Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
A Study of the Intestinal Microbiota in Health and Disease

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Molecular Microbiology

At Massey University, Palmerston North,
New Zealand

Jessica Anne Stewart
2005
The intestinal microbiota is a massive and complex community, essential to the human host for good health and well-being. However, this population has been associated with gastrointestinal disease, and remains poorly understood. The aim of this study was to develop and validate DNA-based assays for the intestinal microbiota and to apply these methodologies to faecal samples collected from healthy volunteers and patients with gastrointestinal disease. Over 250 faecal samples were analysed using temporal temperature gradient gel electrophoresis (TTGE) and real time PCR. Validated assays had high sensitivity and reproducibility. Healthy individuals displayed a high level of temporal stability during short term studies (≤ 6 weeks) and long term studies (1-4 years). Analysis of faecal samples provided by identical and fraternal twins demonstrated an influence of host genetics over the composition of the predominant bacteria in children. Two intervention studies, bowel lavage and the Atkins' diet, were carried out to monitor the impact of environmental change on the population's stability in healthy volunteers. Following bowel lavage, microbial populations rapidly recovered to control densities, however the stability of the population was disturbed. Introduction of the Atkins' diet, led to a significant change in the composition of the microbial population. A preliminary study of the intestinal microbiota in disease groups was undertaken. Significant differences were detected between inflammatory bowel disease groups and controls. Cluster analysis in these patients indicated a potential association between the composition of the predominant bacterial population and disease localisation. The studies reported here demonstrate that the faecal microbiota in healthy individuals is a highly stable population under the influence of both host genetics and environmental variables, however the population present in patients with inflammatory bowel disease exhibits differences compared to healthy controls.
ACKNOWLEDGEMENTS

The studies described in this thesis were largely carried out using the facilities and equipment of the Wakefield Gastroenterology Research Institute in Wellington. Preparation of plasmid clones was undertaken in the Institute of Veterinary and Biomedical Sciences, at Massey University. I would like to acknowledge the Wakefield Gastroenterology Research Trust and the Wellington Medical Research Foundation who funded the research.

I would like to thank my chief supervisor, Prof. Alan Murray, for encouraging me to undertake this PhD project, and for his continuing advice, support and encouragement throughout. Also I would like to acknowledge the effort Alan made to regularly travel down to Wellington to enable us to discuss the project. I would also like to express my gratitude to my second supervisor, Prof. Vint Chadwick, for the wealth of knowledge and experience he brought to the project, and his continual enthusiasm for the research.

I would like to thank all the people who volunteered to participate in the studies, especially those that undertook the Atkins’ diet for 4 weeks. Without their involvement, none of the work presented in this thesis would have been possible. A special mention must go to the Multiple Birth Clubs in Wellington that published advertisements in their newsletters requesting volunteers for the twin study.

During the first months of my work, the assistance of Dr Wangxue Chen, Dong Li, and Natalie Wilson was invaluable to get my work underway. I would also like to acknowledge Dr Donia McCartney, Chris Ford, and especially Dr Serena Rooker who regularly helped me turn over ideas and trouble shoot problems. I am very grateful to Petra and Annie for tireless gel scoring and for their continuing friendship over the years. I would also like to acknowledge Moody and Dianna at IVABS for their help completing the ERMA application, and assistance with cloning PCR products. Thanks must also go to Dr Lucy Skillman (AgResearch) and Collette Bromhead (Wellington Medical Laboratories) for their advice regarding real time PCR, and to Dr Keith Joblin (AgResearch) for providing genomic DNA from Methanococcus voltae. I would also
like to thank all the girls, past and present, from the Wakefield Gastro Centre for all those enjoyable morning teas, chocolate biscuits, and curry nights.

