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Abstract

Deciphering the precise mechanisms by which variations at the DNA level impact measurable
characteristics of organisms, coined phenotypes, through the actions of complex molecular
networks is a critical topic in modern biology. Such knowledge has implications spanning
numerous fields, from plant or animal breeding to medicine. To this end, statistical methods
must be leveraged to extract information from molecular measurements of different cellular
scales, allowing us to reconstruct the regulatory networks mediating the impact of genotype
variations on a phenotype of interest.

In this thesis, I investigate the use of causal inference methods, to infer relationships
amongst a set of biological entities from observational data. More specifically, I tackled the
reconstruction of multi-omics molecular networks linking genotype to phenotype. In the
first part, I developed a simulator that generates benchmark gene expression data, i.e. RNA
and protein levels, from synthetic gene regulatory networks. The originality of my work
is that it includes transcriptional and post-transcriptional regulation amongst genes. I used
the developed simulation tool to evaluate and compare the performance of state-of-the-art
causal inference methods in reconstructing causal relationships between the genes. The
evaluation focused on the ability of the methods to reconstruct relationships mediated by
post-transcriptional regulations from observational transcriptomics data. I also evaluated
the methods performance to detect different types of causal relationships between genes
via a catalogue of causal queries, and highlighted the shortcomings associated with using
transcriptomics data alone in reconstructing gene regulatory networks. In the second part,
I developed an analysis framework to shed light on the biological mechanisms underlying
tetraploid potato tuber bruising. I first integrated a GWAS analysis with a differential
expression analysis on transcriptomics data, to uncover genomic regions in which variations
affect the response of tubers to mechanical bruising. I then used a multi-omics integration
tool to jointly analyse genomics, transcriptomics, metabolomics and phenotypic data and to
identify molecular features across the omics datasets involved in tuber bruising, including
some not identified with traditional differential expression analyses. Finally, I made use of
causal inference tools to reconstruct a multi-omics causal network linking these features



to decipher the molecular relationships involved in tuber bruising. I used causal queries
to extract information from the reconstructed causal networks and interpret the uncovered
relationships.
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Introduction

One key challenge of modern biology is to understand the make-up, organisation and functioning of
biological organisms. It was established in 1944 that DNA carries instructions about the development
and functioning of organisms. Researchers have since been naturally interested in deciphering how
this information is processed to give rise to the organisms’ specific phenotypic (i.e. observable)
characteristics, e.g. yield of a crop, colour of a plant’s flowers, or muscle mass in animals. In
particular, the question of what makes two individuals similar, and what drives their difference,
has attracted a lot of attention. We now know that phenotypic traits are controlled by an ensemble
of complex interactions occurring between molecular actors at different scales in cells. However,
our understanding of biological systems is still incomplete, and a lot is yet to be learned about the
specific mechanisms at play. Precisely characterising the relationship between genotype and
phenotype, that is, how the information flows from the former to affect the latter, is a crucial
step in answering diverse biological challenges. For example, understanding how variations at the
genome level drive the development of diseases can help in diagnostics and prediction of disease
outcome, and can lead to the development of cures. Similarly, animal or plant breeding programs
benefit from knowledge of genome-level regulatory mechanisms of traits of interest, such as milk
production in dairy cattle, or yield of a crop. Such mechanistic knowledge helps accelerate the
selection process by selecting individuals with an advantageous genetic make-up for the concerned
traits, rather than relying on phenotypic measurements that take a long time to obtain. A lot of
progress has been made in the case of simple traits for model organisms, but more work is needed for
more complex phenotypes and challenging organisms, in particular polyploids.

Research in this domain has been fuelled by the development of numerous technologies that have
enabled scientists to directly observe the genomic content of cells (e.g. SNP genotyping, shotgun
sequencing), and to measure the levels of expression of different molecular actors such as RNAs
or proteins (for example with RNA-sequencing or liquid chromatography-mass spectrometry). The
massive datasets produced by such technologies must then be interpreted and combed to extract useful
information. This task necessitates the development of statistical and computational tools that can
handle the unique nature of modern biological datasets. Recently, improvements in measurement
capabilities have permitted research to shift from a molecule-centred paradigm, where a few molecular
features were investigated, to a holistic approach: the goal is now to gain a comprehensive view of
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the systems at play. Integrating genome- and cell-wide measurements obtained at different levels
in cells – termed “omics” datasets – is an area under active development. This Systems Biology
approach needs to deal with a number of challenges: the high dimensionality of the datasets, in which
several thousands of molecules are measured, the heterogeneity of the measurements, the presence
of noise and technical biases arising from the experiments, and the existence of complex biological
processes potentially unknown that shape the information contained in the datasets. Consequently,
the computational tools used for analyses must address appropriately these challenges. Additionally,
there is a need to move from association studies, which assess potential involvement of molecules to
a given mechanism, to understanding the causal flow through the different molecular scales that link
genotype and phenotype.

In this thesis, I approach the problem of understanding genotype-phenotype interactions from
two different angles.

The first concerns consolidating existing statistical tools to the unique challenges posed by
biological datasets. Indeed, these tools often rely on a set of assumptions that are often violated
in experimental settings. Moreover, their performance is often evaluated on simulated data that
overlooks the unique complexity of biological datasets. It is therefore crucial to assess their potential
to extract information from experimental datasets. This can be done through the development of
appropriate models that can be used to generate simulated data resembling the biological systems
investigated. Plausible simulated datasets can then be used as benchmarks to objectively assess the
performance of statistical tools developed, provide an (optimistic) estimate of their performance
with real data and offer insight into potential areas of improvement. In this work, I focus on a set of
mechanisms termed post-transcriptional regulation (defined in Chapter 1) which play a major role in
shaping the genotype-phenotype relationship, yet have mostly been overlooked in existing modelling
and simulations. I then focus on assessing the performance of statistical methods that are typically
used to reconstruct causal relationships between molecular features. My goal is to evaluate their
ability to extract information from biological datasets about the precise molecular mechanisms at
play.

