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ABSTRACT Lean six sigma (LSS) is a quality improvement phenomenon that has captured the attention
of the industry. Aiming at a capability level of 3.4 defects per million opportunities (Six Sigma) and
efficient (lean) processes, LSS has been shown to improve business efficiency and customer satisfaction
by blending the best methods from Lean and Six Sigma (SS). Many businesses have attempted to implement
LSS, but not everyone has succeeded in improving the business processes to achieve expected outcomes.
Hence, understanding the cause and effect relationships of the enablers of LSS, while deriving deeper insights
from the functioning of the LSS strategy will be of great value for effective execution of LSS. However, there
is little research on the causal mechanisms that explain how expected outcomes are caused through LSS
enablers, highlighting the need for comprehensive research on this topic. LSS literature is overwhelmed by
the diverse range of Critical Success Factors (CSFs) prescribed by a plethora of conceptual papers, and very
few attempts have been made to harness these CSFs to a coherent theory on LSS. We fill this gap through
a novel method using artificial intelligence, more specifically Natural Language Processing (NLP), with
particular emphasis on cross-domain knowledge utilization to develop a parsimonious set of constructs that
explain the LSS phenomenon. This model is then reconciled against published models on SS to develop a
final testable model that explains how LSS elements cause quality performance, customer satisfaction, and
business performance.

INDEX TERMS Artificial intelligence, critical success factors (CSFs) of LSS, lean, lean six sigma (LSS),
six sigma (SS), deep neural network, word embedding, classification model.

I. INTRODUCTION
T he growth of customer demand for high-quality products
and services with speedy delivery, and increased competition
due to globalization have forced organizations to explore
profitable solutions to gain a competitive advantage [1], [2].
Organizations across the globe have embraced various busi-
ness and operational strategies to optimize their productivity
and customer satisfaction [3], [4]. Lean Six Sigma (LSS)
is a popular process improvement methodology comprising
the Japanese-inspired Lean manufacturing (LM) [5], [6], and
US-inspired Six Sigma (SS)methodologies [7]–[9].While SS
seeks to improve processes to a capability level of 3.4 defects
per million opportunities, LM seeks continual improvement
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toward a state of perfection, resulting in little or no unnec-
essary wastage in a production or service delivery system
[5], [10], [11]. Both methodologies have been popular since
the 1980s, while their amalgamation as ‘Lean Six Sigma’
has been discussed in SCOPUS since 2000 [12]. Figure 1
shows the growth of the usage of terms since 1989.Moreover,
the increase in LSS applications in industry over the past two
decades is indicative of the industry’s interest in this approach
[3], [13]–[15].

A. THEORETICAL UNDERPINNINGS OF THE RESEARCH
LSS is a business performance improvement methodology
that focuses on customer satisfaction through operational
and service excellence. In LSS, the best elements of LM
and SS are said to be optimally combined within a DMAIC
project approach containing LM methods. Understanding a
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FIGURE 1. Growth of literature of terms: ‘‘Lean’’, ‘‘Six Sigma’’ and ‘‘Lean Six Sigma’’.

phenomenon such as effective implementation of SS/LSS is
indeed a challenging proposition because these approaches
are interwoven with the overall quality system of the orga-
nization [8], [9]. To circumvent this problem, we consider
LSS as a project management approach, rather than an
overall organisational management approach. By design,
SS proceeds project-by-project [3], [16]–[19], allowing us
to consider it as a project management methodology. Since
Lean is very well incorporated in the DMAIC methodology,
the LSS approach can also be viewed as a project manage-
ment methodology [17]. In a project, the prime outcomes are
timely completion, cost, and quality (meeting the specifica-
tions/quality goals) and as such, variables that affect project
performance have been the focus in some project manage-
ment literature [18], [20]. As with any other project, LSS
projects also have the goal of finding a balance between the
three aforesaid outcomes [17]. Without project management
tools and the DMAIC process, it is difficult to ensure a
balanced outcome in the LSS project, as it lacks tools to
track the changes in documentation [17]. Consequently, it is
important to evaluate the project aspects of LSS in order to
ensure its successful deployment and sustainability.