I am also very grateful to my family and friends who were always willing to help, and interested in how my ‘poopie research’ was progressing. Finally, I would like to say a very big thank you to Dave, for regularly rescuing me with computer-magic and cups of tea, but mostly for his endless patience and support, and his unwavering belief in me.
TABLE OF CONTENTS

ABSTRACT.. I

ACKNOWLEDGEMENTS... II

TABLE OF CONTENTS ... IV

LIST OF FIGURES .. X

LIST OF TABLES .. XIII

CHAPTER 1: INTRODUCTION .. 1

1.1 THE INTESTINAL MICROBIOTA ... 1
 1.1.1 Historical Background .. 1
 1.1.2 The Resident microbial Population .. 1
 1.1.3 The Intestinal Habitat ... 2
 1.1.4 Distribution within the Gastrointestinal Tract ... 3
 1.1.5 Colonisation of the Large Intestine .. 7
 1.1.6 Characteristics of the Faecal Microbiota .. 8
 1.1.7 The Role of the Microbiota in Host Physiology .. 9
 1.1.8 Fermentation by the Intestinal Microbiota ... 10
 1.1.9 Dynamics of Methanogen and Sulfate Reducing Bacteria Populations ... 12

1.2 THE IMMUNE SYSTEM AND THE INTESTINAL MICROBIOTA .. 15
 1.2.1 Innate Immunity .. 15
 1.2.1.1 Toll-Like Receptors ... 16
 1.2.2 Aquired Immunity ... 17
 1.2.2.1 Gut Associated Lymphoid Tissue .. 17
 1.2.2.2 IgA .. 19
 1.2.3 Immune Tolerance to the Intestinal Microbiota .. 20

1.3 THE INTESTINAL MICROBIOTA AND DISEASE ... 22

1.4 METHODS FOR STUDYING THE MICROBIOTA .. 25
 1.4.1 Temporal Temperature Gradient Gel Electrophoresis .. 26
 1.4.2 Real Time Polymerase Chain Reaction .. 29

1.5 AIMS OF THE THESIS .. 31

CHAPTER 2: MATERIALS AND METHODS .. 33

2.1. Ethical Approval .. 33

2.2 Microbial DNA FROM FAECAL SAMPLES .. 33
 2.2.2 Collection and Homogenisation of Faecal Samples ... 33
 2.2.3 Faecal DNA Extractions .. 33

2.3 PCR-TTGE .. 34
 2.3.1 Amplification of Bacterial 16S ribosomal RNA Genes ... 34
 2.3.2 TTGE Conditons ... 35
 2.3.3 Staining TTGE Gels .. 35
4.3 METHODS
- 4.3.1 Volunteers ... 74
 - 4.3.1.1 Volunteers for PCR-TTGE Study 74
 - 4.3.1.2 Volunteers for Real Time PCR Study 74
- 4.3.2 Breath Methane Measurements 74
- 4.3.3 Faecal DNA Extraction/PCR-TTGE/Real Time PCR/Sequencing 74

4.4 RESULTS
- 4.4.1 Application of PCR-TTGE to Assess Variability in the Faecal Microbiota between Different Individuals ... 75
- 4.4.2 Application of PCR-TTGE to Assess Temporal Variation in the Bacterial Population 76
 - 4.4.2.1 Short Term Stability of the Bacterial Population’s Composition 76
 - 4.4.2.2 Long Term Stability of the Bacterial Population’s Composition 77
- 4.4.3 Application of Real Time PCR to Assess Carriage and Temporal Variation of Methanogen and Sulfate Reducing Bacteria Populations 78
 - 4.4.3.1 Carriage Rates and Densities of Methanogens and Sulfate Reducing Bacteria in New Zealand Adults ... 78
 - 4.4.3.2 Comparison of Real Time PCR and Breath Methane Testing 79
- 4.4.4 Application of Real Time PCR to Assess Temporal Variation in Bacteria Populations 81
 - 4.4.4.1 Short Term Variability in the Densities of Bacteria .. 81
 - 4.4.4.2 Long Term Variability in the Densities of Bacteria .. 81
- 4.4.5 Temporal Stability of Methanogen and Sulfate Reducing Bacteria Populations 81
 - 4.4.5.1 Short Term Stability of Methanogen Populations .. 82
 - 4.4.5.2 Long Term Stability of Methanogen Populations .. 82
 - 4.4.5.3 Short Term Stability of Sulfate Reducing Bacteria Populations 83
 - 4.4.5.4 Long Term Stability of Sulfate Reducing Bacteria Populations 83

4.5 DISCUSSION .. 85

CHAPTER 5: INFLUENCE OF HOST GENETICS OVER THE COMPOSITION OF THE FAECAL MICROBIOTA ... 89

5.1 ABSTRACT .. 89

5.2 INTRODUCTION .. 90

5.3 MATERIALS AND METHODS 92
- 5.3.1 Volunteers ... 92
- 5.5.2 Twin Zygosity ... 92
- 5.5.3 Faecal DNA Extraction/PCR-TTGE/Real time PCR/Sequencing 92