In the second part, I apply the theoretical framework just mentioned to an experimental dataset
obtained from potato. Potatoes, along with a number of other crops and plants (such as wheat,
cotton, blueberry, coffee, kiwifruit, rose), present unique challenges for genetic studies, as they are
polyploids, i.e. they carry more than two copies of each chromosome. Polyploidy entails a number of
specific genetic mechanisms that complicate both the acquisition of data and their analysis. Progress
in sequencing capabilities renders the study of polyploid organisms feasible, but adequate analysis
tools are still scarce. In this thesis, I focus on reconstructing the genotype-phenotype interactions in
potato in the context of tuber bruising. Tuber bruising refers to the apparition of a brown area on
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the tuber flesh below the skin as the result of a mechanical impact, which affects the appearance and
flavour of the tubers. It is therefore a trait of economic importance, and the elucidation of underlying
mechanisms can inform breeding programs and lead to the selection of bruising resistant cultivars.
Here, I combine a genotype-phenotype association study with the integration of different omics
datasets in order to reconstruct the causal relationships between different molecular actors involved
in the process of tuber bruising.

0.1 Aims of the thesis

The objective of the thesis are:

• To construct a simulator to generate benchmark datasets for the evaluation of statistical methods
designed to reconstruct molecular regulatory networks. The simulator must take into account
the complexity of biological systems, in particular post-transcriptional regulations of gene
expression, and the impact of genetic variation on the system. The tool must also be applicable
to polyploid organisms.

• To evaluate the performance of causal inference methods in the context of reconstructing gene
regulatory networks. In particular, the comparison should focus on the performance of the
methods in presence of post-transcriptional regulation, and highlight areas of improvement.

• To investigate genotype-phenotype relationships in a polyploid organism. The goal is to
reconstruct the causal flow of information from the genotype through different omics layers
that influences tuber bruising in autotetraploid potatoes. This will be achieved by combining
association studies and reconstruction of multi-omics causal networks to shed light on the
molecular mechanisms underlying tuber bruising in the potato.

0.2 Structure of the thesis

This thesis is organised as follows.

In Chapter 1, I start by presenting the biological processes that link genotype and phenotype. I
then discuss the different methods that have been proposed to elucidate these processes, namely QTL
mapping and association studies, and network inference methods. I introduce the topic of multi-omics
data integration. I then detail the statistical approaches used to infer causality, and their application to
a biological context. Lastly, I review existing tools for generating simulated datasets, and highlight
gaps that must be addressed.

In Chapter 2, I present the development of the R package sismonr, a simulator of gene expression
(including levels of mRNAs and proteins) that accounts for post-transcriptional regulation, genetic
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mutations and the ploidy of the system. The details of the algorithms are presented first. I explain
the generation of synthetic networks of gene expression regulation, and discuss the sampling of
parameter values in order to obtain realistic systems. Then, I detail how a set of in silico individuals
are generated, in order to include the impact of genetic variations between the individuals on the
system. Lastly, I present how the created systems are simulated, in order to obtain simulated mRNA
and protein levels over time for each of the genes in the system, across the in silico individuals.
Secondly, I compare sismonr with existing simulators of gene expression and highlight its novel
features. The published Application Note presenting sismonr is replicated in Appendix C. Appendix
D showcases the use of sismonr through illustrated examples, with the corresponding code in order
to allow the reproduction of these examples. Note that a detailed tutorial showcasing the use of
sismonr has been made available online at https://oliviaab.github.io/sismonr/.

In Chapter 3, I use sismonr to generate a set of benchmark datasets in order to assess the
performance of different causal inference tools in reconstructing gene regulatory networks from
observational data. The simulated datasets span different regulation scenarios, including different
types of transcription and post-transcriptional regulation amongst the genes. I first detail the generation
of the datasets with the help of the New Zealand eScience Infrastructure (NeSI) high-performance
computers, and present the different statistical methods considered for this evaluation. I also explain
the metrics used to assess their performance in reconstructing directed gene regulatory networks.
I then contrast their performance across the different simulation scenarios, and discuss the use of
protein measurements as opposed to mRNA levels only for the detection of post-transcriptional
regulation.

In Chapter 4, I perform an association study on genomics and phenotypic data obtained from a
population of half-sibling autotetraploid potatoes. I investigate the genomic regions associated with
several traits, with a particular focus on tuber bruising. Moreover, I assess the impact of correcting
for population structure in the case of a complex population make-up, and the use of different genetic
models to represent the association of SNPs with a trait of interest. I combine the results of the
association study with insights gained from transcriptomics data. I perform a differential analysis to
assess the transcripts whose levels vary between tubers with low bruising response and tubers with
a high bruising response. I compare them to the markers found associated with tuber bruising. I
also reconstruct a co-expression network and investigate the distribution of differentially expressed
transcripts into highly-coexpressed modules. This analysis provides a first insight into the genetic
contribution of potato tuber bruising. It highlights the genomic regions in which association with the
phenotype is observed both at the level of genetic variations and of gene expression, and thus provides
clues about the molecular mechanisms linking genetic mutations with changes in the response to
bruising.

https://oliviaab.github.io/sismonr/
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In Chapter 5, I integrate genomics, transcriptomics, metabolomics and phenotypic measurements
in order to reconstruct a causal multi-omics network, which depicts molecular mechanisms involved
in tuber bruising. This builds on the work presented in Chapter 4, in which I focused on the genetic
aspect of tuber bruising, by making use of genomics and gene expression datasets. In Chapter 5, I
combine these results with metabolomics measurements to reconstruct biological mechanisms of
tuber bruising across the omics layers. I use a multi-omics integration algorithm to select features
from the genomics, transcriptomics and metabolomics datasets linked with tuber bruising and which
vary together. This common variation is an important feature to detect as it arises from the interactions
of different molecular actors across omics layers involved in common mechanisms. I compare the
selected features to results obtained from single-omics analysis, namely GWAS and differential
analyses. I then apply the causal inference methods presented in Chapter 3 to the set of selected
features, in order to assess the causal relationships between them. The results of the feature selection
step and causal reconstruction are compared to existing knowledge.

