; fed a diet of 4kg (as fed basis) of chopped 

P. purpureum (including leaves and stem) and a commercial pellet (approximately 500 

g (as fed basis)); and allowed to familiarise with their enclosures before period 1. For 

period 1, four lambs were randomly assigned to one of three diets (T0, T20 and T40) 

based on liveweight and measurements were recorded for seven days. Lambs were 

then subjected to a  five day adaptation period using the same diet fed prior to period 

1. Following this was period 2 of the study where the lambs (n = 4) were assigned to 

diet treatments, T60, T80 and T100 and measurements were recorded for seven days.  

During the experiment, all lambs were confined to well-ventilated individual pens 

(1.22 m x 1.22 m) and had unrestricted access to water and a mineral block 

(Alphablock) which contained 55.000 IU vitamin A; 27.500 IU vitamin D3; 300 IU 
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vitamin E; 30.000 mg calcium; 5.000 mg magnesium; 1.800 mg iron; 2.500 mg 

manganese; 50 mg cobalt; 1.500 mg zinc; 10 mg selenium; and 35 mg iodine. 

 Experimental procedure and design  

Animals were fed twice daily at 9:00 hrs (forage) and 15:00 hrs (pellets).  For the feed 

at 15:00 hours, pellets were presented to each lamb for 15 minutes. The time of offer 

and removal of the pellets for each lamb was lagged for one minute to ensure that each 

animal was presented with their treatment pellets for exactly 15 minutes. The total 

pellet intake at 15 minutes of exposure to feed (TPI15) and the total daily pellet intake 

(TPI) were measured.  Total dry matter intake (TDMI) was calculated as the sum of 

the TPI and the total forage intake (TFI).  

Sampling and analytical procedures 

The TFI and TPI offered and refused for each animal were recorded daily. Feed 

samples (forage and pellets) were taken at the end of each week for DM determination 

and chemical analysis. The TFI and TPI per lamb were done through deducting the 

quantity of the feed refused from the quantity of feed offered for each day. The TDMI 

intake was a sum of the TFI and TPI per lamb. The total nutrient content of the diet 

was calculated by firstly determining the concentration of each nutrient (on a DM 

basis) in both the forage and pellets fed.  The concentrations of each nutrient in the 

forage were then multiplied by the daily TFI and concentrations for each nutrient in 

the pellets were multiplied by the daily TPI and both were summed to determine the 

total daily nutrient intake for each lamb in the different treatment diets.   
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 Chemical analysis 

Samples were dried at 60oC for 72 hours and ground to pass through a 2mm sieve 

using a Thomas Scientific mill. These were then packaged (package included Export 

permit no. 139517 for Research) and exported to Cumberland Valley Analytical 

Services (CVAS), US, for analysis.  Dry matter for  P. purpureum (modified method) 

was determined by drying samples at 105°C for 3 hours  (National Forage Testing 

Association, 2002).  Dry matter for pellets and T. gigantea  was determined by drying 

samples at 35°C for 2 hours (AOAC method 930.15). ADF was determined using a 

Whatman 934-AH glass micro-fibre filters with 1.5um particle retention in place of a 

fritted glass crucible (modification to AOAC method 973.18).  NDF was obtained 

using a Whatman 934-AH glass micro-fibre filters with 1.5um particle retention which 

was used in place of a fritted glass crucible (a modification to Van Soest et al. (1991)). 

Ash was determined using 0.35g sample which was ashed for four hours at 535°C (a 

modification to AOAC method 942.05).  Elements including Calcium (Ca), 

Phosphorus (P), Magnesium (Mg), Potassium (K), Sodium (Na), Iron (Fe), Manganese 

(Mn), Zinc (Zn) and Copper (Cu))  were determined (modification to AOAC method 

985.01) . Sample (0.35 g) was ashed for one hour at 535°C; digested in open crucibles 

for 20 minutes in 15% nitric acid on a hotplate; diluted to 50ml and analysed using 

inductively coupled plasma spectroscopy (ICP).  Nitrogen (N) was determined by 

AOAC method 990.03 and crude protein (CP) was determined by multiplying the 

concentration of N in samples by a factor of 6.25.  Soluble protein (SP) was determined 

by using the Borate-Phosphate procedure (Krishnamoorthy et al., 1982).  

 Statistical analysis  

Statistical analysis was conducted using R environment for statistical computing and 

visualisation (Team, 2013).  Intake measurements obtained from each lamb at different 
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times were treated as repeated measures and a linear mixed effect model was applied 

to the data. The model consisted of treatment, day and day x treatment as fixed effects 

and animal as the random effect.  An ANOVA was used to obtain the p-value for the 

model differences.  Where significant differences between the treatment groups was 

detected, means were separated using the Tukey’s test. Differences were considered 

statistically significant if P ≤ 0.05.
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6.5 Results 

 

 Chemical composition and nutrient intakes 

The chemical composition of the dry fallen T. gigantea used for making T. gigantea 

pellets; P. purpureum and all pelleted feeds offered to lambs in the current study is 

presented in Table 6.1 and the average feed and nutrient intakes for the different 

treatment groups is presented in Table 6.2. The TFI and the TDMI were comparable 

across all treatment groups ranging between 0.738 to 0.795 kg DM/head/day for TFI 

and 1.13 to 1.21 kg DM/head/day for the TDMI.  Treatment had an effect on the TPI 

(p <.0001). The TPI of the T0 group was comparable to the T20, T40 and T60 groups, 

however it was higher (p <.0001) than that of the T100 group. There was no day or 

day by treatment effect on the TPI.  

Treatment had a significant effect on nutrient intakes. The CP intake for the T0 group 

was higher (p <.0001) than those of the other groups except that of the T20 group (P 

> 0.05). T0 had the highest (p = 0.0006) SP intake of 0.055 ± 0.001 kg SP/head/day 

which was not significantly different (P > 0.05) from that of the T20, T40 and T60 

groups, however, was significantly different (p = .0006) from those of the T80 and 

T100 groups.  The ADF intake for the T0 group was comparable to that of the T20 and 

T40 group (P > 0.05) and was approximately 74 g/kg DM lower (p <.0001) than the 

average ADF intake for the T60, T80 and T100 groups. The intake of ash for the T60, 

T80 and T100 groups was on average 0.035 kg ash/head/day higher (p <.0001) than 

the T0 group and 0.027 kg ash/head/day higher (p <.0001) than the T20 and T40 

groups.   All mineral intakes were high except for Na. All groups had toxic levels of 
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K and intakes of Mg and Fe were at toxic levels for the T60, T80 and T100 groups. 

There was no day or day by treatment interactions for the nutrient intakes.
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Table 6.1 The chemical composition (g/kgDM) (including the dry matter (DM), crude protein (CP), soluble protein (SP), acid detergent fibre (ADF), neutral 

detergent fibre (NDF), ash, organic matter (OM), calcium (Ca), phosphorus (P), magnesium (Mg), potassium (K), sodium (Na), iron (Fe), manganese (Mn), zinc 

(Zn), copper (Cu)) and calcium to phosphorus ratio (Ca:P ratio) for ingredients including Pennisetum purpureum, dry fallen Trichanthera gigantea leaves (TGL) 

and treatment pellets (T0, T20, T40, T60, T80, T100) used in experimental diets 

Ingredients P. purpureum TGL* T0** T20 ** T40 ** T60 ** T80** T100 ** 

DM 270 878 870 876 871 854 843 833 

CP 150 81 181 145 143 103 109 98 

SP 53 19 33 25 28 21 20 13 

ADF 425 308 109 142 152 295 287 340 

NDF 660 430 351 302 316 365 432 459 

Ash 132 194 64 85 88 151 159 159 

OM 138 684 806 791 783 703 684 674 

Ca 4.20 49.00 11.40 19.60 22.00 41.00 38.00 40.20 

P 3.50 3.00 10.10 7.60 7.20 4.90 3.70 2.70 

Mg  2.30 16.90 4.70 6.90 7.70 14.00 14.80 17.00 

K 39.70 4.00 10.80 9.10 8.90 6.40 6.00 5.20 

Na 0.60 0.30 0.90 0.90 0.80 0.60 0.50 0.50 

Fe 0.144 1.067 0.307 0.530 0.559 1.041 1.583 1.705 

Mn 0.164 0.271 0.129 0.144 0.151 0.198 0.307 0.364 

Zn 0.056 0.036 0.096 0.083 0.079 0.058 0.061 0.048 

Cu 0.010 0.012 0.013 0.013 0.015 0.013 0.020 0.018 

Ca:P ratio 1.2 16.0 1.1 2.6 3.1 8.4 10.3 14.9 
* Trichanthera gigantea leaves used in the study were fallen leaves collected from the floor/bed of the Trichanthera gigantea plantation 
** Commercial pellets were offered intact for the control group (T0). The other pellet treatments were comprised of ground commercial pellets mixed with dry fallen 

Trichanthera gigantea (T. gigantea) leaf grinds included at 20, 40, 60 and 80% inclusion for the T20, T40, T60 and T80 diet treatments, respectively. For the T100 

pellet, dry fallen T. gigantea leaf grinds were included at 100%. 
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Table 6.2 The average daily feed and nutrient intakes for the different treatment groups (n=4 lambs per treatment) 

Average daily intake 

kg DM/hd/d 

T0* T20 * T40 * T60* T80 * T100* SEM p-value 

Total forage intake 0.770 0.738 0.762 0.764 0.767 0.795 0.023 0.678 

Total pellet intake 0.435a 0.438a 0.435a 0.423a 0.417a 0.330b 0.013 <.0001 

Total dry matter intake 1.21 1.18 1.20 1.19 1.18 1.13 0.028 0.4049 

Average daily nutrient 

intake (g/kg DM/hd/d)  

              

Crude protein  0.194a 0.179ab 0.172bc 0.162cd 0.161cd 0.148d 0.003 <.0001 

Soluble protein  0.055a 0.052ab 0.051ab 0.051ab 0.049bc 0.045c 0.001 0.0006 

Acid detergent fibre  0.374a 0.389a 0.378a 0.459b 0.447b 0.439b 0.010 <.0001 

Neutral detergent fibre  0.660 0.640 0.621 0.673 0.689 0.659 0.015 0.0707 

Ash  0.129a 0.139a 0.135a 0.168b 0.168b 0.154b 0.003 <.0001 

Minerals         

Calcium  8.19a 11.82b 12.66b 20.66c 19.07c 16.50d 0.524 <.0001 

Phosphorus  7.08a 6.02b 5.70b 4.83c 4.24d 3.58e 0.082 <.0001 

Magnesium  3.81a 4.79ab 5.04b 7.73c 7.94c 7.38c 0.222 <.0001 

Potassium  35.2 34.5 33.0 33.9 33.1 32.3 0.903 0.2469 

Sodium  0.853a 0.856a 0.788b 0.726bc 0.671cd 0.627d 0.014 <.0001 

Iron  0.244a 0.343ab 0.349b 0.554c 0.771d 0.674d 0.022 <.0001 

Manganese  0.182a 0.189ab 0.186a 0.213b 0.254c 0.246c 0.006 <.0001 

Zinc  0.0848a 0.0794ab 0.0754b 0.0686c 0.0686c 0.0589d 0.001 <.0001 

Copper  0.0133a 0.0134a 0.0139a 0.0134a 0.0160b 0.0136a 0.0003 <.0001 

Ca:P ratio 1.16:1a 1.96:1b 2.22:1b 4.28:1c 4.63:1c 4.58:1c 0.154 <.0001 

Means carrying the same superscripts within rows are not significantly different (P > 0.05) 
* Commercial pellets were offered intact for the control group (T0). The other pellet treatments were comprised of ground commercial pellets mixed with dry fallen 

Trichanthera gigantea (T. gigantea) leaf grinds included at 20, 40, 60 and 80% inclusion for the T20, T40, T60 and T80 diet treatments, respectively. For the T100 

pellet, dry fallen T. gigantea leaf grinds were included at 100%. 
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 Total pellet intake after 15 minutes (TPI15) and total pellet intake (TPI) 

Treatment had an effect (p = .0001) on the TPI15 for all treatment groups (Table 6.3).  

Throughout the 7 days of the study period, there was no difference between the TPI15 

of the T0, T20 and T40 groups (p > 0.05). The TPI15 for T0 was higher (p = .0001) 

than that of the T60, T80 and T100 groups for the first 4 days of the study. The intake 

of T0 was significantly higher (p = .0001) than the intake of the T100 group for all 7 

days of the study.  