The theoretical underpinnings of LM have been empiri-
cally tested extensively (e.g. [5], [10], [11], [21], [22]), but the
same cannot be said for SS and LSS. Given the widespread
use of LSS, academia and practitioners need a testable model
to understand the LSS phenomenon. Some researchers (e.g.
[9], [19], [23]–[25]) have attempted to explain SS as a Quality
Improvement (QI) phenomenon, but the Lean element is
conspicuously absent in the working definitions as well as
operational definitions of these studies. While some scholars
dismiss SS as a management fad [26], [27], others (e.g.:
[9], [19], [23], [24], [28]) have attempted to explain SS as

a quality improvement phenomenon. Antony et al. [29] and
Snee and Hoerl [30] pointed out that despite the evolution of
SS through three decades, the theoretical basis of SS needs
to be established, to which the scholars have responded to a
certain extent. Key work is reviewed in Table 1.

B. BRIDGING THE LITERATURE GAPS
While the theoretical model posited by Schroeder et al. [9]
looked promising, we found no evidence to suggest that
their model has been further developed and empirically
tested. One shortcoming we highlight in this model is the
non-consideration of project-related contingency variables
that some researchers have considered to be significant (e.g.
[19], [25]). Through the thorough analysis of literature we
found that no study has attempted to develop or test an explicit
theory on LSS.

The second major gap we identified in the literature review
is the need to integrate Lean and SS. Based on the work of
Schroeder et al. [9] and Zu et al. [8], although SS does oper-
ate as a system in parallel with other improvement systems,
we found that SS has not been merged with Lean in the form
an explicit theoretical model. We speculate that structured
problem solving [9] and Process Management [8] could be
the constructs that capture both Lean and SS elements in LSS
and that both constructs may be re-labelled as LSS execution.

The third significant gap we identified is that many papers
have discussed the factors critical to the success (and fail-
ure) of management attempts to effectively implement Lean,
SS and LSS (e.g. [28], [32], [33]), but no one has made a
serious attempt to synthesize these publications to identify
the broader concepts of LSS leading to LSS model devel-
opment. Critical Success Factors (CSFs) of an outcome are
by definition determinants, mediators and/or moderators of
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TABLE 1. Literature analysis of LM and SS models.

that outcome, and therefore research on CSFs of LSS is
relevant in explaining LSS project success. Our research to
date has identified 2518 separately named CSFs in the rele-
vant literature (e.g. Abu Bakar et al. [34] mention 90 CSFs;
Kumar et al. [35] mention 44 CSFs). This proliferation of
factors becomes counter-productive, because it is confusing
for practitioners and academics, and creates a problem in
attempting to develop a parsimonious meta-model to explain
the phenomenon. The same may explain why no attempt has
been made to produce such a model for LSS or SS.

With so many CSFs it becomes difficult to fully ‘mine’
the terms in order to produce a parsimonious objective subset

of themes. Additionally, an attempt to do so might introduce
the opportunity for researcher bias. Therefore this becomes
a ‘big data’ problem that can be more effectively tackled
using computing power. As a method for overcoming such
problems, this paper discusses the potential of ML to confirm
a parsimonious set of independent constructs through extract-
ing the essence of CSFs leading towards a testable empirical
model.

C. CRITICAL SUCCESS FACTORS OF LSS
CSFs are the elements of an organizational strategy that can
influence the performance of the organization while guiding
towards a positive direction [36]–[38]. Giving a boost to the
search of CSF concept, Rockart [39] defined CSF as specific
circumstances and variables that have a significant effect on
the results and performance of an organization. In some cases,
CSFs also play the role of evaluation criteria being elements
that are essential for an organization or project to achieve its
mission [13], [40]–[42].

Furthermore, researchers have claimed that a CSFs concept
implies a direct correlation between pursuing satisfactory out-
comes and performing specific activities in an organization
in a specific subject area such as Continuous Improvement
(CI) [38], [42], [43]. According to Alkarney and Albraithen
[38] and [44], CSFs are an attempt to systematically identify
the key areas that management should evaluate and prioritize
when implementing LSS initiatives to achieve desired perfor-
mance goals. Thus, using the CSFs concept in organizational
strategic activities is vital for managers and decision-makers
as it provides guidance for successful LSS implementation
initiatives [43], [45].