Finally in the General Discussion, I summarise and reflect upon the findings of this thesis. I also
share possible directions for future research.





Chapter 1

Literature Review

1.1 Introduction

Understanding how the information encoded in an organism’s DNA is related to its phenotype,
i.e. its observable characteristics, is a crucial aspect of modern biology, with implications in many
fields: from improving plant selection for pathogen or disease resistance, to personalised medicine by
assessing optimal treatments for each patient, to name only two examples. Such knowledge offers
exciting insights into functioning of cells, and allows us to decipher complex molecular mechanisms
involved in a number of processes, from the development of a disease to the make-up of a trait
of economic importance in a cultivated crop. It however requires an understanding of how cells
process the information stored in the DNA. We postulate that this understanding can be obtained
from statistical and computational methods that extract meaningful information from experimental
datasets.

In this review of the literature, I provide first an overview of the biological context of this thesis.
I notably explain the concept of gene expression regulation, the crosstalk between the different
molecular layers within cells, and the impact of genetic variation on these molecular interactions.
Secondly, I summarise two orthogonal statistical approaches to bridging genotype and phenotype: (i)
studies of association between genetic and phenotypic variation, and (ii) reconstruction of regulatory
networks from observational molecular measurements. I stress the importance of the integration of
multi-omics datasets to reconstruct molecular networks spanning different cellular layers. I argue
that the inference of causal relationships among molecular actors is key to understanding the flow of
information within cells, and can be used to bring together these two complementary approaches.
Hence, the mathematical concepts of causal inference are presented in a third section. I also showcase
existing studies that have made use of causal inference in a multi-omics context. Finally, I approach
the topic of gene regulatory network simulation. Such tools are necessary to assess the performance
of methods aiming at reconstructing regulatory networks from experimental observations. I discuss
existing simulators and their shortcomings.
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1.2 A biological primer for biostatisticians: from genotype to pheno-
type

Genes and gene expression

DNA, which stands for deoxyribonucleic acid, is the molecule carrying the genetic instructions essen-
tial to the functioning of cells. It is composed of two antiparallel chains of nucleotides, intertwined to
form a double helix. Each nucleotide is composed of a sugar and a phosphate group, as well as one
of four possible chemical bases: adenine, thymine, guanine and cytosine, abbreviated as A, G, C and
T, respectively. The chemical bases that are opposite on the two chains pair up, in a specific order:
adenine pairs up with thymine, while guanine pairs up with cytosine. Taken together, the sequence of
chemical bases, and the pattern they generate, encode genetic information. This genetic information
is passed between generations from parent to offspring, which is the basis of heredity.

Some portions of the DNA, termed genes, contain instructions for the synthesis of functional
molecules. The complex multi-step process of decoding this information and using it to produce
molecules is coined gene expression. Firstly, the information encoded by a given gene is copied by an
enzyme termed RNA polymerase, to produce molecules of ribonucleic acid or RNAs. This is the
transcription step. A molecule of RNA contains a copy of the sequence of chemical bases encoded in
the gene, with the thymine bases replaced with uracil bases (abbreviated as U). In some cases, the
resulting RNAs are templates used to produce proteins. In this case, we refer to them as messenger
RNAs or mRNAs, and the corresponding genes are coined protein-coding genes. In other cases, the
RNAs are not used as templates, but rather play a functional role in cells. The corresponding genes
are then termed non-coding genes.