There was an effect of day (p = .0001) on the TPI15 (Table 6.3).  For the T0 and T20 

groups, there was no significant difference between the TPI15 for day 1 and those 

recorded for days 2 to 7 (P > 0.05).  There was no difference in the TPI15 for day 1 

and those for days 2 and 3 (P > 0.05) for the T40 group. The TPI15 for the T40 group 

on day 1 was significantly lower than those observed for days 4, 5 and 6.  There was 

no difference between the intakes on day 1 and those of days 2, 3 and 4 (P > 0.05) for 

the T60 group. The TPI15 for day 1 was significantly lower than those observed for 

days 5, 6 and 7. There was no difference in the TPI15 for day 1 and those of days 2 to 

6 (P > 0.05) for the T80 group. The TPI15 for the T80 group on day 1 was significantly 

lower than that observed for day 7. There was no difference in the TPI15 of day 1 to 

those of days 2, 3, 4, 5, 6 and 7 (P > 0.05) for the T100 group. Table 6.4 shows that 

the TPI for all groups was over 70% of pellets offered.  
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Table 6.3 The total pellet intake after 15 minutes (TPI15) for the diet treatment groups (kg DM) (n=4 lambs per treatment) 

 Treatment p-value 

Day T0*   T20*   T40 *   T60*   T80 *   T100 * SEM Treatment Day Treatment x Day 

1 0.430ax  0.355abx  0.318abx  0.168cdx  0.275bcx  0.118dx 0.032 0.0001 0.0001 0.0001 

2 0.434ax  0.391abx  0.329abxy 0.176cxy  0.260bcx  0.125cx 

3 0.418ax  0.433ax  0.364abxy 0.228bcxyz 0.270bcx  0.134cx 

4 0.424ax  0.417ax  0.419ay  0.242bcxyz 0.265bx  0.119cx 

5 0.426abx  0.438ax  0.422aby  0.272cyz  0.292bcx  0.161cx 

6 0.431ax  0.427ax  0.425ay  0.277bz  0.299abx  0.109cx 

7 0.411abx   0.423ax   0.400abxy 0.270byz   0.402aby   0.121cx 

 Means carrying the same superscripts (a,b,c,d) within rows are not significantly different (P > 0.05); Means carrying the same superscripts (x,y,z) within columns 

are not significantly different (P > 0.05) 
* Commercial pellets were offered intact for the control group (T0). The other pellet treatments were comprised of ground commercial pellets mixed with dry fallen 

Trichanthera gigantea (T. gigantea) leaf grinds included at 20, 40, 60 and 80% inclusion for the T20, T40, T60 and T80 diet treatments, respectively. For the T100 

pellet, dry fallen T. gigantea leaf grinds were included at 100%. 
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Table 6.4 The total pellet intake (TPI) for the diet treatment groups (kg DM) (n=4 lambs per treatment) 

 
    

Treatment   p-value 

Day     T0* T20* T40* T60* T80* T100* SEM Treatment Day Treatment x Day 

1     0.435ax 0.438ax 0.435ax 0.402ax 0.418ax 0.319bx 0.0179 0.0001 0.6092 0.8518 

2     0.435ax 0.438ax 0.435ax 0.426ax 0.421ax 0.316bx 

3     0.435ax 0.438ax 0.435ax 0.427abx 0.421abx 0.354bxy 

4     0.435ax 0.438ax 0.435ax 0.427ax 0.419ax 0.322bxy 

5     0.435ax 0.438ax 0.435ax 0.427ax 0.411ax 0.376ay 

6     0.435ax 0.438ax 0.435ax 0.427ax 0.412ax 0.316bx 

7     0.435ax 0.438ax 0.435ax 0.427ax 0.414ax 0.309bx 

Means carrying the same superscripts (a,b,c,d) within rows are not significantly different (P > 0.05); Means carrying the same superscripts (x,y,z) within columns are 

not significantly different (P > 0.05) 
*Commercial pellets were offered intact for the control group (T0). The other pellet treatments were comprised of ground commercial pellets mixed with dry fallen 

Trichanthera gigantea (T. gigantea) leaf grinds included at 20, 40, 60 and 80% inclusion for the T20, T40, T60 and T80 diet treatments, respectively. For 100% T. 

gigantea inclusion (T 100), T. gigantea was the sole ingredient used. 
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6.6 Discussion 

The daily CP intakes of the T0 , T20 and T40 groups were generally within the CP 

range required for moderately growing lambs between 20 to 30 kg liveweight (140 to 

167 g CP/kg DM) (NRC, 1985).  The daily CP intakes of the T60, T80 and T100 

groups were lower but close to the recommended daily CP intake required for lambs 

and, therefore, growth rate may not be restricted on these diets. The SP is 

recommended to be between 30 to 35% of CP in order to optimise rumen function 

(Hoover and Miller, 1996).  Based on the CP intake, the daily intake of SP was within 

the required amounts for growing lambs (0.05 to 0.07 kg DM/h/d) in all treatment 

groups except the T80 and T100 groups.  The intake of ADF and NDF for all treatment 

groups were below the concentration of 440 g/kg DM for ADF and 660 g/kg DM for 

NDF and were less likely to  restrict intake in ruminants (Van Soest et al., 1991).  All 

groups were above the maximum tolerable levels for K (>30 g/kg DM) (NRC, 1985). 

Under optimum conditions, however, K toxicity is not a practical problem as excess K 

is readily excreted (McDowell and Arthington, 2005). For the T0, T20 and T40 groups, 

intakes of the other minerals did not exceed the maximum tolerable levels and, 

therefore, concentrations will not be toxic to animals (NRC, 1985).  However, this was 

different for the T60, T80 and T100 groups where the intake of Mg and Fe exceeded 

the maximum recommended levels for these minerals. Although Mg toxicity is not 

very common, toxic levels may upset the metabolism of Ca and P (McDowell and 

Arthington, 2005).  Iron toxicity may be associated with reduced intakes; lower daily 

gains; and toxic levels may interfere with the metabolism of Cu and P (McDowell and 

Arthington, 2005). Based on the nutrient intakes, particularly minerals, dry fallen T. 

gigantea should replace no more than 40% of commercial pellets. 
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The inclusion of MPTs above 50% in ruminant diets are often associated with reduced 

intake as a result of anti-nutritional factors inherent to these species (Min et al., 2003; 

Reed, 1995).  While there is no known report of anti-nutritional factors that limit the 

intake of T. gigantea (Rosales, 1997b; Wanapat, 2009), the results of the current study 

corroborate the findings of Min et al. (2003) and Reed (1995) where the intake of 

pelleted diets with low concentration of T. gigantea (< 50%) were higher than the 

intake of pellets with higher concentrations of T. gigantea (> 50%).   

Apart from the presence of anti-nutritional factors, there are other important 

components of the diet that impact the short-term intake of feeds. Some of the more 

critical ones include protein, the cell wall fractions and, in some instances, ash 

(Faverdin, 1999; Lazzarini et al., 2009; Negesse et al., 2009).  An adequate supply of 

protein from diets is associated with increased efficiency of microbial fermentation; 

improved digestion; increased throughflow from the rumen and, therefore, increased 

intake.  Higher concentrations of cell wall fractions including ADF and NDF are 

associated with accelerated rumen fill, reduced throughflow and, therefore, reduced 

intake of feed. Further, high ash is often associated with lower digestibility and may 

impede intake (Negesse et al., 2009). The combination of the high CP and SP intake 

as well as the lower intake of ash and ADF may have contributed to the overall higher 

TPI15 of the T0, T20 and T40 groups in comparison to the T60, T80 and T100 groups. 

Additionally, while the TPI of T20, T40, T60 and T80 groups were comparable to that 

of the T0 group, that of T100 remained significantly lower and may be due to the 

comparably lower CP and SP intake as well as the overall higher intake of ADF and 

ash when compared to the T0 group.    

More critically, the observed differences in the TPI15 between the T0, T20 and T40 

pellets from the T60, T80 and T100 pellets may be as a result of the newness factor 
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described by Kertz et al. (1982).  With T. gigantea being a relatively new ingredient 

to the lambs, pellets with higher levels of inclusion of T. gigantea may have resulted 

in lower intakes particularly under restricted exposure (15 minutes) to the pellets.  This 

may have explained why the TPI15 for the T20 and the T40 groups were more 

comparable to that of the commercial pellet (T0) than that of the T60, T80 and T100 

groups with higher amounts of T. gigantea. On average, 98% of pellets offered were 

consumed by 15 minutes for the T20 and T40 groups compared to an average of 55% 

for the T60, T80 and T100 groups.  The overall lower TPI15 of the T60, T80 and T100 

groups when compared to the commercial pellet (T0), may be an indication of an 

aversion to these pellets. According to Kertz et al. (1982), the intake of new feeds, 

when offered as a single choice, is often associated with lower intakes for the first few 

days of exposure to the feed. Mejía and Vargas (1993) studied the preference of sheep 

for various local feeds and concluded that reduced intake was primarily associated 

with the degree to which animals were accustomed to consuming a given feed. 

However, despite the lower TPI15 of the T60, T80 and T100 groups, intake may be 

improved when animals are given more time to adapt to new feeds (Mejía and Vargas, 

1993). This was observed in the current study where the TPI15 for T40, T60 and T80 

groups were increased after days 3, 4 and 6, respectively. Although the TPI15 of T60, 

T80 and T100 groups were lower than that of the T0 group, the TPI for all treatment 

groups was, on average, over 70% of pellets offered.  

Another factor that may have impacted on the lower intake of pellets with high 

concentrations of T. gigantea ( ≥ 60% inclusion), in comparison to the T0 group, may 

be the moderate to low palatability commonly reported for T. gigantea (Mejía and 

Vargas, 1993). However, although the TPI15 for pellets with ≥ 60% inclusion of T. 

gigantea were comparably lower than the T0 group, ultimately the TPI was high for 
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these pellets.  This may be a result of the pelleting process which is often associated 

with higher levels of palatability and the presentation of more favourable forms of the 

feed (Dobie, 1975; Wallace et al., 1961). For instance, the hirsute nature of T. gigantea 

is a major cause of lower palatability of this MPT (Kertz et al., 1982; Mejía and Vargas, 

1993), however, the process of pelleting can be used to address this through the drying 

and grinding leaves.  The mixing and compression of ground leaves with more 

favourable ingredients may further improve palatability, reduce selection, and, 

therefore, increase the intake of the forage (Wanapat et al., 2013). Moreover, the 

smaller unit size of pellets makes it more prehensile and easier to ingest compared to 

the bulkier form of unprocessed forage. Additionally, the smaller, denser form of the 

feed is associated with more rapid flow of feed through the gastro-intestinal tract, 

resulting in its characteristically higher intake when compared to the bulkier 

unprocessed forage (Blaxter and Graham, 1956; Minson, 1963). There are no current 

studies on the impact of pelleting on the intake T. gigantea leaves in small ruminants, 

however, according to Beardsley (1964), pelleting can increase intake of forage feeds 

by up to 25%.   Therefore, pelleting may provide an opportunity for improving the 

intake of and, thus, performance on T. gigantea. 

6.7 Conclusion 

Throughout the experimental period, although the total daily intakes of all pellet 

treatments were above 70% of the total pellets offered, within the first 15 minutes of 

exposure, the total intake of pellets containing up to 40% T. gigantea, were comparable 

to that of the commercial pellets. This demonstrates a more ingestive response to 

pellets with ≤ 40% T. gigantea which was further validated by the shorter adjustment 

period of 1 to 2 days for pellets with ≤ 40% T. gigantea, compared to the longer 
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adjustment period of over 4 days, required for pellets with ≥ 60% T. gigantea. Further, 

nutrient intakes for groups offered pellets with ≤ 40% T. gigantea were more 

comparable to that of the group offered the commercial pellets and were more within 

the range required for small ruminants compared to groups offered pellets with higher 

concentrations of T. gigantea (≥ 60%). The results suggest that dried fallen T. gigantea 

leaves can replace up to 40% commercial pellets in densified diets without 

compromising dry matter intakes in growing lambs.  
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digestibility of Pennisetum purpureum in tropical 
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7.1 Foreword 

In the previous Chapter, results suggest that T. gigantea can replace up to 40% 

commercial concentrate without compromising intakes in growing lambs.  As a result, 

the following chapter aims to determine the effect of replacing 40% of commercial 

concentrate with T. gigantea leaves in pellets, on digestibility and growth performance 

in lambs. The chapter is comprised of two parts. Part 1 aimed to determine the in-vivo 

digestibility of P. purpureum in tropical hairsheep sheep of the Caribbean using the 

faecal collection method.  The results of the study was used to compare with and 

validate data obtained on the digestibility of diets comprising P. purpureum fed in 

combination with pelleted diets, in Part 2 of this chapter.   

 

7.2 Abstract  

The aim of the following study was to determine the in-vivo digestibility of Pennisetum 

purpureum (P. purpureum) in tropical hairsheep using the faecal collection method. 

The results of the study were used to compare and validate data obtained in the 

subsequent section on the digestibility of diets comprising P. purpureum fed in 

combination with pelleted diets.  A total of six Barbados Blackbelly type ram lambs, 

aged five months with an average weight of 26 kg ± 4.52, were used in this study. 