5.4 RESULTS .. 93
- 5.4.1 Comparison of the preDominant Bacterial Population in Related and Unrelated Individuals 93
- 5.4.2 Concordance Rates for the Carriage of Methanogens and Sulfate Reducing Bacteria in Identical and Fraternal Twins ... 98

5.5 DISCUSSION .. 101

CHAPTER 6: RECONSTITUTION AND STABILITY OF THE FAECAL MICROBIOTA AFTER INTESTINAL LAVAGE ... 107

6.1 ABSTRACT .. 107

6.2 INTRODUCTION .. 108

6.3 METHODS .. 109
- 6.3.1 Volunteers ... 109
- 6.3.2 Intestinal Lavage 109
- 6.3.3 Faecal DNA Extraction/PCR-TTE/Real time PCR/Sequencing 109
CHAPTER 7: COMPOSITION AND STABILITY OF THE FAECAL MICROBIOTA AFTER DIETARY CHANGE

7.1 ABSTRACT

7.2 INTRODUCTION

7.3 METHODS
7.3.1 Volunteers and Sample Collection
7.3.2 The Atkins’ Diet
7.3.3 Faecal DNA Extraction/PCR-TTGE/Real time PCR/Sequencing

7.4 RESULTS
7.4.1 Volunteers Drop-out and Compliance
7.4.2 The Effect of the Atkins’ Diet on Blood and Weight Measurements
7.4.3 Bacterial TTGE Profiles during Consumption of a Western Diet and Consumption of the Atkins’ Diet
7.4.4 Analysis of TTGE Profiles with Sorenson’s Similarity Co-efficient
7.4.5 Analysis of TTGE Profiles with the Shannon’s Indices
7.4.6 Bacterial Densities in Faecal Samples Collected while Consuming a Western Diet and while Consuming the Atkins Diet
7.4.7 Methanogen Densities in Faecal Samples Collected while Consuming a Western Diet and while Consuming the Atkins Diet
7.4.8 Sulfate Reducing Bacteria Densities in Faecal Samples Collected while Consuming a Western Diet and while Consuming the Atkins Diet

7.5 DISCUSSION

CHAPTER 8: THE FAECAL MICROBIOTA IN INFLAMMATORY BOWEL DISEASE

8.1 ABSTRACT

8.2 INTRODUCTION

8.3 MATERIALS AND METHODS
8.3.1 Volunteers
8.3.2 Faecal DNA Extraction/PCR-TTGE/Real time PCR/Sequencing
8.3.3 Cluster Analysis and Statistics

8.4 RESULTS
8.4.1 Comparisons of predominant bacterial population similarities amongst different patient groups
8.4.2 Clustering analysis of similarity data from inflammatory bowel disease patients
8.4.3 Community richness amongst inflammatory bowel disease patients and controls
Table of Contents

8.4.4 Carriage Rates of Methanogens and Sulfate Reducing Bacteria ... 150
8.4.5 Population Densities of Bacteria, Methanogens and Sulfate Reducing Bacteria 152

8.5 DISCUSSION .. 154

CHAPTER 9: CONCLUDING COMMENTS ... 161

APPENDIX A: SORENSON’S SIMILARITY CO-EFFICIENTS ... 167
A.1 Unrelated Volunteers from Chapter 4 ... 167
A.2 Short Term Stability Data from Chapter 4 .. 167
A.3 Long Term Stability Data from Chapter 4 .. 168
A.4 Twins and Unrelated Controls from Chapter 5 .. 168
A.5 Intestinal Lavage Data from Chapter 6 .. 169
A.6 Western Diet Data from Chapter 6 ... 170
A.7 Atkins’ Diet Data from Chapter 6 .. 170
A.8 Diarrhoea Predominant IBS Data from Chapter 8 ... 171
A.9 Constipation Predominant IBS Data from Chapter 8 ... 171
A.10 Mixed IBS Data from Chapter 9 ... 172
A.11 Diverticular Disease Data from Chapter 9 .. 172
A.12 Ulcerative Colitis Data from Chapter 9 ... 173
A.13 Crohn’s Disease Data from Chapter 9 .. 173
A.14 Controls .. 174