Total quality management (TQM), Lean and SS have dis-
tinct definitions, these systems co-exist in organizations and
share the same performance goals [45], [46]. In action, CI is
embedded in all three systems [8], [9], [33]. Thus, in this
article, we consider CSFs of Lean, Six Sigma, TQM and
general CI implementation.

D. DEEP LEARNING FOR CLASSIFICATION
Artificial intelligence (AI) is general term that refers to tech-
niques that teach machines to do things that come naturally
to humans. One such AI technique is machine learning (ML),
which is a set of algorithms trained on data to make decisions
similar to humans. Furthermore, in ML, Deep Learning (DL)
is a biological structure-inspired algorithm that mimics func-
tions like the brain’s neural structure for creating intelligent
machines and systems [47], [48]. A typical supervised deep
learningmodel consists of an input layer, which takes labelled
raw data in tensor form (sometimes these could be features
extracted from raw data), then works together with some
hidden layers and activation functions that process input data
to learn different patterns in it. Lastly, the output layer gives
categorical (for classification) or real number outputs (for
regression tasks). Typically a supervised learning model is
trained on a large set of data until the difference between
the output layer prediction and label of input difference is
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minimal. In order to do this, every deep learning model has an
optimization algorithm and a loss function associated with it.

DL techniques have evolved through the decades and their
application has now spread not only to computer vision and
autonomous vehicles but also to Natural language Processing
(NLP) [47], [49]–[51]. Text classification remains a major
theme in NLP, with a wide range of real-world applications
in information retrieval due to its major implications [52].
In order to classify text with DL models requires input text
transformed into numeric tensors. This is done by segmenting
texts into tokens (words, characters etc.) and then by associ-
ating numeric vectors. There are multiple ways to vectorize
or to tokenize a text. Two major ways are one-hot encoding
and word embedding.

One-hot encoding uses a vocabulary index to uniquely
represent a word [53], [54]. One-hot encoded vectors are
binary, sparse and highly dimensional (equal to the length of
vocabulary). In addition, one-hot encoding does not capture
the context of a word in text, nor its semantic and syntactic
similarity and relationship with other words in the text. For
example, ‘similar’ and ‘same’ are related, but one-hot encod-
ing won’t capture the semantic relationship between them.
Word embedding is a popular technique that has overcome
the shortcomings mentioned above. Word embedding maps
a word to a vector of real numbers [55]. This mapping is
not manual; in fact, the model is trained to learn weights
for embedding space that project each word into vector
space. There aremany popular word embeddingmethods, and
Word2Vec and GloVe are prevalent among them [47], [56].
While there is consensus that word embedding captures the
semantic information of words, with regard to a full sentence
it fails to captures the relationship among multiple words and
phrases in the same sentence [57].Whenworkingwith textual
data in NLP, for tasks which requires the meaning of a sen-
tence, we need to consider embedding sentences or phrases.
To address this, Conneau et al. [57] and Cer et al. [58]
proposed sentence level embedding. This allows representing
the sentence as a whole in vector form rather than combining
word embedding of each word in the sentence [57], [58].
In our study, CSFs are like phrases where groups of words
together make sense. Therefore, this study focuses on the
using sentence embedding to vectorize CSFs for DL models.

II. METHODOLOGY
Development of the final theoretical model for a successful
deployment of LSS comprises two major elements as shown
in Figure 2. The first element is mining the gap in the litera-
ture by examining the existing models in both Lean and Six
Sigma. The second element is to develop anML classification
model to extract the essence of CSFs in extant literature.

A. INITIAL CONCEPTUAL MODEL DEVELOPMENT
Three key basic requirements have to be full-filled in formu-
lating a theoretical model: the establishment of the theoretical
constructs, specify the relationships between the constructs
based on temporal asymmetry and set the boundary within

FIGURE 2. The methodology of model development.

which the theory is to be generalised [59]–[61]. Our theo-
retical model was built in two stages. First, we developed a
baseline conceptual model (Figure 3) from the rudimentary
project management axiom that maintains a project needs to
be initiated and executed well to be achieve the project goals
of quality, timely completion, and cost efficiency [62], [63].
This initial model was augmented to form a final theoretical
model, with the aid of literature review and CSFs extraction.