Lambs were subject to a 21-day adaptation period where they were left to familiarise 

themselves with their enclosures, diet, harnesses and faecal collection bags prior to the 

subsequent five-day faecal collection period. Animals were fed a sole diet of 3.1 kg 

(as fed basis) of P. purpureum twice daily at 9:00 and 15:00 hrs.  The in-vivo 

digestibility coefficients for dry matter (DM), organic matter (OM) and protein were 
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0.789, 0.843 and 0.842, respectively.  The content of digestible dry matter (DDMi), 

organic matter (DOMi) and protein (DPi) per kg DM for P. purpureum were 0.789, 

0.680 and 0.131 g/kg DM, respectively.  Overall, the digestibility of P. purpureum was 

high and the results of this study suggest that P. purpureum is a potential high-quality 

forage for hairsheep in the Caribbean. 

Key words: In-vivo digestibility, Pennisetum purpureum, Caribbean, small ruminants 
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7.3 Introduction 

Pennisetum purpureum (P. purpureum commonly known as Elephant grass) is a 

tropical grass species that is used in ruminant production systems in the tropics 

(Francis, 2004; Heuze et al., 2016).  This rhizomatous, tufted perennial is native to 

central and eastern Africa and was introduced to the Caribbean in the 1950s (Heuze et 

al., 2016; Kariuki, 1998).   Pennisetum purpureum has several advantages compared 

to other tropical grasses including its comparably higher-yielding capacity, sometimes 

attaining yields of over three times the average of those for other tropical grasses 

(Boonman, 1993).  However, this advantage of higher dry matter (DM) yield, is 

dependent on the corresponding DM intake as both factors form the basis for 

determining how well yield supports production in livestock (Kariuki, 1998).  Another 

advantage of P. purpureum is its versatility as it can be established and utilised 

successfully under a wide range of conditions (dry or wet conditions) and systems 

(smallholder or large-scale agricultural systems) (Mannetje, 1992).   Generally, the 

species is known to be resilient and robust and has been used successfully in the region, 

even under the harsher growing conditions of the Eastern Caribbean islands (Francis, 

2004; Paterson et al., 1992).  These advantages have contributed to its overall popular 

use in the Caribbean and wider tropics.   

Variations in the nutritive value of P. purpureum may result in differences regarding 

intake and performance in animals (Islam et al., 2003). The nutritive value may vary, 

depending on rainfall, soil and fertilizer regimes (Hughes et al., 2012; Sarwar, 1999).  

Additionally, nutritive value may be affected by plant factors including cultivars and 

stage of maturity.  For example, Islam et al. (2003) observed vast intra-species’ 

differences in the botanical fractions and nutritive value of a range of cultivars of P. 
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purpureum which the author concluded may have important implications for intake 

and productivity in animals.  Several studies have demonstrated the negative effect of 

increasing maturity on the nutritive value of maturing forage, primarily as a result of 

decreasing protein and energy concentrations and increasing concentrations of 

structural carbohydrate (Arthington and Brown, 2005; Sarwar, 1999). As a result, more 

mature forage is often associated with restricted intake and reduced digestibility (Leng, 

1990). However, it has been suggested that this reduction in nutritive value with 

increasing maturity may not be as pronounced with P. purpureum as it is for other 

tropical grasses.  For instance, Orodho (2006) concluded that P. purpureum retained a 

given digestibility for a longer period than other tropical grasses, while Nogueira Filho 

et al. (2000) reported a higher digestibility for P. purpureum compared to those of 

other tropical grasses of similar maturity and subjected to similar growth conditions. 

Other studies have demonstrated improved quality of diets comprised of P. purpureum 

through supplementation with more nutrient-dense feeds that improve overall rumen 

function and growth performance in livestock (Clark et al., 1992; Mpairwe et al., 

2003). These factors that affect the nutritive value of forage are, therefore, critical, and 

must be considered in efforts to optimise the quality of grass in livestock production 

systems. 

Although there have been several efforts to investigate the potential of P. purpureum 

for supporting livestock production in the broader tropics, the primary focus of work 

in the Caribbean has been on establishing best management practices for optimising 

the nutritive value of the forage (CARDI, 1990; Paterson et al., 1992; Proverbs and 

Quintyne, 1986).   Consequently, very limited work has been carried out using animal 

trials to determine the quality of P. purpureum.  One of the important aspects of the 

quality of forage is the digestibility of the forage, or the extent to which nutrients are 
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available for metabolism to support production.  Therefore, the aim of the following 

study was to determine the in-vivo digestibility of P. purpureum in tropical hairsheep 

sheep of the Caribbean using the faecal collection method.  The results of the study 

were used to compare and validate data obtained on the digestibility of diets 

comprising P. purpureum fed in combination with pelleted diets, in the second section 

of this chapter.  
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7.4 Materials and Methods 

The experiment took place in April 2019 at the Eastern Caribbean Institute for 

Agriculture and Forestry (ECIAF Campus) – University of the Trinidad and Tobago 

(Latitude 10.56°N, Longitude -61.32°W) with approval from the Massey University 

Animal Ethics Committee (MUAEC 18/92).  

 

 Harvesting of materials 

Pennisetum purpureum was manually harvested daily with a machete at an 

approximate height of 1.5 m according to the guidelines of  Gemeda and Hassen 

(2014). For the period of harvest, the total rainfall at the location was 8.3 mm; the 

average daily minimum and maximum temperatures for the site was 23.2ºC and 

32.4ºC, respectively; and the predominant soil type at the site is the Piarco soil series 

comprising terrace sand and gravel clay with imperfect drainage  (Brown, 1965).  Once 

harvested, P. purpureum (including leaves and stem) was manually chopped with a 

machete into lengths of about 5 to10 cm.    

 Lambs, diets and experimental procedure 

Six Barbados Blackbelly type intact ram lambs, aged five months with an average 

weight of 26 kg ± 4.52, were used in this study to measure the digestibility of 

Pennisetum purpureum. All lambs were confined to well-ventilated individual pens 

(1.22 m x 1.22 m) with slatted wooden floors, which were each equipped with one 

feeder and a waterer.  Lambs were subject to a 21-day adaptation period where they 

were examined, treated for internal parasites and left to familiarise with their 

enclosures and diet of chopped P. purpureum and commercial pellets.  During the third 

week of the adaptation period, lambs were fitted with faecal collection bags with 
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plastic bag liners and harnesses in preparation for the subsequent five day faecal 

collection period (Jonker and Cosgrove, 2017).   Animals were fed a sole diet of 3.1 

kg (as fed basis) of chopped P. purpureum (leaves and stem) at 9:00 hrs and 15:00 hrs 

each day.  The lambs had unrestricted access to water and a mineral block 

(Alphablock) which contained 55.000 IU vitamin A; 27.500 IU vitamin D3; 300 IU 

vitamin E; 30.000 mg calcium; 5.000 mg magnesium; 1.800 mg iron; 2.500 mg 

manganese; 50 mg cobalt; 1.500 mg zinc; 10 mg selenium; and 35 mg iodine at all 

times.  

 Sample collection and processing  

Samples of forage offered, forage refused and faeces (collected over the seven day 

experimental period) were collected.  The weight of the forage offered and refused was 

recorded daily for each lamb. Samples of the forage offered were collected weekly and 

pooled for DM determination and chemical analysis. The total faecal output for each 

lamb was collected daily at 6:30 hours, weighed and recorded. This total faecal output 

included faeces collected in bags and those that escaped the bag (on the slatted floor).  

Once the total faecal output for each lamb was weighed, the intact faeces contained in 

faecal bags were collected, pooled over the five day collection period and stored at -

20oC.  This resulted in the storage of a total of 6 pooled faecal samples (1 sample per 

lamb). At the end of the faecal collection period, each pooled sample was thawed, 

mixed for approximately 10 minutes and a 10% sub-sample of the pooled faecal output 

for each lamb was used for chemical analysis. The remaining faeces for each lamb was 

repackaged and stored at -20oC. All forage and faecal samples collected were dried at 

60oC for 72 hours in a forced air oven and ground to pass through a 2mm sieve using 

a Thomas Scientific mill. These were then packaged (package included Export permit 
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no. 139517) and exported to Cumberland Valley Analytical Services (CAVS), US, for 

chemical analysis.   

 Intakes and digestibility of Pennisetum purpureum 

The individual feed intake on (as fed basis) was calculated from the weight of the feed 

offered - weight of feed refused.  The feed intake (as is basis) was then multiplied by 

the DM% of feed offered to estimate the dry matter intake (DMI). 

The digestibility coefficients for dry matter (DMD), organic matter (OMD), energy 

and protein were calculated using the following formula: 

Total nutrient in feed (kg) –  nutrient in faecal output) (kg)

digestible nutrients in feed (kg)
 

 

The total digestible nutrient content per kg P. purpureum was calculated as follows: 

Nutrient value of feed x digestibility coefficient of nutrient 

 

 Chemical analysis  

Both feed and faecal samples were analysed at the Cumberland Valley Analytical 

Services (CAVS), US. Samples were dried at 60oC for 72 hours and ground to pass 

through a 2mm sieve using a Thomas Scientific mill. These were then packaged 

(package included Export permit no. 139517 for Research) and exported to 

Cumberland Valley Analytical Services (CVAS), US, for analysis.  Dry matter for  P. 

purpureum (modified method) was determined by drying samples at 105°C for three 

hours  (National Forage Testing Association, 2002).  Dry matter for pellets and T. 

gigantea  was determined by drying samples at 35°C for two hours (AOAC method 

930.15). ADF was determined using a Whatman 934-AH glass micro-fibre filters with 

1.5um particle retention in place of a fritted glass crucible (modification to AOAC 
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method 973.18).  NDF was obtained using a Whatman 934-AH glass micro-fibre 

filters with 1.5um particle retention which was used in place of a fritted glass crucible 

(a modification to Van Soest et al. (1991)). Ash was determined using 0.35g sample 

which was ashed for four hours at 535°C (a modification to AOAC method 942.05).  

Elements including Calcium (Ca), Phosphorus (P), Magnesium (Mg), Potassium (K) 

and Sodium (Na) were determined (modification to AOAC method 985.01) . Sample 

(0.35 g) was ashed for one hour at 535°C; digested in open crucibles for 20 minutes in 

15% nitric acid on a hotplate; diluted to 50ml and analysed using inductively coupled 

plasma spectroscopy (ICP).  Nitrogen (N) was determined by AOAC method 990.03 

and crude protein (CP) was determined by multiplying the concentration of N in 

samples by a factor of 6.25.  Soluble protein (SP) was determined by using the Borate-

Phosphate procedure (Krishnamoorthy et al., 1982). Non-fibrous carbohydrates (NFC) 

were computed as follows:  

NFC =  100% – [CP% +  (NDF% –  NDFICP%)  +  EE% +  Ash%]  

where NDFICP % is NDF insoluble CP; and EE% is the ether extract% or fat%. 

 

 Statistical analysis 

The mean DMI, digestibility coefficients, digestible nutrient intakes and digestible 

nutrient content of P. purpureum were generated and presented with the standard 

deviation in the results section.  
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7.5 Results  

 Chemical composition of Pennisetum purpureum 

The chemical composition of P. purpureum is presented in Table 7.1.   

 
Table 7.1 The chemical composition and mineral profile of Pennisetum purpureum 

Chemical composition                                                                                 g/kg DM 

Dry matter 189.8 

Organic matter 806.6 

Ash 97.4 

Crude protein 156.0 

Soluble protein 49.0 

Rumen degradable protein 102.0 

Neutral detergent fibre (aNDF)*  648.0 

Acid detergent fibre 377.0 

Non-fibrous carbohydrate 85.6 

Macro - minerals g/kg DM   

Calcium 4.9 

Phosphorus 3.3 

Magnesium 1.8 

Potassium 36.5 

Sodium 0.2 

Micro - minerals mg/kg DM   

Iron 107 

Manganese 98 

Zinc 59 

Copper 10 

* Terms used: aNDF: ash free NDF 
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 The in-vivo digestibility of Pennisetum purpureum 

The in-vivo digestibility coefficients and the digestible nutrient content of P. 

purpureum are presented in Table 7.2.   

 

Table 7.2 Showing the in-vivo dry matter, organic matter and crude protein digestibility coefficients 

and digestible nutrient content of Pennisetum purpureum in Barbados Blackbelly sheep (n = 6) 

In-vivo digestibility coefficienta                                                                                     Mean ± sd 

Dry matter digestibility 0.789±0.050 

Organic matter digestibility 0.843±0.074 

Digestible crude protein 0.842±0.035 

Digestible nutrient content (g/kg DM P. purpureum)b Mean± sd 

Digestible dry matter 789±46.11 

Digestible organic matter 680±54.35 

Digestible crude protein 131±4.96 
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7.6 Discussion  

The aim of this current study was to determine the in-vivo digestibility of P. 

purpureum. The results of this chapter are used to compare with digestibility values 

observed for diets comprised of P. purpureum and nutrient dense pellets in the second 

section of this chapter.   