APPENDIX B: SHANNON’S INDICES ... 175
B.1 Twins and Unrelated Controls Data from Chapter 5 ... 175
B.2 Intestinal Lavage Volunteers Data from Chapter 6 ... 179
B.3 Western Diet Data from Chapter 7 ... 182
B.4 Atkins’ Diet Data from Chapter 7 ... 183
B.5 Disease Group Patients Data from Chapter 8 .. 184

APPENDIX C: BACTERIAL DENSITIES .. 188
C.1 Carriage Rate Data for 12 Healthy Volunteers in Chapter 4 ... 188
C.2 Short Term Stability Data from Chapter 4 .. 188
C.3 Long Term Stability Data from Chapter 4 .. 189
C.4 Intestinal Lavage Data from Chapter 6 .. 189
C.5 Atkins’ Diet Data from Chapter 7 ... 191
C.6 Disease Groups Data from Chapter 8 ... 192

APPENDIX D: METHANOGEN DENSITY ... 194
D.1 Carriage Rates Data for 12 Volunteers in Chapter 4 ... 194
D.2 Short Term Stability Data for Chapter 4 ... 194
D.3 Long Term Stability Data for Chapter 4 ... 194
D.4 Intestinal Lavage Data for Chapter 6 ... 195
D.5 Western Diet Data for Chapter 7 .. 195
D.6 Atkins’ Diet Data for Chapter 7 ... 195
D.7 Disease Groups Data for Chapter 8 ... 196

APPENDIX E: SULFATE REDUCING BACTERIA DENSITIES ... 197
E.1 Carriage Rates Data for 12 Volunteers in Chapter 4 ... 197
E.2 Short Term Stability Data for Chapter 4 ... 197
E.3 Long Term Stability Data for Chapter 4 ... 197
E.4 Intestinal Lavage Data for Chapter 6 ... 198
E.5 Western Diet Data for Chapter 7 .. 198
E.6 Atkins’ Diet Data for Chapter 7 ... 199
E.7 Disease Groups Data for Chapter 8 ... 199
APPENDIX F: SEQUENCING DATA FOR AKKERMANSIA MUCINIPHILA 200
 F.1 Identity of Bacteria TTGE Bands from Chapter 3 .. 200
 F.2 Bacteria plasmid clone from Chapter 3 ... 200
 F.3 Intestinal Lavage Chapter 6, Volunteer 4 ... 201
 F.4 Intestinal Lavage Chapter 6, Volunteer 7 ... 201
 F.5 Intestinal Lavage Chapter 6, Volunteer 8 ... 202
 F.6 Western Diet Chapter 7, Volunteer 6 .. 203