Figure 3 portrays the implementation process of an LSS
project. LSS project implementation comprises two major
segments: the initiation phase where planning and scheduling
occurs and the execution phase where conversion of process
inputs (e.g. knowledge, social interactions such as teamwork,
and the application tools and techniques for improvement)
occurs. The success of LSS deployment is not only a product
of these phases but it is a collective effort of various factors.
In the LSS project initiation stage, project selection has a
significant role that influences the success of LSS project
deployment [64]–[66] as it aids in choosing the right project
at the right time to deliver the right results.When selecting the
right project, the model takes into account the four influential
voices (voice of customer, voice of business, voice of process
and voice of stakeholders) that were discussed in Antony and
Saadat [64].

Our initial model (Figure 3) explains the positive relation-
ship between the project initiation and LSS project execution,
resulting in a successful deployment of LSS. Despite the fact
Linderman et al. [19] has attempted to explain the initiation
in terms of explicit goal setting that results in performance,
there remains a gap with a question entailed ‘‘How can we
achieve performance?’’. Schroeder et al. [9] attempts to fill
this gap by guiding through a structured process (DMAIC).
Further, our initial model posits that successful deployment
of an LSS project will result in improved quality performance
and customer satisfaction, which in turn positively influences
business performance [8], [67]–[69].
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FIGURE 3. Initial conceptual model: the implementation process for the successful deployment of LSS.

B. CSFs EXTRACTION AND CLASSIFICATION
Extraction of CSFs is essential to design the classifier model
using ML. We performed a literature review on CSFs for
Lean, SS, TQM and CI implementation in both the man-
ufacturing and service sectors. The literature review was
carried out in the EBSCO, ELSEVIER, EMERALD, IEEE,
SCOPUS and SPRINGER databases. The inclusion criteria
were journal-publications from the year 2000 to present and
publications that address CSFs in the areas of manufactur-
ing and the service industry. The search included keywords
such as ‘‘Critical success factors’’ OR ‘‘Success factors’’ OR
‘‘Enablers’’ AND ‘‘Lean Six sigma’’ OR ‘‘Lean Sigma’’ OR
‘‘Lean’’ OR ‘‘Six sigma’’ OR ‘‘LSS’’ OR ‘‘TQM’’ OR ‘‘Con-
tinuous Improvement’’. Finally, 287 articles were selected
for review and, and, after manual filtering, 235 articles were
selected that have listed CSFs. Among the final reviewed
articles, 52% represented the CSFs in the Manufacturing
industry, 14%were discussing the CSFs generally (both man-
ufacturing and service) and another 14% listed the CSFs of
Small and medium enterprises (SMEs). The rest represented
the CSFs of other industries such as IT, Aerospace, Construc-
tion, Education and Healthcare.

Literature analysis on CSFs revealed that prior studies
related to CSFs in LSS suffer from two deficiencies. Firstly,
while 3318 CSFs (from 216 articles) have been extracted
from literature, only 582 (19 articles) have been classified
into manageable headings (Table 3). Second, prior studies
have used ad hoc methods to classify and verify their results
using different methods. But, none of the studies provide a
method of classifying or predicting the class for the rest of the
CSFs available in the literature. As studies on CSFs are pre-
scriptive, traditional quality criteria such as that a journal arti-
cle must meet, A or A* standards, cannot be used to qualify an
article on CSFs of LSS because these journals do not publish
articles solely devoted to prescribing things such as CSFs.
This is the reason why we used a state-of-the-art technique to
sift through 3318 CSFs to be classified under manageable and
meaningful themes (Leadership Engagement, LSS Culture,
LSS Initiation and LSS Execution).

III. DEEP NEURAL NETWORK FOR CLASSIFICATION
Generally, Multi-class classification can be formulated as
follows: X ⊂ IRD is a set of M instances, each of which
is a D-dimensional feature vector, and C is a set of labels

TABLE 2. Attempt to classify CSFs in literature.

or classes [86], [87]. Each X instance is associated with a
subclass of C , known as the relevant class where all other
labels are irrelevant. The trainingmodel must learn amapping
function f : IRD → 2C that assigns a subset of class to a
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given X instance in order to build a classifier. For this type of
classification problem,many algorithms have been developed
in the past, such as the binary significance algorithm, pairwise
decomposition, and label power-set. However, in our case
Deep Neural Networks (NN) scale well and function effec-
tively by learning features from raw inputs that are typically
smaller than hand-crafted features derived from raw inputs.
Developing a CSF classifier is not only encompassing ML
which is a subset of AI but, it is also a combination of
the state-of-the-art technique NLP and subsets such as Word
Embedding, Neural Network (NN) and supervised Machine
Learning (SML).