Pennisetum purpureum is typically classified as a low to medium quality forage 

because of its generally low CP concentration averaging 100 g/kg DM (Njoka-Njiru 

et al. 2006; Francis 2004); high structural carbohydrates (typically over 650 g/kg DM 

in NDF and over 400 g/kg DM in ADF) and commonly moderate DMD and OMD 

(Rusdy, 2016). However, for the following study, the overall quality of P. purpureum 

was higher than those typically reported for the species.  For instance, the digestibility 

coefficients for DM and OM observed for P. purpureum in the current study ( 0.789 

and 0.843, respectively) were significantly higher than those reported by Butterworth 

(1963) and Sarwar (1999) (0.489 to 0.615 for DMD and 0.512 to 0.647 for OMD) for 

the species.  The difference between the studies may have been as a result of the 

comparably lower CP (71 to 127 g /kg DM) and higher structural carbohydrate 

concentrations reported by these studies (NDF: 706 to 791 and ADF: 408 to 499 g/kg 

DM (Sarwar, 1999). The positive impact of higher protein and lower structural 

carbohydrates on increased efficiency of microbial fermentation and, therefore, 

improved digestion is well known and may have explained the differences between the 

studies (Arthington and Brown, 2005; Faverdin, 1999; Lazzarini et al., 2009).   

However, in other studies, the digestibility coefficients of DM and OM were more 

comparable to those observed in the current study.  For instance, digestibility 

coefficients between 0.709 to 0.899 were obtained for DM and between 0.703 to 0.722 
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for OM of P. purpureum (Chen et al., 2006; Kozloski et al., 2003; Nogueira Filho et 

al., 2000).  The higher digestibility coefficients reported in this study may indicate the 

potential of P. purpureum to provide nutrients that can be readily accessed to support 

production in ruminants.   

The DCP of a feed is closely related to its CP content (Miliford and Minson, 1965) 

and the high CP content currently reported may explain the high digestibility 

coefficient of CP (0.842) observed for P. purpureum in this study. The value obtained 

was comparable to those reported by several authors on the digestibility coefficient of 

CP for tropical grasses (0.717 to 0.732) (Kariuki, 1998; Shinoda et al., 1999).  

Additionally, the digestibility of the CP content (131 g/kg DM)  aligns with values 

obtained when the prediction equations derived by both Miliford and Minson (1965) 

(DCP = 0.899 x CP (in DM) - 3.25) and Hvelplund et al. (1995) (DCP = 0.930 x CP 

in DM - 3) for the prediction of DCP were used (137 and 142 g/kg DM, respectively).   

The concentration of DCP in P. purpureum was within the range required for weaned 

lambs between 20 to 30 kg bodyweight and growing between 100 to 200 g/day (95 to 

163 g/kg DM) (Kearl, 1982).  These protein fractions are critical as they provide a 

readily available source of protein for rumen microbes and at the required levels which 

are often associated with improved microbial efficiency and feed digestibility (Clark, 

Klusmeyer, and Cameron 1992). 

The overall higher quality of P. purpureum reported in this study may be an effect of 

the high CP; low structural carbohydrate fractions; high digestible or readily available 

protein in combination with the presence of readily available energy (NFC, though 

limited (<200 g/kg DM)) (Melesse et al. 2017; Rêgo et al. 2010). These may have 

provided the right balance of nutrients to support a high microbial efficiency and the 

overall high digestibility reported for the forage (Clark et al., 1992).  
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The quality of diets that are comprised of tropical grasses (eg. P. purpureum) may be 

affected by combined feeding with protein-rich supplements (Mpairwe, Mutetikka, 

and Tsumbira 2003; Clark, Klusmeyer, and Cameron 1992).  The second section of 

this chapter aims to determine the effect of supplementing P. purpureum with pellets 

comprised solely of grain or a combination of grain and high-protein forage, on the 

digestibility and growth performance in growing lambs. 

7.7 Conclusion 

The overall higher quality of Pennisetum purpureum reported in this study may be a 

combined effect of the high crude protein; low structural carbohydrate fractions; high 

digestible or readily available protein in combination with the presence of digestible 

energy.  These may have all provided the right balance of nutrients to support a high 

microbial efficiency and the generally high digestibility reported for the forage. 

Overall, the results of the study suggest that Pennisetum purpureum is a potential good 

quality forage for hairsheep in the Caribbean. 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7. Part 2.    The effect of the partial replacement of 

commercial feed with Trichanthera gigantea in pellets, on 

digestibility and growth performance in growing lambs  

 

Chapter submitted to Journal of Tropical Animal Health and Production as: 

JACK, H.A., CRANSTON, L., BURKE, J.L., KNIGHTS, M., and MOREL, P.C.H. The 

effect of the partial replacement of commercial feed with Trichanthera gigantea in pelleted diets, on 

digestibility and growth performance in growing lambs  
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7.8 Abstract  

There are limited studies on the effect of the partial replacement of commercial feed 

with Trichanthera gigantea (T. gigantea) in pellets, on digestibility and growth 

performance in small ruminants.  Fourteen crossbred (Barbados Blackbelly x West 

African) rams, aged four to five months, averaging 27 ± 2.67 kg body weight were 

randomly assigned to one of two dietary treatment groups. Dietary treatments included 

a control diet comprising a basal feed of Pennisetum purpureum (P. purpureum) + a 

commercial pellet (T0 pellet) or a T. gigantea diet comprising a basal feed of P. 

purpureum + pellets comprising 40% T. gigantea and 60% commercial pellet (T40 

pellet). Animals were subjected to a 21-day adaptation period followed by a 48-day 

experimental period where the digestibility and growth performance was measured.  

The digestibility coefficients of dry matter, energy, organic matter, and protein were 

0.7274, 0.7299, 0.7423 and 0.7800, respectively, for the T0 diet and were 0.7165, 

0.7169, 0.7320 and 0.7615, respectively, for the T40 diet. The dry matter intake, 

average daily gain (ADG) and feed conversion ratio for the T0 diet were 1.360 kg 

DM/d, 176 g/d and 6.19, respectively and that of the T40 were 1.371 g/d, 158 g/d and 

5.54, respectively.  The digestible energy (DE) and protein (DCP) per kg ADG were 

103 MJ DE and 886 g DCP/ kg ADG, respectively, for the T0 diet and 106 MJ DE and 

944 g DCP/kg ADG, respectively, for the T40 diet.  Overall, the results of the study 

suggest that T. gigantea has the potential to replace 40% of commercial concentrate 

without compromising the digestibility, average daily gain and feed required per gram 

gain in Barbados Blackbelly sheep.   

Key words:  Barbados Blackbelly, Caribbean, pellet, Pennisetum purpureum, sheep, 

Trichanthera gigantea  
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7.9 Introduction 

Currently, small ruminant producers in the Caribbean depend heavily on imported feed 

ingredients (Lallo, 2015; Walmsley, 1995). High cost, increasing complexity and 

uncertainty in global grain markets; competing demands for grain supply (biofuel); 

higher frequencies of extreme weather events and growing foreign exchange volatility 

within the Caribbean Community (CARICOM) all increase the risks of being 

dependant on imported feed ingredients (Gaughan et al., 2009; Lallo, 2015; Prakash 

and l'agriculture, 2011).  These identified challenges elicit the need for more secure 

regional systems which facilitate the increased use of locally available materials and 

reduced dependence on imported feeds (Mills, 2011).  Multipurpose tree species, 

(MPTs) may be a suitable substitute for these costly imports as they are a rich source 

of locally available feed which can enhance ruminant diets through the provision of 

valuable protein, vitamins and minerals (Datt et al., 2008; Miller et al., 2003; Wilson, 

1969). These resources may, therefore, allow for the development of more sustainable 

feed systems for small ruminant production within the Caribbean (Hernández and 

Sánchez, 2014; Miller et al., 2003).     

However, one of the major challenges of relying on forages as a source of feed for 

small ruminants in regional production systems are seasonal fluctuations which can 

impact directly on the quality and quantity of forage available for feed (Hughes et al., 

2013; Lallo et al., 2016a). For instance, during the wetter, cooler months of the year, 

there is a high biomass yield and, during the drier warmer periods, yield and quality 

decline (Hughes et al., 2013; Lallo et al., 2016a).  Further, with the spectre of climate 

change, these drier periods are projected to intensify (Lallo et al., 2016b). Therefore, 

there is a requirement to build management systems which buffer the impact of such 
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challenges. For instance, forage conservation technologies can be used to preserve 

abundant biomass yielded during the wet periods of the year for use during the drier 

resource scarce months (ASABE, 1997; Dougnon et al., 2012; Hau, 2014).  

Currently, the main forms of forage conservation that are used in regional small 

ruminant production systems include ensiling, hay-making and leaf meal production 

(Hernández and Sánchez, 2014; Patersen et al., 1992).  However, forage densification 

is another form of forage conservation which can be used to preserve abundant yields 

during the wetter periods of the year.   The densification process involves the 

compression of low bulk density materials such as fresh leaves and stems into more 

compact or dense forms through drying; particle size reduction of material (chopping 

and/or grinding); followed by the application of pressure in the presence of moisture 

and temperature treatments (Thomas et al., 1997; Tumuluru et al., 2010b).   

There are many advantages to forage densification technologies. The end products 

have a characteristically high bulk density resulting in greater ease of handling 

including storage, transportation and distribution; as well as improved animal 

performance including increased intake, increased daily gain, improved feed 

conversion ratio; and improved efficiency of nutrient utilisation (Beardsley, 1964; 

Dianingtyas et al., 2017).   Despite the significant benefits, there is no information on 

its impact on the performance of tropical hairsheep in the Caribbean.   

Trichanthera gigantea (T. gigantea) is a multipurpose tree species (MPTs) used in 

small ruminant production systems in the Caribbean (Hernández and Sánchez, 2014). 

The species is rich in crude protein (CP), fermentable carbohydrates and minerals and 

is low in anti-nutritional factors (Rosales, 1997a). Despite the comparably lower 

nutritive value of T. gigantea demonstrated in Chapters 3 and 5 of the thesis, compared 
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to the other MPTs, its abundance, timing of these animal trials and previous studies on 

its nutritive value warranted further investigation of T. gigantea in diets of ruminants 

in the Caribbean. There are limited studies on the effect of the partial replacement of 

commercial feed with T. gigantea in pellets, on digestibility and growth performance 

in small ruminants. In previous studies T. gigantea has been used as an alternative 

ingredient for monogastric species or T. gigantea is often presented in the bulkier 

forms of the forage including fresh or dried leaves, rather than in pelleted form (Avril 

et al., 2012; Balraj et al., 2018).  Therefore, the following study aimed to determine 

the effect of replacing 40% of commercial concentrate with T. gigantea leaves in 

pellets, on digestibility and growth performance in lambs. 
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7.10 Materials and Methods 

The study took place between June - September 2019 at the Eastern Caribbean Institute 

for Agriculture and Forestry (ECIAF Campus), University of the Trinidad and Tobago 

(Latitude 10.56°N, Longitude -61.32°W) with approval from the Massey University 

Animal Ethics Committee (MUAEC 18/92). The aim of the study was to determine 

the effect of replacing 40% of commercial concentrate with T. gigantea leaves in 

pellets, on digestibility and growth performance in lambs.  The treatment diets fed 

included either a control diet comprising a basal feed of Pennisetum purpureum (P. 

purpureum) + a commercial pellet (T0) or a T. gigantea diet comprising a basal feed 

of P. purpureum + pellets made up of 40% T. gigantea and 60% commercial pellet 

(T40). The digestibility (digestible coefficients, digestible nutrient content) and growth 

performance including intake, liveweight gain, average daily gain (ADG), feed 

conversion ratio, efficiency of energy and CP utilisation/kg average daily gain ADG 

for both diets were measured and compared in this study.   

 

 Harvesting of materials 

Pennisetum pupureum  (basal feed) was manually harvested daily with a machete at a 

height of 1.5 m according to the guidelines of  Gemeda and Hassen (2014) from forage 

banks at the ECIAF-UTT. For the period of harvest, the total rainfall at the location 

was 50.5 mm; the average daily minimum and maximum temperatures was 24.26ºC 

and 32.84ºC, respectively (Trinidad and Tobago Meteorological Services (TTMS), 

2019); and the predominant soil type was the Piarco soil series made of terrace sand 

and gravel clay (characterised as having imperfect drainage; waterlogged in the wet 

season; and desiccated in the dry season (Brown, 1965)).  Once harvested, P. 
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purpureum (including leaves and stem) was manually chopped to 15 to 20 cm lengths 

for feeding.  Both young and mature T. gigantea leaves and stems for the T. gigantea 

diet (T40) was harvested mechanically in weekly batches from all parts of the tree 

canopy from a plantation at the University of the West Indies - Field Station (10.64°N, 

-61.43°W), using a STIHL telescopic tree pruner (model HT 101). During the period, 

the total rainfall was 526.8 mm and the minimum and maximum temperature for the 

period was 24.1 and 32.0ºC, respectively (Trinidad and Tobago Meteorological 

Services (TTMS), 2019).  The predominant soil type of the site is the River estate soil 

series comprised of loams (characterised as free-drained soils (Brown, 1965)). 