For protein-coding genes, the mRNAs synthesised during transcription are then processed and
transported to ribosomes, that are cellular machineries via which mRNAs are translated into proteins.
During this step, called translation, each consecutive triplet of chemical bases (referred to as a
codon) on an mRNA is translated into a specific amino acid. The correspondence between each
possible codon and a specific amino acid is called the genetic code. The resulting chain of amino acid
constitutes the synthesised protein. Once synthesised, the proteins are dispatched into the cells or
cellular compartments to perform a variety of function, according to a small signal contained within
the proteins’ sequence (Rapoport, 2007); from enzymes that catalyse specific metabolic reactions,
to structural proteins that maintain the integrity of the cells or extracellular proteins that serve as
signalling molecules. It must be noted that in addition to protein-coding genes, the genome also
contains non-coding regions that serve other purposes, e.g. regulatory regions, or genes used to
produce RNAs that will not be translated but rather perform diverse regulatory functions, as will be
shown later.
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Figure 1.1: The different steps of the expression process of a protein-coding gene, and its possible
regulatory molecules. The colors represent the different molecule types: yellow: DNA, red: RNA,
green: protein, blue: metabolite. A gene is first transcribed into a mRNA, with the possible involve-
ment of transcription factors, long noncoding RNAs (lncRNAs) or metabolites. The mRNA is then
processed and translated into a protein; again this process can be affected by translation factors,
microRNAs (miRNAs), lncRNAs, or small molecules. The degradation of transcripts is influenced
by noncoding RNAs, RNA-binding proteins or metabolites. Once synthesised, a protein can undergo
post-translational modifications, mediated by other proteins, lncRNAs or other small metabolites.
Possible modifications include conformational change, modification of specific residues such as
phosphorylation, or the formation of protein complexes. Proteins are tagged to degradation by specific
enzymes, termed ubiquitinases.
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Cells respond and adapt to environmental changes or intracellular cues by modulating the ex-
pression of their genes and hence the pool of available proteins and other non-translated RNAs.
Notably, changes in the concentration of available enzymes affects the flux of metabolites (through
metabolic reactions) and thus the concentrations of small compounds in the cell. To permit this
cellular adaptability, the expression of each gene is a highly regulated process at each step (Figure
1.1). This regulation can target the transcription of a gene, to control the amount of produced mRNAs;
its translation, in order to increase or decrease the pool of proteins produced; or even the decay of
the gene’s products (i.e. mRNAs and proteins) to quickly modulate their concentration in the cell.
In addition, post-translational modifications of proteins can ensure the latter attain their functional
state, by means of a physical modification of their sequence (e.g. cleavage of a peptidic chain or
attachment of a specific chemical group), or a change in their conformation (i.e. their 3D structure).
Such modifications can also inactivate the proteins. Additionally, proteins can assemble to form
complexes, which will perform different roles in the cell. Regulation of gene expression can be
performed by specialised proteins, non-coding RNAs, or small molecules termed metabolites. I
detail some important mechanisms of gene expression regulation thereafter. Ultimately, the pool of
gene products and metabolites or other small compounds resulting from these complex regulations
give rise to the phenotypic traits of organisms. Importantly, these mechanisms of gene expression
regulation are not always linear, but often relies on feedback loops to obtain specific patterns of
expression (Alon, 2007).

Regulation of gene expression and molecular networks

Onemajor way for cells to control the expression of their genes is through the regulation of transcription
by regulator proteins termed transcription factors (TFs) (Pai et al., 2015; Zlatanova & Van Holde,
2016). This phenomenon has been extensively studied. Transcription factors control the expression
of their target selectively, by binding to specific motifs in the regulatory regions of the target genes.
Once bound to the regulatory regions, they activate or increase the transcription of the target gene by
recruiting the transcriptional apparatus. Alternatively, their presence can hinder the transcription of
the target. In the former scenario, the TF is referred to as an activator, while in the latter scenario
it is termed a repressor. One TF often controls the expression of numerous targets. Conversely,
several TFs can regulate a same gene, either independently, cooperatively or in competition (Balaji et
al., 2006). We organise our knowledge of such regulatory interactions with graphs, that are termed
transcriptional regulatory networks (Blais & Dynlacht, 2005). In these graphs, nodes represent genes
or gene products, and an edge is drawn from one node to another if there exists some evidence that
the product of the first gene regulates the transcription of the second gene. Reconstructing such
regulatory networks is key to bridging genotype and phenotype, and will be discussed in later sections.
In addition to TFs, other molecules can play a role in regulating genes transcription. In the past
decades, discoveries have hinted at the important role played by non-coding RNAs in regulating gene
expression (see e.g. Castel & Martienssen, 2013; Geisler & Coller, 2013). For example, a class of



1.2. A biological primer for biostatisticians: from genotype to phenotype 11

small non-coding RNAs, called microRNAs or miRNAs, have been found to silence the transcription
of their target (Catalanotto et al., 2016). Long non-coding RNAs (lncRNAs) are also thought to play
a role in transcription regulation via interactions with the transcriptional machinery (Mercer et al.,
2009).

Regulation also occurs at later stages of gene expression. RNA-binding proteins (RBPs) and
non-coding RNAs (specifically miRNAs) can facilitate or prevent the translation of mRNAs, by
binding to specific regions on the mRNAs (Gebauer & Hentze, 2004; Merchante et al., 2017). RBPs
act by interacting with the translational apparatus, while miRNAs recruit molecular complexes to
either silence the mRNAs translation or target them for degradation. Similar to the mode of action of
some miRNAs, regulatory proteins can also trigger the degradation of target mRNAs by recruiting
decay factors, which is yet an other indirect way to control the concentration of proteins available
(Wang et al., 2002). Likewise, proteins can also be tagged for degradation by regulators (Lecker,
2006; Varshavsky, 2005). This is usually done by enzymes that add a specific chemical group to the
targeted protein, which is then recognised and processed by the degradation machinery of the cell.
Lastly, synthesised proteins can be modified in order to modulate their activity (Cooper, 2000; Walsh
et al., 2005).

Such post-translational modifications provide the very building blocks of many signalling cascades
that allow cells to react to the detection of extracellular compounds, for example (Hunter, 1995;
Lizcano & Alessi, 2002). In a signalling cascade, the detection of a specific cue by a membrane
protein or other detector triggers the modification of a first signalling protein, which in turn targets
a second signalling protein for post-translational modification, et cetera. This permits to relay the
signal from the cellular membrane to the location where a response is needed, e.g. in the nucleus for
example to trigger changes in the expression of relevant genes. In some cases, a post-translational
modification is necessary to allow newly synthesised proteins to become fully functional, e.g. through
cleavage of a peptide bond to reveal the protein functional site. On the contrary, the modification
can prevent the protein to perform its function. Post-translational modifications notably play an
important role in modulating the activity of transcription factors, which provides an additional layer
of regulation for the target genes expression. It is frequent that the endpoint of signalling cascades
are TFs, and an activation of the cascade ultimately triggers a change in their activity. Taken together,
these different pathways to gene expression regulation offer distinct dynamics by which the cell can
respond efficiently and precisely to stimuli.