To develop this Multi-Class Classifier, where the single
classification label belongs to a set with more than two
elements, it is essential to use frequencies of words and
context data to preserve the meanings of word embedding to
encode semantic significance in a word embedding [52], [88].
This study has employed TensorFlow, a Google-released
open-source numerical computing framework specifically
designed to ease tedious sentence embedding for the imple-
mentation of NN [58]. TensorFlow is primarily designed for
creating deep NNs and it offers integrated features, such as
activation, stochastic optimization techniques and convolu-
tions for the implementation of deep learning algorithms [58],
[89], [90].

A. DATA-SET DESCRIPTION
For the DL classifier we used the CSFs (from 19 articles)
that were already clustered under several headings as train-
ing data. To prepare the training data, the clustered CSFs
were listed with their headings. With the help of an expert
panel of four, we merged several headings together and gen-
erated 4 headings (Leadership Engagement; LSS Culture;
LSS Project Initiation; LSS Execution ). An example of
the headings merged to create the first class of Leadership
Engagement is provided in Table 3.

We removed duplicate CSFs and selected only 536 unique
ones with their headings in order to create the training set.
The CSFs that have been examined in the Literature are
generally phrases with variable length. Therefore, we imple-
mented a universal sentence embedder which is known as
the universal sentence encoder [58] from TensorFlow hub.
Before encoding, we pre-processed each CSF to make all
the words lowercase. The universal sentence encoder has
two advantages: First, it converts single words or sentences
into fixed-length vectors, which can be used for combining
multiple CSFs into a single vector. This also prevents the
need of padding short vectors with zeros. Since the universal
encoder has been trained on a large corpus of data, it is better
suited to learning with limited training data [53], [91].

During the embedding process, the training data were shuf-
fled and the headings mapped from 1 to 4. For evaluation
purposes, we split the training data set (536) into two parts:
training set (80%) and cross-validation set (20%). We used
stratification sampling since the training data were inconsis-
tent, so we minimised bias in both sets of data.

FIGURE 4. The methodology of classifier development.

B. MODEL ARCHITECTURE
The NN classification process is illustrated in Figure 5. The
diagram shows a five-layer model with an input layer of 512
nodes (equal to the length of the vectored CSFs), an output
layer of 4 nodes (corresponding to the number of classes),
and three hidden layers of (128, 64, 64) nodes. The input
layer is the first layer of the neural network, and it con-
tains the information required for processing by subsequent
layers. Our classification system also includes a sentence
embedding module that has been pre-trained on a large
data corpus. It converts input CSFs into a multi-dimensional
(R512) vector representation for the next layer in the neural
network.

For the hidden layers we employed the Rectified Linear
units (ReLu) activation function f (x) = max(0, x). The
dense output layer was activated before loss computation
with the ’Softmax’ activation parameter, which is the most
general in this form of text classification task [86], [87], [92].
Softmax is a function that condenses a vector into the range
of real numbers (0, 1), and all the results (probabilities) add
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FIGURE 5. Neural network for classifier model.

up to 1 [93], [94]. Consider samples Si = (i = 1, 2, 3, . . . .n)
in the training data. The Softmax function for a given
classes C can be calculated as follows:

f (S)i =
eSi∑C
j e

Sj
(1)

where Sj are the scores inferred from the total of each class in
C and therefore the Softmax activation for a class Si depends
on all the scores in S. For optimizing the performance of a
neural network, the cost function is critical for determining
the weights of the NN [94]. After the activation function we
utilised binary cross-entropy (BCE) as the loss function. BCE
transforms the smoothed output from Softmax function with
probabilities while penalising any deviation from the target
label. The formulation for BCE can be defined as follows:

L = −
2∑
i=1

·ti logPi = [tilog(Pi)+ (1− ti)log(1− Pi)] (2)

where, ti is the truth value or the target label taking a value
between 0 or 1 and Pi is the probability assigned from Soft-
max function for the ith class. BCE is often considered to be
the average of all data samples. Therefore, for N data points
the formulation is modified as follows:

L = −
1
N

.