 

 Pelleting of diets 

After harvesting, T. gigantea leaves were stored at a sheltered, well-ventilated location 

where they were wilted for 1 to 3 days before drying mechanically to approximately 

15% moisture.  For the control diet, intact commercial pellets (T0) comprising 80% 

wheat middlings (DM basis), 20% (on a DM basis) corn, and a vitamin and mineral 

mix were used (die dimensions: length:5mm; diameter: 5mm). The T. gigantea pellets 

were made by combining dried ground T. gigantea leaves and ground commercial 

pellets.  The dried T. gigantea leaves and commercial pellets were ground separately 

to pass through a 0.635 cm screen (Screen size modification: reduced from 2.54 cm to 

0.635 cm) of a Craftsman shredder-hammer mill (model 247.776380). The ground 

materials were then weighed to give a ratio of 40% dried and ground T. gigantea leaves 

to 60% ground commercial pellets; mixed manually for 10 to 15 minutes; and pelleted 

using a Changchai-ZS1115 Pellet Mill (22 Horse-Power Diesel Engine) with a die 

length and diameter of 2.54 cm and 1.27 cm, respectively. The pellets which were fed 

were made prior to feeding in weekly batches throughout the experimental period. 
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 Lambs, diets and management 

The study was comprised of a 21-day adaptation period (D0 to D21) followed by a 

seven day digestibility study (faecal collection (D22 to D28)) and a 48-day growth 

study (D22 to D69).  A total of 14 crossbred (Barbados Blackbelly x West African) 

intact rams aged four to five months averaging 27 ± 2.74 kg were used. All 14 lambs 

were used for the growth study, however, only 12 of the lambs were used for the 

digestibility study due to the availability of faecal collection bags. Lambs were 

confined to individual well-ventilated, raised, wooden, slatted floor pens (1.22 m x 

1.22 m) which were each equipped with one feeder and a waterer. A mineral block 

(Alphablock) which contained 55.000 IU vitamin A; 27.500 IU vitamin D3; 300 IU 

vitamin E; 30.000 mg calcium; 5.000 mg magnesium; 1.800 mg iron; 2.500 mg 

magnesium; 50 mg cobalt; 1.500 mg Zinc; 10 mg selenium; and 35 mg iodine, was on 

offer at all times. From D0, all lambs were randomly assigned to one of two treatment 

diets T0 or T40. The T0 diet was comprised of P. purpureum + a commercial pellet 

(T0 pellet) and the T40 diet was comprised of P. purpureum + T. gigantea pellets 

(comprising 40% T. gigantea and 60% commercial pellet).  During the 21-day 

adaptation period, lambs were examined, treated for internal parasites and left to 

familiarise with their enclosures and diets.  Between D15 and D21 12 of the lambs 

were fitted with faecal bags and harnesses to allow them to acclimatise to wearing the 

apparatus before the seven day faecal collection period commenced (D22 to D28).  

Between D15 and D44, lambs were offered forage ad libitum (10:00 hrs and 17:00 hrs) 

and 500g of either the T0 or T40 pellets (as fed basis).  Between D45 to D69 of the 

growth study, P. purpureum was limited and, therefore, lambs were offered a fixed 
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amount of 3kg forage (as fed basis) (10:00 hrs and 17:00 hrs) with 700 g of either the 

T0 or T40 pellets (17:00 hrs).   

Forage and pellets offered and refused were recorded daily to determine the feed 

intake.  Samples of the feed offered and refused were taken daily and pooled for DM 

determination. For the digestibility study, the total faecal output (faeces collected in 

bags) for each lamb was collected daily at 6:30 hours; weighed and recorded. Once 

weighed, a 10% sub-sample of the intact (uncontaminated) faeces was collected 

separately for each lamb; pooled over the seven day collection period and refrigerated 

at -20oC.  The apparent digestibility coefficients for dry matter (DMD), organic matter 

(OMD), energy and protein for the two treatment diets (forage + T0 and forage + T40) 

were calculated: 

The apparent digestibility coefficients for DM, energy, OM, and CP were calculated 

using the following formula: 

Total nutrients in feed (kg) –  nutrient in faecal output (kg)

Total digestible nutrients in feed (kg)
 

The total digestible nutrient content per kg of the diet (formula): 

Nutrient value of feed x digestibility coefficient of nutrient 

A multiple regression equation was applied to the data to obtain the apparent 

digestibility coefficients for the forage, T0 and T40 pellets.  These were then used to 

calculate the total apparent digestible nutrient intake content (DM, energy, OM and 

CP) of P. purpureum (forage), T0 and T40 pellets. 

Throughout the experimental period, all animals were weighed weekly before the 

morning feed. The liveweight gain, average daily gain, feed conversion ratio, energy 

efficiency and protein efficiency/kg ADG were calculated.  
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All forage and faecal samples used for analysis were dried at 60oC for 72 hours in a 

forced air oven and ground to pass through a 2mm sieve using a Thomas Scientific 

mill. These were then packaged (package included Export permit no. 139517) and 

exported to Cumberland Valley Analytical Services (CAVS), US, for chemical 

analysis. 

 

 Chemical analysis 

Forage, feed, refusals and faecal samples were analysed for DM by drying at 105°C in 

a convection oven (AOAC method 930.15).  The total nitrogen (N) content was 

determined by combustion (AOAC method 968.06) using a Leco CNS 200 Analyser 

(Leco Corporation, St Joseph, MI, USA) and CP was computed by multiplying N by 

a factor of 6.25. The neutral detergent fibre (NDF) (with heat stable amylase) and acid 

detergent fibre (ADF) fractions were determined by the method of Van Soest et al. 

(1991) and Tecator Fibretec System (AOAC method 2002.04), respectively. The ash 

content was determined by total combustion at 550 °C (AOAC method 942.05) and 

the organic matter was calculated as the difference between the DM content and the 

ash content.  The gross energy (GE) was determined using a bomb calorimeter. 

 

 Statistical analysis  

Statistical analysis was done in the R environment for statistical computing and 

visualisation (Team, 2013).  Measurements obtained from each lamb at different 

sampling times were treated as repeated measures and a linear mixed effect model was 

applied to the data. The model consisted of treatment, day and day x treatment as fixed 

effects and animal as the random effect.  An ANOVA was used to obtain the standard 
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error and p-value for the model differences. Where significant differences between the 

treatment groups was detected, means were separated using the Tukey’s test. 

Differences were considered statistically significant if p ≤ 0.05. In addition, apparent 

digestibility coefficients for DM, OM, CP and GE were calculated using multiple 

regression equations (Schneider and Flatt, 1975) for Pennisetum purpureum and both 

pellets (T0 and T40)  

 y = a+bX1+cX2 + dX3 

where y = digestible DM, OM, CP or GE in the diet (g or MJ/kg DM), a = intercept, b 

= digestibility coefficient (DM, OM, CP or GE) of the forage or (X1), c = digestibility 

coefficient (DM, OM, CP or GE) of the Trichanthera gigantea pellet (T40 or (X2)), d 

= digestibility coefficient (DM, OM, CP or GE) of the control pellet (T40 or  (X3)) X1 

= amount of nutrients provided by the forage (g or MJ/kg DM), X2 = amount of 

nutrients (DM, CP or GE) provided by the Trichanthera gigantea pellet ( T40) in the 

ration (g or MJ/kg DM) and X3 = amount of nutrients (DM, CP or GE) provided by 

the control pellet (T0) in the ration (g or MJ/kg DM). All graphics were done using the 

package ggplot 2 (Wickham, 2016). 
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7.11 Results 

 

 Chemical composition  

The chemical composition of feeds is presented in Table 7.3. The CP content of P. 

purpureum was 129 g CP/kg DM.  The NDF and ADF were 664 and 389 g/kg DM, 

respectively.  The CP content of the T0 pellets was 170 g/kg D and that of the T40 

pellets was 173 g CP/kg DM.  The concentration of the NDF and ADF fractions were 

332 g NDF/kg DM and 98.1 g ADF/kg DM, respectively, for the T0 pellet and 342 g 

NDF/kg DM and 169.4 g ADF/kg DM, respectively, for the T40 pellet. 
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Table 7.3 The chemical composition ((g/kg DM)) (dry matter, crude protein, starch, neutral detergent fibre, acid detergent fibre, ash, organic matter) and gross 

energy (MJ/kg DM) of Pennisetum purpureum, T0 pellet (Commercial pellet) and T40 pellet (Trichanthera gigantea pellet) 

Nutrients Pennisetum purpureum T0 (Commercial pellet)* T40 (Trichanthera gigantea pellet)* 

Dry Matter 220 796 781 

Crude protein 129 170 173 

Starch  1.12 307.65 189.37 

Neutral Detergent Fibre 664 332 342 

Acid Detergent Fibre 389.7 98.1 169.4 

Ash  110.0 71.6 149.5 

Organic matter  110 724 632 

Gross energy  17.5 18.1 16.5 

*
Terms used:  T0: Commercial treatment pellet with 0% T. gigantea (dried ground leaves); T40:  Treatment pellet with 40% T. gigantea (dried ground leaves) 

Chemical composition of T. gigantea used in T. gigantea pellet (T40): Crude protein:157 g/kg DM; Neutral Detergent Fibre:457 g/kg DM; Acid Detergent Fibre:331 

g/kg DM; Ash:270 g/kg DM 
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 Digestibility coefficients and digestible nutrient content 

The digestibility coefficients and digestible nutrient content are presented in Table 7.4.  

The digestibility of DM, DE, OM and CP for the T0 and T40 diets were 0.7274, 

0.7299, 0.7423 and 0.7800, respectively, for the T0 diet and 0.7165, 0.7169, 0.7320 

and 0.7615, respectively, for the T40 diet.  The digestibility of DM, DE, OM and CP 

for P. purpureum obtained in the current study were 0.7899, 0.8025, 0.7980 and 

0.8592, respectively.  The digestibility coefficients for DM, energy, OM and CP were 

0.5996, 0.5866, 0.6332 and 0.6567, respectively, for the T0 pellet and 0.5461, 0.5058, 

0.5715 and 0.5935 for the T40 pellet.  The DE of the T0 and T40 pellets were 14.03 

and 10.63 MJ/kg DM, respectively, and the digestible crude protein (DCP) was 111 

and 103 g/kg DM, respectively.  
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Table 7.4 Predicted digestibility coefficients and digestible nutrient content of Pennisetum purpureum, T0 pellet (Commercial pellet) and T40 (Trichanthera 

gigantea pellet) 

In-vivo digestibility coefficients                                                                                     Pennisetum purpureum T0 pellet* T40 pellet* 

Dry matter digestibility 0.7899 0.5996 0.5461 

Digestible energy 0.8025 0.5866 0.5058 

Organic matter digestibility 0.7980 0.6332 0.5715 

Protein digestibility 0.8592 0.6567 0.5935 

Digestible nutrient content       

Dry matter g/kgDM 790 600 546 

Energy MJ/kg DM 14.04 10.63 8.33 

Organic matter g/kg DM 710 588 486 

Crude protein g/kg DM 110 111 103 

*Terms used:  T0: Commercial treatment pellet with 0% Trichanthera gigantea (dried ground leaves); T40: Treatment pellet with 40% Trichanthera gigantea (dried ground leaves)
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 Growth performance and digestible nutrient utilisation for gain 

The growth performance and nutrient utilisation data are reported in Table 7.5. The 

intake of the T0 pellet was higher (p <.0001) than that of the T40 pellets. The LWG, 

ADG, FCR as well as the efficiency of utilisation of both ME and DCP/kg ADG were 

not significantly different (P > 0.05) between the treatment groups (T0 and T40).   
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Table 7.5 Performance parameters including intakes, liveweight changes, digestible nutrient intakes and efficiency of utilisation of digestible energy and digestible 

crude protein over the 48-day growth period (n=7) 