The impact of genetic variation

Together with environmental factors, genetic variation between individuals, i.e. small differences in
the information encoded in their respective genome, is a major cause of the difference between their
phenotype (Albert & Kruglyak, 2015). Studying how genetic variations affect certain traits of interest
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allows us to gain a better understanding of how the information encoded in the genome is processed
by cells to give rise to these traits. There are a number of ways by which a change in the genome
can affect a given phenotype, and much is yet to be discovered on this topic. For example, changes
in the regulatory sequences of a gene can affect the binding of regulators or of the transcriptional
machinery, and thus impact the level of expression of the gene. On the other hand, variations in the
coding region of a gene can affect the viability or properties of the resulting proteins. If the protein
is a transcription factor for example, the change can impact its affinity for its target binding sites,
thus affecting the strength of the regulation effected by the proteins. All these changes occurring at
the genomic level are propagated through the complex networks of gene expression regulation, with
consequences for higher cellular layers such as proteins or metabolites, and ultimately phenotypes.
Therefore, understanding the role played by different regions of the genome, as well as the networks
of regulation occurring between the different molecular layers of RNAs, proteins and metabolites, is
the key to reconstructing the flow of information from genotype to phenotype. This is the very topic
of this thesis. In particular, I focus on a type of organisms with a distinctive genetic organisation,
polyploids.

Genetics of polyploids

Polyploid organisms possess multiple (more than two) copies of each chromosome in their nucleus.
This stands in contrast with bacteria that are haploids (one copy) or humans that are diploids (two
copies). Polyploidy is common in plants, and also present in some fishes and amphibians (Woodhouse
et al., 2009). In particular, a number of economically important crops exhibit diverse degrees of
polyploidy, such as wheat, oat, cotton, potato, alfalfa or coffee. Polyploidy arises in evolution when an
extraordinary genomic event leads to the formation of gametes with more than the required number of
chromosomes. It confers some advantages to the concerned organisms. One example is a potentially
higher level of heterozygosity (genetic variability) than their diploid counterpart (Osborn et al., 2003),
as for each gene a polyploid can carry potentially more than two different versions, termed alleles.
This can yield a greater potential for adaptation to changing environment (Z. J. Chen, 2007). In
addition, the presence of several copies of a gene provides a measure of redundancy, thus protecting
against the effects of deleterious mutations (i.e. having a negative impact on the organism). In addition,
this redundancy provides the means for gene function diversification through evolution, as additional
copies of a gene can be changed without affecting the organism (Woodhouse et al., 2009). However,
because of their higher genetic complexity, polyploids have been less studied than traditional haploid
or diploid model organisms. However, advances in genotyping technology as well bioinformatics and
statistical tools are enabling researchers to study these complex organisms.

Polyploids can arise from the hybridisation of two different species; they are then termed allopoly-
ploids (Renny-Byfield & Wendel, 2014). In such case, the chromosomes inherited from the two
species – termed homoeologous – form two distinct groups, with chromosomes inherited from the
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same species being more similar between them (homologous chromosomes) than to the chromosomes
inherited from the other species. Therefore, during meiosis, the more similar chromosomes will
preferentially pair. This entails a pattern of allele inheritance – termed disomic inheritance – similar
to what is observed in diploid species, as recombination (i.e. the exchange of genetic material between
the chromosomes) occurs exclusively among these pairs. Conversely, polyploidy can emerge from a
whole genome duplication event. The resulting organisms are named autopolyploids (Parisod et al.,
2010). In this case, the different copies of a same chromosome are all homologous, i.e. all equally
similar. Therefore, each possible homologue pair has the same probability of pairing during meiosis.
This increases the number of possible allele combinations that will be transmitted to the gametes. In
addition, multivalents can form during meiosis, meaning that more than two chromosomes simulta-
neously assemble. This can lead to a phenomenon termed double reduction (Bourke et al., 2015),
in which both chromatids (arms of a chromosome) from the same chromosome are passed on to
the gamete. Again, this phenomenon generates unique patterns of allele inheritance – referred to as
polysomic inheritance – and must be accounted for during genomic data analysis.

1.3 Statistical tools to bridge genotype and phenotype

As mentioned in the previous section, precisely characterising the flow of information from genotype
to phenotype implies reconstructing networks of molecular interactions and assessing through which
parts of these networks genetic variations affect phenotypic traits. Experimentally, it would be
extremely time consuming and expensive to test one by one all the interactions between gene products,
or to conduct experiments to investigate the effect of a given genetic perturbation on a resulting
phenotype of interest. A more effective approach is to make use of observational data. In this section,
I present two main statistical methods to bridge genotype and phenotype: (i) QTL mapping and
association studies, and (ii) molecular regulatory networks inference.

1.3.1 Linking genotype to phenotype with QTL mapping and association studies

Understanding which genes or genomic regions control phenotypic traits of interest would pave the
way for the quest of precisely describing the genetic mechanisms at play. Traits can be binary, typically
the presence/absence of a certain characteristic or of a disease. Traits can also be quantitative, as for
example the fat percentage of milk in dairy cattle, or the yield of a certain crop. For this review, I
focus on the latter; note that from a statistical perspective the difference between the two situations
(i.e. binary vs quantitative trait) can be compared to going from a logistic regression to a traditional
linear model. To assess which genomic regions impact a given phenotype, one approach is to capitalise
on the genetic variability segregating in populations of interest, and use it to assess how genetic
variation affects the investigated traits. This is complicated because a lot of phenotypic traits are
controlled by multiple possibly interacting causal loci (i.e. genomic positions or regions) in the
genome, each with a quantitative impact of varying magnitude on the trait. Two complementary
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methods have been explored: QTL mapping and association studies.