N∑
i=1

[tilog(Pi)+ (1− ti)log(1− Pi)] (3)

To train a neural network, as in Figure 5, from a set X of N
training instances, three steps are performed on the training
stage: network initialization, parameter learning, and output
activation. To avoid over-fitting, we implemented L2 regu-
larization in hidden layers and included dropouts after each
hidden layer.

C. IMPLEMENTATION DETAILS
In our model we implemented TensorFlow [89]–[91] with
Keras API. Networks were trained with 100 training trials

FIGURE 6. Accuracy and loss of training and cross validation.

per batch for at most 70 epochs with early stopping based
on the classifier loss on the validation set. Specifically, if the
validation loss for class prediction did not improve (i.e., reach
a new lowest value) for 10 epochs, training was stopped and
the model which resulted in the lowest validation loss was
saved. Parameter updates were performed once per batchwith
the ‘‘rmsprop’’ summarized the parameter selection of our
model.

D. EVALUATION METRICS
In order to evaluate the performance of the proposed method,
accuracy, precision, recall and F1-scores are were chosen
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TABLE 3. Merged headings to create the class: Leadership engagement.

as the major evaluation metrics [50], [95]–[97], which are
defined as follows:

Precision =
TP

(TP+ FP)
(4)

TABLE 4. Model parameters.

Recall =
TP

(TP+ FN )
(5)

F1Score =
(2 ∗ precision ∗ recall)
(precision+ recall)

(6)

accuracy =
(TP+ TN )

(TP+ TN + FP− FN )
(7)

where TP, FP and FN are the true positives, false positives
and false negatives, respectively. Precision, Recall are expe-
dient measures of success of prediction when the classes
are very imbalanced. In information retrieval, precision is a
measure of result relevancy, while recall is a measure of how
many truly relevant results are returned. The F1-score is the
average of precision and recall [47], [53].

IV. RESULTS AND DISCUSSION
A. EVALUATING CLASSIFIER MODEL
Through repeated re-sampling, cross-validation allows mod-
els to be tested using the entire training set, maximizing the
total number of points used for testing and possibly to reduce
the chance of over-fitting [98]. In this classification model
we used 20% of the training data with designated classes as
the cross validation data set. Since, there are imbalanced data
for each class in the classified CSFs, we stratified the data
before splitting the training set to limit the bias that can occur.
Table 5, exemplifies the evaluation criteria of the classifier
predictions. According to the table within the CSV set, 82.2%
of the classification predictions are accurate. This level of
accuracy is acceptable for our theoretical model development
purpose.

The accuracy of the trainingmodel and the cross-validation
model as well as the loss curves for both are depicted
in Figure 6. The test data represents the 1936 CSFs extracted
from literature that have not been classified. With the clas-
sifier model we generated predictions for these unclassified
CSFs. For further validation and to asses the performance of
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TABLE 5. Evaluation metrics for cross validation.

TABLE 6. Evaluation metrics for test data.

FIGURE 7. Graphical representation of training data.

this classifier we employed an expert panel of four to classify
a portion of test data under the four headings. For the panel
evaluation we utilized the CSFs classification in the training
model as shown in Figure 7.
To evaluate the results of the expert panel assessment we

used the metric root mean square error (RMSE), which pro-
vides an indication regarding the dispersion or the variability
of the prediction accuracy as shown in equation 8.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(8)

Based on the five-point Likert scale, RMSE = 0.78. Since
both ‘‘strongly agree’’ and ‘‘agree’’ indicate a valid predic-
tion, we recalculated the RMSE value using a three-point Lik-
ert scale. In particular, the three-point Likert scale generated

FIGURE 8. Histogram of expert panel results.

FIGURE 9. 3D scatter-plot of the features obtained from the test set.

an RMSE of 0.26, indicating that our prediction model is
accurate. Importantly, this measure confirms that we can rely
on the manual classification as ground truth to evaluate our
ML model. The histogram of how the experts responded
to the prediction (Figure 8) reveals that the results are Left
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FIGURE 10. The final theoretical model explaining the LSS phenomenon.

skewed as we target the ‘‘strongly agree’’ response for each
prediction.