Performance parameters T0 diet* T40 diet* SEM p-value 

Intakes         

Forage intake kg DM/h/d  0.8820 0.9050 0.0332 0.625 

Pellet intake kg DM/h/d 0.4798a 0.4656b 0.0012 <.0001 

Total DMI kg DM/h/d* 1.3600 1.3700 0.0334 0.846 

In-vivo digestibility coefficients     

Dry matter digestibility 0.7274 0.7165 0.0067 0.2798 

Digestible energy 0.7299 0.7169 0.0073 0.2385 

Organic matter digestibility 0.7423 0.7320 0.0066 0.2958 

Protein digestibility 0.7800 0.7615 0.0066 0.0770 

Digestible nutrient intake          

Dry matter (g/day) 984 969 26.3 0.6975 

Energy (MJ/DM day)  17.5 16.6 0.468 0.2029 

Organic matter (g/day) 908 869 23.7 0.2672 

Crude protein (g/day) 151 148 3.69 0.5705 

Growth performance     

Initial Liveweight (kg) 27.6 25.5 0.964 0.1544 

Final liveweight (kg) 36.1 33.1 1.24 0.1218 

Liveweight gain (kg) 8.46 7.61 0.566 0.3096 

Average daily gain (ADG) (g/day) 176 158 11.8 0.3096 

FCR* (average daily intake: ADG)  6.19 5.54 0.337 0.1941 

DE* and DCP* required per kg ADG         

DE per kg ADG (DE:ADG) MJ/kg ADG 103 106 6.46 0.7265 

DCP per kg ADG (DCP:ADG) g/kg ADG 886 944 56.50 0.4792 

ME* per kg ADG(ME:ADG) MJ/kg ADG** 84.2 86.9 5.29 0.7265 
*
Terms used:  T0: Commercial treatment pellet with 0% Trichanthera gigantea (dried ground leaves); T40:  Treatment pellet with 40% Trichanthera gigantea (dried ground leaves); DMI: dry matter intake; 

FCR: feed conversion ratio calculated as g feed required per gram gain; ADG:  DE: digestible energy; DCP: digestible crude protein; ME: metabolisable energy 
**

ME: Calculated value (0.82 x DE ((Agricultural Research Council . Technical Committee on the Nutrient Requirements of Farm Livestock, 1965))).  
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The estimate cost per kg for the diets was calculated and reported in Table 7.6.  T0 

cost USD 0.42 per kg and T40 USD 0.74 per kg.  The estimated cost/kg P. purpureum 

was USD 0.81 and the total cost of the T0 and T40 diets were USD 1.23 and USD 

1.55, respectively.  
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Table 7.6 Estimated cost of T0 and T40 diets offered to lambs over a 90-day growth period from 27 kg at 5 months to a market weight of 38 kg at 8 months 

Cost of Pennisetum purpureum          

Cost Description Input rate Rate (TTD) No. of: Units/days/wks/months Cost per 4.4 Acres (TTD) Cost per kg of feed (TTD) Cost per kg (USD) 

Harvesting 
     

 

1. Labour wages 200TTD/day 90 days  $  18,000.00   $           4.44   $           0.66  

Maintenance 
     

 

1. Fertilizer inputs 150kg/2.2acres/year 4.52TTD/kg 12 months  $    1,356.00   $           0.33   $           0.05  

2. Labour 2 workers 200TTD/day 3 days  $    1,200.00   $           0.30   $           0.04  

3. Tractor used for harvesting 1 tractor 500TTD/month 3 months  $    1,500.00   $           0.37   $           0.06  

Total 
   

 $  22,056.00   $           5.45   $           0.81  

Cost of Producing Trichanthera gigantea         

Harvesting 
     

 

1. Labour wages 2 workers 200TTD/day 6 days  $    2,400.00   $           2.22   $           0.33  
Maintenance 

     
 

1. Fertilizer inputs 160kg/2.2acres/year 4.52TTD/kg 12 months  $    1,446.40   $           1.34   $           0.20  

2. Labour 2 workers 200TTD/day 3 days  $    1,200.00   $           1.11   $           0.17  
Grinding Material 

    
 

1. Labour 1080kg 200TTD 6 days  $    1,200.00   $           1.11   $           0.17  

2. Fuel consumption 200TTD per 156 kg forage 200TTD 1080kg  $    1,385.00   $           1.28   $           0.19  

Total 
   

 $    7,631.00   $           7.07   $           1.05  

Cost of pelleted feed - - - - Cost/kg (TTD) Cost/kg (USD) 

Total cost/kg of Commercial 
pellet (T0) (35 kg Bag at 98.64 

TTD) 

- - - -  $           2.82   $           0.42  

Cost of Trichanthera pellet - - - -  -   -  

Cost of Trichanthera leaves at 
40% inclusion 

- - - -  $           2.83   $           0.42  

Cost of Commercial 

ingredients at 60% inclusion 
- - - -  $           1.69   $           0.25  

Cost of pelleting (10% increase 

in total cost of unpelleted 
material) 

        
 $           0.45   $           0.25  

Total cost of Trichanthera 

pellet/kg 
- - - -  $           4.97   $           0.74  

Assumptions (Pennisetum purpureum production): Biomass yield/1.1 ha: 10, 000 kg DM/acre; mechanically harvested; recommended fertilizer application 150 kg/ha/year (Heuze et al., 2016); 
Assumptions (Trichanthera gigantea  production): Farm size: 50 animals; Plantation is established and requires maintenance; Field is on site (farm); Biomass yield/1 ha/year = 9200 kg DM (Rosales, 

1997a); Optimum fertilizer application: 160 kg/ ha/yr (Ha and Phan, 1995); T. gigantea is sun-dried;  Pelleting increases cost by 10%; One farm-head can manually harvest 400 kg Fresh forage in one day 

(92 kg DM); One farm-head can grind 180 kg DM Trichanthera gigantea leaves per day; Animal age/weight: 5 months/26.55 kg; Market age/weight: 8 months/38 kg; Total days from 5 months to market: 
90; Total intake/animal/d (kg) = 1.5; Forage intake (kg/hd/Day): 0.900 Pellet intake (kg/hd/d) = 0. 600; T. gigantea intake (kg/hd)/d: = 0.240; Commercial pellet intake (kg/hd/d) = 0.36; Conversion rate: 1 

USD = rounded off to 7 TTD; 

Prices for labour and materials were informed by  Mohammed (2014)  and local suppliers in Trinidad
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7.12 Discussion 

The digestibility and growth performance observed for both the T0 and T40 groups 

were comparable. The digestibility of DM, DE, OM and CP for the T0 and T40 diets 

were high measuring 0.7274, 0.7299, 0.7423 and 0.7800, respectively, for the T0 diet 

and 0.7165, 0.7169, 0.7320 and 0.7615, respectively, for the T40 diet.  The daily DE 

intake for the T0 and T40 groups were 17.5 and 16.6 MJ/g, respectively, giving an 

estimated ME intake of 14.35 and 13.61 MJ/kg DM for the T0 and T40 groups, 

respectively (ME= 0.82% DE (NRC, 1985)).  These were above the daily ME 

requirement of 11.29 to 11.71 MJ required to achieve moderate to rapid growth rates 

(300 to 325 g/day) in tropical lambs weighing between 20 to 30 kg (NRC, 1985)). 

Further, Kearl (1982) recommended a daily intake of 9.2 to 12.34 MJ ME for lambs 

between 20 to 30 kg LW growing at 300g /d. The average DCP for the T0 and T40 

diets were 151 and 148 g/kg DM, respectively, which were within the requirement for 

growing lambs weighing 20 to 30 kg and achieving a daily gain of 300g (146 to 198 

g/day). The results suggest that T. gigantea can replace 40% commercial pellets 

without compromising the DE and DCP intakes of growing lambs.  Despite the 

adequate intakes of DE and DCP, the ADG observed in the current study (176 and 158 

g/day for the T0 and T40 pellets, respectively) were almost half those predicted by 

NRC (1985) and Kearl (1982).   

However, though the ADG observed was lower than those reported by NRC (1985) 

and Kearl (1982), the ADG of the group supplemented with the T. gigantea pellet 

(T40) was comparable to the treatment group supplemented with 100% commercial 

ingredients (T0 pellets). This was different from the reports of other studies in the 

Caribbean where growing lambs were offered diets comprising T. gigantea.  For 
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example, when T. gigantea leaves (in bulkier loose form) substituted 40% of 

commercial feed, growth rates in lambs were a third those supplemented with 100% 

pelleted commercial feed. It is possible that in the current study, the presentation of 

the T. gigantea leaves in pelleted form resulted in a more efficient partitioning of 

energy for growth and a more comparable performance to the pelleted commercial 

supplement.  Avril et al. (2012) report up to 78.2 g/d reduction in ADG for T. gigantea 

supplemented lambs compared to concentrate supplemented lambs which may be due 

to the higher intake of T. gigantea (88% DMI) versus the lower intake (16% DMI) in 

the current study. The results indicate that the inclusion percentage in the diet and form 

of T. gigantea presented may impact on performance in small ruminants. 

In Trinidad and Tobago, the target market weight for lambs is 38 kg at 6 to 8 months  

(Mohammed, 2014). Therefore, with a recommended weaning weight of 13 to 20 kg 

at 2 to 3 months, animals must achieve growth rates between 100 to 208 g/d to be 

weaned at 6 to 8 months and 3-month-old weaners must achieve growth rates between 

106 to 256 g/d to achieve the desired weight by 6 to 8 months of age.  In this study 5-

month-old lambs with an average initial LWT of 27.6 kg for T0 and 25.5 kg for the 

T40 treatment groups, had an ADG of 176 and 158 g/d, respectively.  In the current 

study, 5-month-old animals meeting the target market weight of 38 kg at 6 to 8 months 

and having an initial LWT of 27.6 kg for the T0 group and 25.5 kg for the T40 group 

will be growing at a minimum of 116 g/d or 138 g/d for the T0 and T40 groups, 

respectively. Therefore, the observed ADG for the T0 and T40 groups (176 g/d for the 

T0 group and 158 g/d for the T40 group) were above the projected ADG for either 

group.   This indicates the diets had nutrient contents that were above the threshold 

level required for maintenance.  It may demonstrate the potential of T. gigantea to 
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replace up to 40% commercial concentrate in pellets without compromising liveweight 

gain in growing lambs.  

The efficiency at which animals utilise nutrients can be influenced by several factors 

including previous dietary and health history, heat stress and the presence of internal 

and external parasites (Leng, 1989). Feed conversion ratio is a measure of the amount 

of feed required to achieve one unit of liveweight gain and represents the efficiency at 

which feed is converted into production (meat and milk) in animals. The FCR for T0 

and T40 groups were 6.19 and 5.54, respectively.  This was similar to those reported 

by Mason (1980) for growing lambs of various breeds of tropical hairsheep. The 

efficiency for growth obtained for the T40 diet was higher than diets comprising P. 

purpureum supplemented with high quality forage. For instance, P. purpureum 

supplemented with Sesbania sesban which had a high CP content of 248 g/kg DM, 

NDF of 399 g/kg DM and ADF of 299 g/kg DM resulted in a FCR of 35.32 (Taye, 

2008). While the interactions between feed and performance is dependent on various 

factors, including physiological stage of animal, breed, activity, diet, nutrition history 

of animals, ambient temperatures among others, these results demonstrate the high 

efficiency potential of the T40 diet in comparison to other diets recommended for 

lambs grown under tropical conditions.   

Another critical index used to measure the performance on diets are the units ME and 

DCP required for every kilogram ADG (Salah et al., 2014).    The ME/kg ADG and 

DCP /kg ADG for the T0 and T40 groups were 84.2 and 86.9 MJ ME/kg gain and 

0.881 and 0.939 kg/gain, respectively.  This translated into a daily ME and DCP 

requirement of 14.82 MJ ME and 156 g DCP/kg ADG, respectively, for the T0 group 

and 13.73 MJ ME and 147 g DCP/kg ADG, respectively, for the T40 group. The 
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observed ME (MJ)/kg ADG for both treatment groups were within the range reported 

in the literature for tropical sheep (14.7 to 19.7 MJ ME or a mean of 17.6 MJ ME per 

kg ADG) but the observed DCP/kg ADG fell outside the published range for tropical 

(0.190 to 0.300 g DCP or a  mean of 0.200 g DCP per kg liveweight gain) and 

temperate (0.200 g/kg ADG) sheep breeds (Salah et al., 2014).  The higher protein 

requirements observed in the current study, relative to that of temperate breeds, may 

be partly explained by the  higher temperatures in the tropics which are often 

associated with an increase in the requirement for absorbed amino acids for growth 

(Bunting et al., 1992; Salah et al., 2014).  Despite the differences from those reported 

for tropical breeds, DCP requirements observed were comparable to those obtained by 

Salah (2015) for Barbados Blackbelly lambs (0.749 g/kg ADG).   

The estimated cost per kg for the diets was calculated and based on the assumptions 

outlined in the caption of Table 7.6.  With a cost of USD 0.42 per kg T0 pellet, USD 

0.74 per kg for the T40 pellet and USD 0.81 per kg P. purpureum, the total cost of the 

T0 and T40 diets were USD 1.23 and USD 1.55, respectively.  Therefore, the cost/kg 

gain on both diets were USD 6.99 for the T0 diet and USD 9.94 for the T40 diet. The 

estimated cost was comparably higher for the T40 diet as the production of T40 pellets 

was not based on large-scale commercial operations used to produce the T0 pellets. 

Perhaps future work will focus on commercial cost comparisons to derive more precise 

cost differences between the diets.  