QTL mapping

Historically, researchers made use of carefully designed mapping populations. These mapping
populations, typically crosses between inbred lines, maximise the extent of linkage disequilibrium in
the genome, i.e. the non-random association of alleles at different loci, mostly due to their physical
proximity in the genome. In this case, it is possible to use the genotype of measurable molecular
markers at known positions in the genome as proxy for the genotype of unobserved truly causal
neighbouring loci (Collard et al., 2005). One common type of markers used are single nucleotide
polymorphisms or SNPs, i.e. mutations affecting a single nucleotide in a DNA sequence, that can
be found in a non-negligible fraction (i.e. more than one percent) of the population of interest. By
comparing the allelic frequency of the molecular markers to expected patterns of allele segregation,
it is possible to reconstruct a linkage map that gives the relative position and distance between the
measured markers. Linkage maps differ from physical maps in the information they provide. While
physical maps inform about the absolute genetic distance in base-pairs between genes for example,
a linkage map informs about the recombination frequency between the genes, which is related to
but not entirely defined by absolute genetic distance. Then, a statistical model is used to assess the
difference in the mean phenotypic values recorded for groups of individuals with different genotypes
at a given marker (Jansen, 2008). This association is generally tested with a t-test, an ANOVA model,
a linear regression or a likelihood ratio test (Boopathi, 2013). More advanced models, which make
use of multiple markers simultaneously, have also been proposed (Boopathi, 2013). They allow to
handle missing data by using neighbouring markers, and to account for the effects of other potential
QTLs in the regression.

One major drawback of QTL mapping is the large uncertainty in the position of the inferred
QTLs, due to the high linkage between neighbouring markers. Detected QTL regions can span
large genomic regions and contain many potential candidate causal genes (Mackay & Powell, 2007).
Another problem is the lack of generalisation of the results as only a small fraction of all possible
alleles are observed in a given mapping population (Bazakos et al., 2017). Lastly, in some cases,
it is not possible to construct mapping populations to perform QTL mapping. This is for example
impossible when studying human populations (for ethical reasons) or cattle (process prohibitively
long and potentially not viable). Instead, the statistical models have been adjusted to accommodate
the use of outbred populations for which a pedigree is available (Höschele, 2008). The pedigree
information is used to estimate the patterns of allelic inheritance and recombination rates between
measured individuals. The use of outbred populations also alleviates to some extent the problem of
generalisation of the results, since more alleles are considered.
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Genome-wide association studies

QTL mapping methods leverage recent recombination events in closely related individuals obtained
from designed crosses or families. Complementarily, association mapping relies on ancient recombi-
nation history over a large number of generations observed across unrelated individuals selected from
a natural population of interest (Xu et al., 2017). In this case, the relationship between measured
individuals is generally unknown. Due to the high number of recombination events throughout the
population history, the extent of linkage disequilibrium is greatly reduced. This permits a more
precise mapping of QTLs, as we can assume them linked to very closely located markers only. This
advantage over QTL mapping is balanced by a loss of power, as more markers are required in order
to detect QTLs, and QTLs with small effects might be missed. Association studies that test for the
association of markers measured throughout the entire genome with a trait of interest are termed
genome-wide association studies or GWAS (Bush & Moore, 2012).

GWAS studies suffer from a number of drawbacks (Tam et al., 2019). A major one is the impact
of population structure amongst the individuals (Bazakos et al., 2017). This refers to relatedness
arising from common ancestry of the individuals to different subpopulations within the population
studied. Population structure may cause spurious associations between the phenotype and unrelated
loci. This could be due to a difference in allelic frequency of the variants between, coupled with a
difference in trait distribution between the subpopulations. Therefore population structure must be
accounted for in GWAS models. This is done by extracting information about population structure
from the genotypic data itself and by including it into the statistical model as a covariate. Population
structure can be estimated using dimension reduction techniques such as PCA or DAPC (Jombart et
al., 2010), that estimate the major axes of variation amongst the samples. Specialised tools such as the
popular algorithm STRUCTURE (Pritchard et al., 2000) have been developed in order to assess the
membership of each individual to different subpopulations, based on their genotype. STRUCTURE
relies on a Bayesian framework with different models of individual’s ancestry.

In consequence, a typical GWAS model consists of a general linear model as follows (see
e.g. Aranzana et al., 2005):

y = Xβ + Sτ + Qv + ε (1.1)

In this model, y is a n× 1 vector of phenotypic values measured for n individuals. The effect of p
covariates (such as environmental conditions) on the phenotype are modelled as fixed effects through
the p× 1 vector β, with X the n× p covariance incidence matrix, which indicates the value of the
different covariates for each observation. The effect of population structure is modelled separately
with q × 1 vector of fixed effects v, where the n× q subpopulation incidence matrix Q indicates the
membership of the individuals to each of the q subpopulations. The s× 1 vector of fixed effects τ
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models the effect of the SNPs on the phenotype. The number s of parameters depends on the model
chosen to represent the effect of the SNPs (e.g. additive, dominant, etc). The n× s incidence matrix
S maps the individuals to their genotype for the SNPs. Finally, the n × 1 vector ε is the vector of
residual effects, with V ar(ε) = Iσ2r where σ2r corresponds to the residual variance. This type of
model is sometimes referred to as the Q model (Rosyara et al., 2016). The significance of the SNP
effects can be assessed with a F-test or likelihood ratio test. It must be noted however that due to the
large number of SNPs assessed, the resulting p-values must be corrected for multiple testing, which
can significantly reduce the recall of the method.