A DL model was tested against the predication of the
manually classified data in order to evaluate its performance
according to the evaluation criteria. Table 6 depicts the eval-
uation metrics of test data. In order to test model predictions,
the model was executed with 100 epochs and a batch size of
10. Testing accuracy was calculated to be 95.95%. Precision,
recall and F1-scores are shown in the Table 6.
The CSFs in literature are sentence-based. To interpret the

relationship between CSFs to each other, a higher dimen-
sional vector space is needed because the semantic relation-
ship between words or sentences is crucial in classification
of CSFs. Principal component analysis (PCA) is a method
that effectively reduces a high-dimensional vector into a
lower-dimensional vector while preserving the local structure
in the high-dimensional space (Figure 9). PCA can also pro-
vide greater insight into the vector space. After dimensional
reduction, the word vector in the test sample appears as shown
in Figure 9. On the 3D plane, rotated PCA plots indicates
at least two distinct clusters (’class 0-Leadership Engage-
ment’ and ’class 1-LSS Culture’). This factoid assures us that
the Test data set (1936 CSFs) can be clustered under four
themes.

ReducedDataset = FeatureVectorT × OriginalDatasetT (9)

B. THEORETICAL MODEL DEVELOPMENT
Figure 10 presents the constructs of the final theoretical
model, and Table 7 provides an overview of the key sources
that supported the constructs in the final theoretical model.
These articles attempt to either build or test a parsimo-
nious theory on SS/LSS. The analysis of the CSF literature
through ML provided the researchers with greater insight
into constructs that are significant but not adequately covered
in SS/LSS theory building/testing studies. The relationships

TABLE 7. Key sources used to formulate theoretical constructs.

between the theoretical constructs (i.e. the hypotheses shown
in Figure 10) have been derived based on existing theoretical
models on SS (see Table 7). However, H9 through to H11 can
be generalized across any major quality improvement initia-
tive (for seminal work, see Deming, 1986, p.3 [99])
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TABLE 8. Literature that supported the formulation of the hypotheses
that constitute the model.

V. CONCLUSION
Despite LSS’s popularity, its theoretical underpinnings
remain underdeveloped. The causal mechanisms explain-
ing how LSS constructs are related to quality improvement
project success and bottom line results of organizations
remain sketchy and the Lean element of LSS is absent in
almost all explanations. When explaining LSS outcomes,
it is not possible to ignore CSFs since these are critical to
the implementation of LSS. Moreover, the CSFs prescribed
for Lean, SS, and CI are too many and poorly defined to
constitute a comprehensive theory. In order to combat this
problem, we presented a targeted approach for classifying
CSFs that uses a deep supervised learning model to extract
the essence of CSFs while supporting the development of a
theoretical model. This novel approach addresses the chal-
lenges associated with the unique characteristics of the qual-
ity improvement language while extracting the essence of
available literature on the CSFs related to LSS. We evalu-
ated the effectiveness of the proposed approach to moderate

researcher bias in classifying CSFs in the literature, which is
a sub-task in developing a model that explains the successful
implementation of LSS. Nevertheless, further industry scop-
ing (case research) is necessary in order to fully comprehend
how to integrate Lean and SS into a theory of LSS.

Recently, NN-based approaches have shown potential and
become the top classification approach for images, text, and
many other databases. NNs can efficiently and automatically
represent latent features as a function of the labelled training
data. However, the proposed method of extracting the CSFs
using a supervised deep learning-neural network is novel
to the engineering management field and may open many
avenues for researchers to explore. Considering the current
state of the research, we intend to continue to improve the
model architecture of our supervised learning model for clas-
sifying CSFs in future research work. Although the study
attempts to develop and test a model while consolidating the
CSFs of LSS, it has a major limitation; there is a need to con-
duct research in industry to ‘‘operationalize’’ the constructs
and test statistically via a sample of LSS organisations world-
wide. The proposed approach in model development is most
useful to gain insights on the core concepts of practitioner
driven, yet well-established methodologies (LSS is just one
example). This is because the meanings of the concepts keep
evolving and it is difficult reach consensus among experts
on the core contests due to cognitive limitations/bounded
rationality [101]. It can also be suggested that our proposed
method of using Deep Learning to classify CSFs can also be
applied to other fields to extract the essence of literature when
it is fragmented and overloaded with terms, even in other
languages.
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