While the estimated cost per kg of feed and gain were higher on the T40 diet, 

digestibility and growth performance were all comparable for both groups, indicating 

the potential of T. gigantea as a partial substitute for commercial concentrate feed. 

This is critical as there is a requirement for the development of more self-sufficient 

feeding systems that utilise locally available materials.  
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7.13 Conclusion 

The T0 and T40 diets were comparable in terms of the digestibility and growth 

performance.  This suggests that T. gigantea has the potential to replace 40% of 

commercial concentrate without compromising the digestibility, average daily gain 

and feed conversion ratio in Barbados Blackbelly sheep.  



 

 

 

 

 

 General discussion and conclusion
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8.1 Introduction 

Forage densification technologies may be used to develop more sustainable feed 

systems for small ruminant production in the Caribbean. These technologies encourage 

increased year round access to and more efficient utilisation of forages. Further, they 

are associated with improved handling (storage, transportation, feeding) and quality 

(consistent and standard quality, more nutrient-dense, prolonged shelf life) of forages 

as well as improved performance in ruminants (Beardsley, 1964; Dianingtyas et al., 

2017). These advantages may increase the overall use of locally grown forages 

eliciting less dependence on costly imported concentrate feeds (Beigh et al., 2017).  

There is a wide range of forages which is used in small ruminant production systems 

within the Caribbean and, currently, the main forms of processing applied include 

ensiling, hay-making and leaf meal production (Hernández and Sánchez, 2014; 

Patersen et al., 1992). However, there is a lack of information on the use or effect of 

forage densification on regional feed systems for small ruminants.  Further, there is 

limited information on the nutritive value of prospective forages, to which these 

technologies can be applied.  Therefore, the aim of the thesis was to determine the 

nutritive value of a range of forages used in regional small ruminant production 

systems and the effect of applying densification technologies to one of the forages 

selected based on its nutritive value and availability to support animal trials. 

In summary, Chapters 3, 4, and 5 give insight into the nutritive value of forages used 

and available for use in small ruminant production systems in the Caribbean. Forage 

samples were collected from one site in Jamaica and one site in Trinidad based on their 

ease of access and were analysed to determine their nutritive value. In Chapter 3, the 

chemical composition of a range of forage species was obtained utilising proximate 
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analysis and near infrared spectroscopy (NIRS) and the in-vitro digestibility was 

obtained using in-vitro assays. In Chapter 4, the concentration of minerals (macro-

minerals: calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), potassium 

(K); and micro-minerals: iron (Fe), cobalt (Co), manganese (Mn), molybdenum (Mo), 

zinc (Zn) and copper (Cu)) of forage species were investigated. This information can 

be used to understand how forages are fed and supplemented to improve the mineral 

content of diets for small ruminants (Youssef, 2000). Chapter 5 aimed to examine the 

fermentation kinetics, fermentation end products and the in-vitro digestibility of 

forages and to determine how the fermentation kinetics of forages relate to their 

nutritive value.  This provided information on the rate and extent to which nutrients 

were available in forages of different nutritive value. Overall, the availability of forage 

was used as the basis for selecting one forage to which forage densification 

technologies was applied in Chapters 6 and 7. The forage selected was Trichanthera 

gigantea (T. gigantea) as a result of its nutritive value and the ease of access to large 

volumes of forage (at one site) for the animal trials conducted in the thesis. 

Chapters 6 and 7 examined the effect of densified (pelleted) ingredients comprising 

forage, on intake, digestibility and growth performance in growing lambs. There is 

currently no information on the effect of different concentrations of fallen T. gigantea 

leaves on the intake of pellets in growing lambs reared under tropical conditions in the 

Caribbean and, therefore, Chapter 6 aimed to determine this.   Chapters 7 comprised 

two parts, 7.1 and 7.2.  Chapter 7.1 aimed to determine the in-vivo digestibility of P. 

purpureum which was used to compare with and validate data on the digestibility of 

diets comprised of P. purpureum and pelleted forage in the second section of this 

chapter.  There is no information on the effect of the partial replacement of commercial 
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feed with T. gigantea leaves in pellets, on digestibility and growth performance in 

small ruminants in the Caribbean and, therefore, Chapter 7.2 aimed to determine this.  

8.2 Summary of main findings and conclusions 

 Nutritive value of forages 

There are a wide range of forages that can be used to establish more sustainable small 

ruminant production systems in the Caribbean (Chapters 3, 4 and 5). However, one of 

the major challenges of regional forage systems is the low nutritive value of tropical 

grasses which undergo faster maturation than their temperate counterparts, becoming 

more fibrous and less digestible over a short period of time (Leng, 1990).  The present 

study has demonstrated that multipurpose tree species (MPTs) can be used to improve 

the nutritive value of diets comprising tropical grasses in the Caribbean (Topps, 1992; 

Wilson, 1969).  For example, the MPTs had high concentrations of crude protein (CP) 

(171.1 to 263.6 g/kg DM) and low concentrations of cell wall fractions, including 

neutral detergent fibre (NDF) (379 to 505 g/kg DM) and acid detergent fibre (ADF) 

(284 to 363 g/kg DM) (Chapter 3).  Further, the non-leguminous multipurpose tree 

species (NLMPTs) were of higher nutritive value than the leguminous multipurpose 

tree species (LMPTs) where both Morus alba (M. alba) and Moringa oleifera (M. 

oleifera) had high CP concentrations and the highest starch and lowest NDF 

concentrations (Chapter 3).  

In the Caribbean, while the concentration of macro-minerals calcium (Ca), phosphorus 

(P), potassium (K), magnesium (Mg) and micro-minerals Zinc (Zn) and manganese 

(Mn) were often reported as abundant in forages, both sodium (Na) and copper (Cu) 

were often reported as being low or deficient in forages, and iron (Fe) and 

molybdenum (Mo) reported as being toxic (Bernard et al., 2019; Devendra, 1977; Fick 
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et al., 1978; Mohammed et al., 2017; Youssef and Brathwaite, 1987).  This was 

consistent with the findings of Chapter 4 where most minerals were within the 

requirement for small ruminants, except Na, Cu, Fe and Mo. Over 70% of grasses and 

100% of MPTs were low in Na and 57% of grasses and 60% MPTs were low in Cu. 

However, both Brachiaria arrecta (B. arrecta) and Digitaria eriantha (D. eriantha) 

were high in Na and may be used to improve Na concentrations in diets. Cynodon 

dactylon (C. dactylon), C. nlemfuensis, B. arrecta, Leucaena leucocephala (L. 

leucocephala) and T. gigantea were rich in Cu and may be used to improve the Cu 

concentration in diets. Additionally, there were toxic concentrations of Fe in C. 

dactylon and toxic levels of Mo in both C. dactylon and C. nlemfuensis. However, 

these were the only two forages that were sampled in Jamaica and the toxic levels may 

be related to the iron rich bauxitic soils (St. Ann’s clay loam) of the site from which 

the samples were collected.  Further, these soils have a characteristically high pH and 

Fe concentration which may have resulted in the high absorption of Mo observed for 

both C. dactylon and C. nlemfuensis (Greenberg and Wilding, 2007; Schulte, 1992).  

Therefore, inclusion of these species in diets must be carefully managed, particularly 

when established on soils with a high bioavailability of metals as the bauxitic soils of 

Jamaica (Howard and Proctor, 1957). Bauxitic soils are unique and result in an unusual 

chemical composition of vegetation (Howard and Proctor, 1957). It is possible that 

metal concentrations may be in a more suitable range if the species were established 

on a different site with a different soil type. Selenium (Se) is also one of the critical 

micro-minerals for small ruminants and incidents of deficiency are more typically 

reported than toxicity (McDowell and Arthington, 2005). Selenium functions as an 

antioxidant mineral which supports growth and reproduction and secures the integrity 

of tissues (McDowell and Arthington, 2005). Although this micro-mineral was not 
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covered in the current work, it needs to be addressed in future work on the mineral 

profile of tropical forages.  

Based on the in-vitro assays and Near Infrared Spectroscopy (NIRS) methods used in 

Chapter 3 and the Tilley and Terry (1963) method used in Chapter 5, the species were 

generally above the minimum digestible organic matter in dry matter (DOMD) (50%) 

and metabolisable energy (ME) (7.5 MJ/kg DM) required to be classified as medium 

to good quality tropical forages (Bediye et al., 2007).  Overall, the high nutritive value 

of the MPTs, particularly the NLMPTs M. oleifera and M. alba, may explain the 

generally higher DOMD observed for these species (65.1 and 65.5%, respectively) 

(Chapter 3).   

Moringa oleifera and T. gigantea had advantages over the other species in terms of 

their fermentation and fermentation end products (Chapter 5). For example, M. oleifera 

had the highest total gas production at 48 hours and volatile fatty acid (VFA) 

production. This is critical as the volatile fatty acids constitute the major source of 

energy for the ruminant providing 70 to 80% of its energy requirements (Annison, 

1970; Bergman et al., 1965; Warner, 1964). Additionally, T. gigantea had the highest 

microbial biomass yield (MBM). Microbial biomass represents an important source of 

amino acids (70 to 80% of supply (AFRC, 1992)) and bypass protein required to 

support production in ruminants (Nolan, 1981). Therefore, a higher MBM yield 

indicates that the forages could be a good source of bypass protein. Digestible substrate 

is either partitioned towards the synthesis of MBM or fermentation gases and there is 

often an inverse relationship between gas production (or VFA production) and the 

synthesis or yield of MBM (Blümmel and Bullerdieck, 1997). The high MBM yield 

reported for T. gigantea may explain why the species was at the lower end of the range 
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for gas and total VFA production. However, having the right balance of both protein 

and energy is critical for high microbial efficiency. Therefore, forages cannot be 

selected solely on gas production potential (only reflects VFA production) but on other 

attributes as the potential to yield microbial biomass (Hoover and Stokes, 1991; Makar, 

2004). 

The evaluation of forages indicates that both grasses and MTPs have advantages that 

must be carefully considered to optimise the use of these resources. However, one of 

the critical challenges of small ruminant production systems in the Caribbean is the 

high dependence on imported commercial concentrates (Lallo, 2015; Walmsley, 

1995). Decreasing the dependence on nutrient dense commercial feed may require 

targeting locally grown forages which are comparable in nutritive value.  Based on the 

evaluation of forage resources in chapters 3, 4 and 5, the MPTs may be more suitable 

substitutes to commercial concentrates because of their high nutritive value.  Although 

T. gigantea was generally lower in nutritive value than the other MPTs, it was selected 

for the subsequent studies on the application of the densification process in the thesis.  

Additionally, it was selected because of its availability at the time that the studies were 

being conducted, in combination with the high concentration of CP, the adequate fibre 

fractions, mineral profile and high MBM yield.  

 Nutritive value and dry matter intakes  

Trichanthera gigantea, unlike other MPTs, is typically found in organised plantations 

in Trinidad and forage was readily available and sourced for conducting animal trials 

(Chapter 6 and 7.2). However, severe drought conditions during the intake study led 

to the scarcity of fresh leaves and an abundance of fallen T. gigantea leaves. As a 

result, the fallen leaves were used in the intake study reported in Chapter 6 which 
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aimed to assess the effects of different concentrations of T. gigantea in pellets on 

intake in lambs.  The results of Chapter 6 showed that lambs required a significantly 

shorter adaptation period (one to two days) to adjust to pellets comprised of ≤ 40% 

fallen T. gigantea leaves than lambs fed pellets comprised of ≥ 60% fallen T. gigantea 

leaves (four to six days of adaptation). Further, Chapter 6 showed that the intakes of 

pelleted diets comprising ≤ 40% fallen T. gigantea leaves was higher than that of 

pellets comprising ≥ 60% fallen T. gigantea leaves, under a restricted time of exposure 

to the feeds.  Further, CP and soluble protein (SP)  intakes for groups offered pellets 

comprising ≤ 40% fallen T. gigantea leaves, were within the requirement for growing 

lambs (Hoover and Miller, 1996; NRC, 1985), whereas the groups offered higher 

concentrations of T. gigantea (≥ 60%), had adequate CP intakes but SP intakes were 

below that required for growing lambs (Hoover and Miller, 1996; NRC, 1985).  This 

demonstrates the potential of T. gigantea leaves to be consumed, even at the minimum 

nutritive value observed for the fallen leaves.  Further, the nutritive value is likely to 

be higher if fresh T. gigantea leaves were used. For example, the proximate CP 

reported in this thesis was approximately two times greater and the NIRS CP almost 

three times greater for fresh leaves (Chapters 3 and 7.2) than that observed for the 

fallen T. gigantea leaves (Chapter 6). This may have explained why the CP observed 

for the T40 pellets comprised of 40% fresh leaves (Chapter 7.2) was approximately 

20% higher than that of the T40 pellets comprised of 40% fallen leaves (Chapter 6). 