A number of genetic models can be employed to model the effect of a given genomic variant on
the phenotype (Bush & Moore, 2012). Typical GWAS studies focus on bi-allelic markers, i.e. loci for
which two alleles only exist. We can denote these two alleles as A and B. For a diploid organism
(i.e. with two copies of each chromosome), possible genotypes for this marker are: AA,AB and BB.
One can choose to model the impact of each allele on the phenotype (allelic model), or to model the
impact of each genotype (genotypic model). In the first case, the fixed effect vector will thus include
a parameter for the effect of A and one for the effect of B. On the other hand, a genotypic model
considers the effect of each of the three possible genotypes. In such case, different scenarios can be
considered. An additive model assumes that the effect of the SNP on the phenotype is linear with
the number of alleles say A in the genotype. In a dominant model, the presence of one copy of A is
enough to impact the phenotype; thus, the genotypes AB and AA have the same impact on the trait.
On the contrary, for a recessive model, two copies of A are needed to impact the trait, thus AB and
BB are equivalent. Regardless of the genetic model used, the convention is to represent genotypic
data for bi-allelic markers by their dosage, i.e. the number of alternate alleles present. In our example,
if we consider B as the alternate allele, then the dosage of genotypes AA,AB and BB is 0, 1 and 2
respectively.

Yu et al. (2006) showed that, depending on the population studied, correcting for population
structure only was not sufficient. Indeed, the matrix Q reflects relationships between individuals
arising from distant population effects. But in some cases, individuals are also related via more
subtle and recent familial trends that are not reflected in the population structure. When ignored, this
additional relatedness leads to bias in the GWAS results. Therefore, they proposed to account for these
effects by integrating a random effect in the GWAS model. The relatedness between individuals due
to recent history is captured in the kinship matrix denoted K. A number of methods for estimating
K has been proposed (Hardy & Vekemans, 2002; Oliehoek et al., 2006; VanRaden, 2008; Yu et al.,
2006; Zhao et al., 2007). Notably, it has been argued that estimating K from genotypic data directly
was better than relying on pedigree information, as the latter can be subject of errors or missing data
(Zhang et al., 2010). The new mixed linear model, commonly named Q + K model, can be written as
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follows:

y = Xβ + Sτ + Qv + Zu + ε (1.2)

The terms y, β, τ, v, X, S, Q, ε are identical to those in equation (1.1). In addition, the n × 1

vector of random effects u is referred to as the vector of polygenic effects, with n × n incidence
matrix Z (with Z = I in the absence of replicates), and Var(u) = σ2gK. σ2 corresponds to the genetic
variance. Several methods and approximations have been proposed to estimate the model parameters
(Kang et al., 2008; Listgarten et al., 2012; Yu et al., 2006; Zhang et al., 2010; Zhou & Stephens,
2012).

Molecular QTLs

As the measurements of mRNA, protein or metabolites levels have become routine, the concepts of
QTL mapping and association study have been extended to exploring the genetic variations associated
with these molecular phenotypes. Markers found associated with the expression of a given gene are
referred to as eQTLs (for expression QTLs) (Veyrieras et al., 2008). Similarly, pQTLs denote genetic
variants associated with protein levels; mQTLs refers to variants associated with metabolites levels,
and meQTLs to variants associated with methylation (modifications of the DNA via addition of a
methyl group, used to repress gene expression on the long term). This however poses the challenge of
working with hundreds or thousands of phenotypes, which much be accounted for when computing
p-values to assess the statistical significance of such associations. Despite this, eQTLs offer an
interesting insight into the mechanisms by which genetic variation affects the expression of genes.
Indeed, they can be classified into cis-eQTLs, which are variants located near their associated gene,
and trans-eQTLs, which are located away from the corresponding gene (Albert & Kruglyak, 2015;
Gilad et al., 2008). Cis-eQTLs are assumed to impact the regulatory regions directly around the gene.
On the other hand, trans-eQTLs affect the expression of the corresponding gene through changes
that impact a regulator of the gene. For example, genetic variation that affects the expression of a
transcription factor also impacts indirectly the expression of its targets. However, eQTL studies often
detect more cis-eQTLs than trans-eQTLs as the impact of the latter category on the concerned gene
expression is smaller and thus harder to detect (Pai et al., 2015).

Challenges for polyploids

Initial efforts in bridging genotype and phenotype focused on diploid model organisms, whereas
tools specialised to handle polyploid data have only started to be developed recently. This gap in
development arises from the higher genetic complexity of polyploid organisms that complicate each
step of any genetic analysis (Li et al., 2012). One example is the complications in reconstructing
linkage maps from dosage data, due to additional molecular mechanisms (such as double reduction)
that must be taken into account. Diploid tools can be used as an approximation by focusing on specific



18 Chapter 1. Literature Review

markers whose patterns of inheritance are similar to those of diploids, but this approach does not
takes advantage of the full genotypic information. Similarly, genotypic data from allopolyploids can
be simplified in order to use diploid tools with reasonable results, as their patterns of inheritance are
similar. On the other hand, autopolyploids require dedicated algorithms to account for their polysomic
inheritance.

In addition, one of the reasons preventing the use of diploid tools for analysis of polyploid data
lies in the way genotypic data is encoded. In particular, considering a bi-allelic marker with alleles
A and B, the possible genotypes observed for a tetraploid individual (i.e. carrying four copies of
each chromosome) are AAAA (nulliplex), AAAB (simplex), AABB (duplex), ABBB (triplex)
and BBBB (quadruplex). The corresponding dosages are 0, 1, 2, 3 and 4, respectively. Such data is
not compatible with the genetic models used for markers with dosage between 0 and 2, in terms of
data encoding as well as genetic model used: more scenarios (other than additive or dominant and
recessive models) are possible. Therefore GWAS models must be extended for polyploid dosage.