APPENDIX G: LOW CARBOHYDRATE MEALS... 205

APPENDIX H: PRECISION CALCULATIONS FOR REAL TIME PCR ASSAYS 206

APPENDIX I: PUBLICATIONS ARISING FROM THIS THESIS 208

REFERENCES ... 209
LIST OF FIGURES

Figure 1.1 Gastrointestinal anatomy and intestinal cross section 3
Figure 1.2 Dendritic cells sample luminal antigen directly 19
Figure 1.3 Effect of increasing denaturant on double stranded DNA in TTGE gels 28
Figure 1.4 Increasing fluorescence during real time PCR 30
Figure 3.1 Biochemical pathway for the production of H$_2$S 43
Figure 3.2 Effect of DNA extraction lysis time on TTGE gel profiles 48
Figure 3.3 Effect of DNA template amount of TTGE gel profiles 49
Figure 3.4 Specificity of bacterial 16S rRNA gene primer set 50
Figure 3.5 Identification of TTGE bands by sequencing 51
Figure 3.6 Reproducibility of TTGE gel profiles 52
Figure 3.7 Sensitivity of TTGE 53
Figure 3.8 Different gel staining methods 54
Figure 3.9 Treatment of PCR products to minimise chimeras, heteroduplexes and single stranded DNA in TTGE gel profiles 55
Figure 3.10 Bacterial DNA ladder for TTGE gels 56
Figure 3.11 Specificity of primer sets specific for methanogens and sulfate reducing bacteria 59
Figure 3.12 Comparison of detection methods for non-specific products in real time PCR 60
Figure 3.13 Amplification efficiencies of plasmid and genomic DNA 62
Figure 3.14 Detection limits of real time PCR assays 64
Figure 3.15 Precision of real time PCR assays 66
Figure 4.1 TTGE profiles of unrelated individuals 75
Figure 4.2 Short term intra-individual variability in TTGE profiles 76
Figure 4.3 Long term intra-individual variability in TTGE profiles 77
Figure 5.1 Correlation between children’s age and number of TTGE bands 93
Figure 5.2 Correlation between children’s age and Shannon’s indices 94
Figure 5.3 TTGE gel profiles of identical, fraternal twins, and unrelated pairs 94
Figure 5.4 Box whisker plots of Sorenson’s similarity co-efficients for identical twins, fraternal twins, and unrelated pairs 95
Figure 5.5 Correlation between age and Sorenson’s similarity co-efficients in fraternal twins 98
Figure 6.1 Comparison of bacterial densities in faecal samples and faecal lavage fluid samples 110
Figure 6.2 Photograph of the bowel following intestinal lavage 111
Figure 6.3 TTGE profiles of samples collected in the lavage study 112
Figure 6.4 Sequencing of band changes in post lavage TTGE profiles 114
Figure 6.5 Trend lines of Sorenson’s similarity co-efficients post lavage 115
Figure 6.6 Box whisker plot of Sorenson’s similarity co-efficients determined in the lavage study and the normal temporal stability of the population 116
Figure 6.7 Bacterial density before and after intestinal lavage 118
Figure 6.8 Methanogen densities before and after intestinal lavage 119
Figure 6.9 Sulfate reducing bacteria densities before and after intestinal lavage 120
Figure 7.1 Examples of TTGE profiles following introduction of the Atkins’ diet 131
Figure 7.2 Sequencing of TTGE band changes in Atkins’ diet Volunteer 6 132
Figure 7.3 Box whisker plot of Sorenson’s similarity co-efficients during consumption of normal Western diets and introduction of the Atkins’ diet 133
Figure 7.4 Sorenson similarity co-efficients with respect to time during consumption of normal Western diets and introduction of the Atkins’ diet 134
Figure 7.5 Methanogen densities in Volunteer 2 during consumption of a normal Western diet, and introduction of the Atkins’ diet 136
Figure 7.6 Sulfate reducing bacteria densities during consumption of normal Western diets, and introduction of the Atkins’ diet 137
Figure 8.1 Box whisker plot of Sorenson’s similarity co-efficients determined for inflammatory bowel disease patients, control disease groups, and healthy controls 146

Figure 8.2 Cluster analysis of Crohn’s disease patients’ TTGE profiles with respect to disease localisation 148

Figure 8.3 Cluster analysis of ulcerative colitis patients’ TTGE profiles with respect to disease localisation 149

Figure 8.4 Carriage rates of methanogens and sulfate reducing bacteria amongst different disease groups and healthy controls 152
LIST OF TABLES

Table 1.1 Bacteria commonly isolated from the intestine using culture studies 5

Table 1.2 Uncultivated and novel bacteria isolated from the intestine using molecular methodologies 6

Table 2.1 Bacterial 16S rRNA gene primers for TTGE 34

Table 2.2 Primer sets for real time PCR 38

Table 3.1 Alignment of sulfate reducing bacterial DNA sequences against the primer APSf 57

Table 3.2 Alignment of archaeobacterial DNA sequences against the primer Arch806r 58

Table 4.1 Carriage rates and quantitation of methanogens and sulfate reducing bacteria in healthy New Zealand adults 80

Table 4.2 Short term stability of methanogen populations 82

Table 4.3 Long term stability of methanogen populations 83

Table 4.4 Short term stability of sulfate reducing bacteria populations 83

Table 4.5 Long term stability of sulfate reducing bacterial populations 84

Table 5.1 Similarity, age, diet, gender data for identical twins, fraternal twins, and unrelated control pairs 97

Table 5.2 Sequence data for methanogens and sulfate reducing bacteria isolated from twins 99

Table 5.3 Concordance and discordance for carriage of methanogens and sulfate reducing bacteria 100

Table 6.1 Sorenson’s similarity co-efficients from lavage study TTGE gels 115

Table 6.2 Shannon’s indices for control and post lavage samples 117

Table 7.1 Blood chemistry and weight before and after the Atkins’ diet 130

Table 8.1 Shannon’s indices determined from TTGE profiles of different disease groups 150

Table 8.2 Density of methanogens and sulfate reducing bacteria in disease groups 153