Furthermore, this demonstrates how the nutritive value of forages affects the nutritive 

value of pelleted products. Factors, including forage species, and management 

practices (irrigation, cutting intervals, fertilizer application) that affect the nutritive 

value of forages, may impact on the nutritive value of resulting pellets and subsequent 

animal performance.    
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The concentration and intake of NDF and minerals in fresh and fallen T. gigantea 

leaves and T. gigantea pellets (T40) comprised of either fresh or fallen leaves were 

examined (Chapters 3, 6 and 7.2). The NDF concentration of fallen (430 g/kg DM) 

and fresh T. gigantea leaves (457 to 502 g/kg DM ) were at concentrations where the 

NDF may be digestible and the bio-availability of nutrients is not restricted (Chapters 

3, 6 and 7.2) (Belyea and Ricketts, 1993). For the T40 pellets where either fresh or 

fallen leaves were included up to 40%, the NDF was even lower (316 g/k DM for 

pellets comprised of fresh leaves and 342 g/k DM for pellets comprised of fallen 

leaves) (Chapter 6 and 7.2).  Fallen leaves had toxic levels of Ca, Mg, K and Fe and 

fresh leaves had toxic levels of Ca and Mg only (Chapters 3 and 6). Fallen leaves were 

deficient in both Na and Cu while fresh leaves were deficient in Na (Chapters 6 and 3, 

respectively). However, when fallen leaves were included at up to 40% of pellets Ca, 

Mg and Fe concentrations were within a suitable range for small ruminants (Chapter 

6). Further, intakes of all minerals, except K, when fed with forage, were within the 

range required by small ruminants (Chapter 6) (Kearl, 1982; NRC, 1985). In some 

instances, excess K may be antagonistic to Mg absorption and utilisation which may 

lead to grass tetany (McDowell and Arthington, 2005). However,  K toxicity is not 

usually a practical problem as excess K is readily excreted (McDowell and Arthington, 

2005). 

Overall, the concentrations and intakes of CP, SP, and NDF of groups fed pellets 

comprised of ≤ 40% T. gigantea, were within the requirements for growing lambs 

(Chapters 6 and 7.2). Overall, the more ingestive response to T. gigantea pellets 

comprised of 40% T. gigantea (Chapter 6) and the overall high nutritive value of 

pellets comprised of up to 40% T. gigantea (Chapters 6 and 7.2) suggests that 
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commercial concentrate can be replaced by 40% of T. gigantea in pellets for growing 

lambs. 

 Digestibility and growth performance 

The thesis investigated the digestibility of treatment diets offered in Chapters 7.1 and 

7.2. Previous studies reported varying digestibility for fresh P. purpureum (DMD: 

0.489 to 0.615 and OMD: 0.512 to 0.647) (Butterworth, 1963; Sarwar, 1999). 

However, values observed in Chapters 7.1 and 7.2 were comparable to the higher 

published values (DMD: 0.709 to 0.899 and OMD:  0.703 to 0.722) (Chen et al., 2006; 

Kozloski et al., 2003; Nogueira Filho et al., 2000). Despite the later stage of harvest 

and the lower nutritive value observed for P. purpureum in Chapter 7.2 compared to 

that in Chapter 7.1, when fed with nutrient-dense pellets in Chapter 7.2, the 

digestibility of the P. purpureum-based diets was comparable in both chapters.  Several 

studies have demonstrated improved quality of diets comprising P. purpureum when 

supplemented with more nutrient-dense feeds (Clark et al., 1992; Mpairwe et al., 

2003).   

The thesis showed that T. gigantea can be used as a substitute for commercial 

concentrate without compromising average daily gain (ADG), feed conversion ratio 

(FCR), digestible crude protein (DCP)/kg ADG and ME/kg ADG (Chapter 7.2). The 

digestibility, ADG, FCR, the DCP (g)/kg ADG and ME (MJ)/kg ADG of groups 

supplemented with 100% commercial ingredients (T0 pellets) was comparable to the 

T. gigantea group (supplemented with pellets comprised of 40% T. gigantea and 60% 

commercial ingredients). Conversely, Balraj et al. (2018) observed when T. gigantea 

leaves (in bulkier loose form) substituted 40% of commercial feed, growth rates in 

lambs were one-third those supplemented with 100% pelleted commercial feed.  It is 
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possible that in the current study, the presentation of the T. gigantea leaves in pelleted 

form resulted in a more efficient partitioning of energy for growth and a more 

comparable performance to the pelleted commercial supplement.  Avril et al. (2012) 

reported up to 78.2 g/d reduction in ADG for T. gigantea supplemented lambs 

compared to concentrate supplemented lambs which may be due to the higher intake 

of T. gigantea (88% DMI) versus the lower intake (16% DMI) in the current study. In 

Chapter 7.2, the comparable performance observed between treatment groups suggests 

that T. gigantea leaves can substitute up to 40% imported commercial concentrate in 

densified diets without compromising digestibility and growth performance in 

growing lambs.  The comparable performance between commercial and T. gigantea 

pellets is critical given the relatively lower nutritive value of T. gigantea to other 

MPTs, particularly M. oleifera and Morus alba. It is possible that pellets comprised of 

MPTs of higher nutritive values may result in animal performance that surpasses that 

of commercial pellets. 

8.3 Methodological considerations and future work 

The thesis aimed to determine the nutritive value of a range of forage species that are 

used in small ruminant production systems in the Caribbean (Chapters 3, 4 and 5).  

Values obtained fell within the range of those previously reported for tropical grasses 

and MPTs in the Caribbean and wider tropics (Aumont et al., 1995; Devendra, 1977; 

Devendra and Gohl, 1970). However, there are both the seasonal and spatial variations 

(local and regional) in the nutritive value of forages which may affect the quality of 

densified products. Therefore, future studies on the variations in the nutritive value of 

forages and the effects on pellet quality should be examined to derive guidelines for 

optimising and standardising densified forage products.  This is critical, particularly 
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for large-scale commercial operations where processes and the quality of end products 

are expected to be consistent.    

The effect of varying concentrations of fallen T. gigantea leaves on short-term intakes 

in lambs was examined (Chapter 6).  However, future work should investigate the 

long-term effect of densified diets comprised of different concentrations of fallen and 

freshly harvested leaves, on intakes, digestibility and growth performance in lambs.  

This may help to obtain critical information on the quality of the diets (Kaitho et al., 

1996).   

Further, the thesis aimed to determine the effect of pellets comprised of T. gigantea on 

animal performance including intake (Chapter 6), digestibility and growth (Chapter 

7.2). Changes in the quality (durability, strength) of pellets as a result of differences in 

processing methodology may affect animal performance (Cutlip et al., 2008; Moritz et 

al., 2002).  However, this was not examined in the current research and, therefore, 

future work should aim to address this.  

The estimated cost/kg feed and cost/kg ADG of T. gigantea pellets (T40) based on 

small-scale operations was determined and compared to the cost of commercial pellets 

which were produced using more large-scale commercial operations (Chapter 7.2).  

However, the economies of scale have important implications for cost and, therefore, 

future studies should focus on determining more large-scale commercial cost 

differences between the pelleted diets.   
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8.4 Practical implications and recommendations 

 Identifying suitable forage resources 

A wide range of forage species can be used to develop more sustainable feed systems 

for small ruminants in the Caribbean.  Reduced dependence on imported commercial 

concentrate require local feeds of comparable quality. The results of the present 

research suggest that MPTs are of overall high nutritive value and may provide more 

suitable substitutes to commercial concentrates when presented in a densified form.   

Although the effect of nutrient composition on pellet quality was not determined in 

this research, reports in the literature suggest that feed materials with higher 

concentrations of natural binders, including protein and starch and lower cell wall 

fractions, result in higher quality pellet products (Angulo et al., 1995; Bradfield and 

Levi, 1984; Briggs et al., 1999; Cavalcanti, 2000; Wood, 1987). This does not rule out 

the application of densification technologies to grasses, as studies have shown where 

the application of forage densification was more likely to improve the nutritive value 

and production response of fibrous forages (Beardsley, 1964; Minson, 1963); and 

improve year round access to grasses which are more severely impacted by harsh 

weather conditions (Datt et al., 2008; Wilson, 1969). However, tropical grasses are 

often of lower nutritive value and, therefore, pelleting of MPTs may provide more 

suitable substitutes to commercial concentrate feed. 

 Development of more sustainable feeding systems 

Forage densification technologies may be used for the establishment of more 

sustainable feed systems for small ruminants in the Caribbean.  The results of the 

present study indicate that dried fallen leaves can be used to replace up to 40% 

commercial concentrate without compromising the DMI, CP, SP and NDF 

requirements of animals (Chapter 6). Fresh T. gigantea leaves have the potential to 
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replace up to 40% commercial concentrate in densified diets without compromising 

digestibility and growth performance in lambs (Chapter 7.2).  This may lead to the 

development of more self-sufficient systems where there is an increased utilisation of 

locally available forages and a commensurate decline in the dependence on imported 

commercial feeds.   

 

 Feeding 

The presentation of new feeds to animals may result in some aversion to feeds (Kertz 

et al., 1982).  Based on intake studies in Chapter 6, animals required between one to 

two days for pellets with lower inclusions of T. gigantea (≤ 40% DM) and between 

four to six days for higher inclusions (≥ 60% DM).  Therefore, animals may take 

between one to seven days to adjust to new pelleted feed, particularly when inclusion 

as a percentage of total DM offered is high.  According to Kertz et al. (1982) the intake 

of new diets is often associated with lower intakes for the first few days of exposure 

to the feed. However, intake may be improved when animals are given more time to 

adapt to new feeds (Mejía and Vargas, 1993). 

 

 Estimated cost of feed 

The estimated cost/kg of T. gigantea pellets (T40) was over 70% higher than that of 

the T0 diet which was produced using more large-scale commercial operations 

(Chapter 7.2).  Consequently, the cost/kg of the T40 diet was almost 30% higher than 

that of the T0 diet and the cost/kg ADG for the T40 diet was over 40% more than that 

of the T0 diet. This may have been due to differences in the economies of scale where 

T0 pellets were produced utilising more large-scale commercial operations compared 
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to the small-scale operations used to produce the T40 pellet.  Therefore, costs may be 

more comparable using more large-scale commercial cost comparisons. 

8.5 Overall summary and conclusions 

The overarching objective of the thesis was to determine the effect of applying 

densification technologies to feeding systems for small ruminants in the Caribbean.  

The results of the thesis showed that there is a range of forage species with varying 

advantages to which densification technologies can be applied.  The higher protein and 

the generally higher starch content of the multipurpose tree species (MPTs) may 

indicate the suitability of these forages for densification systems where ingredients 

with higher natural binders such as protein and starch are typically associated with 

higher quality pellets. Further, the lower fiber content of the MPTs is notable and 

favourable to pellet quality as lower fiber content may result in less resistance, more 

compression and the lower occurrence of fissures and fractures which compromise the 

quality of pellets.   Therefore, the MPTs may provide inputs that are more favourable 

to the densification process resulting in the production of pellets of both high nutritive 

value and quality.    

The focal forage species selected for the forage densification studies in this research 

was Trichanthera gigantea (T. gigantea).  Although the species was at the lower end 

of the range for most of the measured parameters, its intermediate concentration of 

crude protein, good mineral profile, high fermentability in terms of the microbial 

biomass yield and its availability and accessibility in organised plantations in Trinidad, 

all contributed to its selection as the focal species of this research. Moreover, T. 

gigantea was recently selected by the Government of Trinidad and Tobago as one of 

the more favourable forage species because of its ease of establishment and relatively 
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higher dry matter yield compared to species of comparably higher nutritive value as 

Moringa oleifera and Morus alba.   

The results of the densification studies demonstrated the potential of densified T. 

gigantea to substitute 40% commercial pellets without compromising intake, 

digestibility and growth performance in lambs.  These findings are notable considering 

the more mature (flowering stage) and lower quality T. gigantea leaves used in this 

research. The results for pellets comprising T. gigantea may have been improved if 

younger leaves of higher nutritive value were used.  Further, pellets comprising other 

forages including Moringa oleifera and Morus alba that were of higher nutritive value 

than T. gigantea may have resulted in a performance that surpassed that of the 

commercial pellets.    

The overall potential of densified forage was demonstrated in this research. This elicits 

the need for further investigation into how the densification process can be optimised 

to secure densified forage products of high nutritive value and quality.  There are pre, 

intra and post-densification processes that must be the principal components of future 

research to secure optimised yield and quality of forage inputs and densified forage 

end products.  Further, targeting other locally available materials, including crop 

residue and co-products of agro-processing, may increase the options of locally 

available materials to which densification technologies can be applied. However, the 

infrastructure required to conduct the required research is inadequate. Although there 

are feed mills located across several of the islands which are equipped with suitable 

machinery, these operate commercially with the principal input being imported 

concentrate feed. Therefore, the challenge of limited infrastructure and skilled 

personnel required to maintain and operate densification equipment must be addressed 
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to secure robust research that drives the development and application of the technology 

in the region.  
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