In a recent review, Bourke et al. (2018) listed tools available to perform genomics analysis, and in
particular QTL mapping and GWAS, for polyploid organisms. They pointed out the relatively small
pool of software currently available, but highlight the increased developments in the past decade.
To the best of my knowledge, there are currently only two pieces of software that allow to perform
GWAS in a polyploid setting. One is the R package GWASpoly (Rosyara et al., 2016), which offers
an implementation of the linear mixed model presented in Equation (1.2). It handles the computation
of the K matrix, and offers five different genetic models that propose alternate explanations of the
impact of SNPs on the quantitative trait. The other available tool is the web application SHEsisPlus
(Shen et al., 2016). It is to note however that no details of the statistical model(s) used are provided. In
particular, there is no mention of whether the model accounts for population structure and individual
relatedness.

1.3.2 Reconstructing regulatory networks from observational data

In parallel to association studies, the question of deciphering molecular regulatory interactions
mediating the association between genotype and phenotype has been actively pursued. By measuring
the concentration or levels of molecular players within cells, we can gain an understanding of how
they affect each other. It is possible to design experiments that will allow to answer this question
for specific conditions, e.g. time-course measurements following a controlled perturbation (Sima et
al., 2009), or molecular intervention targeting a specific molecule (e.g. gene knock-out), in order to
observe the effects of the perturbation on other molecules (Gross et al., 2019). However, observational
data, in which the concentration of molecular features are measured across different individuals, also
contains information that can be used to reconstruct regulatory networks. This approach capitalises
on the genetic variations between individuals that amounts to small random perturbations (Rockman,
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2008), allowing us to assess how the different molecular concentrations co-vary in response to these
small perturbations. A number of statistical tools have been consequently developed to extract
molecular networks from observational data. Typically, they have been dedicated to the analysis of
transcriptomics data, i.e. the measurement of genome-wide RNA levels, in order to reconstruct gene
regulatory networks (GRNs).

Network inference

A number of reviews of existing network inference methods are available, e.g. Li et al. (2015), Y.
X. R. Wang & Huang (2014), Yan et al. (2017) or Van den Broeck et al. (2020). I focus here
on tools developed to infer regulatory networks from transcriptomics data. However such tools
could also be applied to other datasets measuring the levels of proteins or metabolites as well, to
reconstruct protein or metabolites interaction network. One of the simplest approach to network
inference relies on assessing the correlation between the genes’ expression profiles. This approach is
used notably by the popular algorithm WGCNA (Langfelder & Horvath, 2008). Correlation methods
reconstruct association networks, in which an edge between two genes can arise from a regulator-target
relationship, co-regulation, or membership to a similar biological process or pathway. More complex
network inference methods have thus been implemented to uncover regulatory relationships amongst
the genes. For example, the algorithmARACNe (Margolin et al., 2006) is based onmutual information
and the data processing inequality concept to remove edges arising from indirect interactions in the
reconstructed networks. The concept of mutual information is also used by other network inference
methods such as RELNET (Butte & Kohane, 2000), CLR (Faith et al., 2007) or MRNET (Meyer et
al., 2007). Another popular method, GENIE3 (Huynh-Thu et al., 2010), decomposes the network
inference problem into individual regression problems for each gene, that aim at recovering the set of
regulators of the genes. It makes use of random forests to obtain a ranking of regulatory regulations
between the genes. Other approaches combine linear regression (e.g. the TIGRESS algorithm, which
requires information about which genes act as transcription factors – Haury et al., 2012) or differential
equation modelling (Bonneau et al., 2006) and feature selection to reconstruct regulatory networks.
Such methods employ a regularisation scheme to ensure the sparsity of the reconstructed graphs,
such as LASSO (Tibshirani, 1996) or ridge regression (Hoerl & Kennard, 1970).

Interestingly, it has been shown that no one method performs better than the others in reconstruct-
ing GRNs across different biological scenarios, but combining the results from different methods
provide better results (De Smet & Marchal, 2010; Marbach et al., 2012). However, gene regulatory
networks reconstructed with these methods still lack information about the directionality of the
regulation. To overcome this, Bayesian networks have been employed to reconstruct directed GRNs
from transcriptomics data (Friedman et al., 2000). In a Bayesian setting, genes or gene products are
represented as nodes in a directed acyclic graph (DAG). They are considered as random variables
whose conditional distribution depends only on their parent nodes. The topology of the graph is
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learned by assessing the fit of different candidate graphs using a scoring criterion, which quantifies
the fit of the candidate model to the data. The resulting graphs can provide information about causal
relationships between pairs of genes. It is to be noted however that not all Bayesian networks can be
interpreted as causal graphs.

Approaches to reconstructing biological networks, i.e. by focusing on inferring causal relationships
rather than statistical associations in a classical sense, is the object of this thesis. Tools developed to
learn causal relationships amongst a set of variables given observational data are detailed in the next
section. However, the use of causal inference methodology in reconstructing molecular networks
is not widespread. One of the reason is the dimension of biological datasets, which can exceed
hundred of thousands of variables, rendering the task of causal structure learning very difficult. In
addition, causal structure learning relies on a set of strong assumptions, which are often violated in
biological systems, due to the presence of feedback loops, unobserved environmental confounders,
etc. Nevertheless, adapting and applying these tools to biological datasets is a necessary step in order
to gain a better understanding of biological systems. Indeed, information about causal relationships
will help us decipher the flow of information from genotype to phenotype. Moreover, such knowledge
can be used to predict the effect of interventions on specific targets (Shpitser & Pearl, 2006), and
can help build precise models of biological systems. This could be of immense help to the plant and
animal breeding community in answering questions such as the genes on which to focus the selection
process in order to optimise a certain trait of interest, or to the biomedical community in the context
of diseases to develop targets for a new vaccine or drug.

Multi-omics data integration

Recently, improvements in technology made possible the cell-wide monitoring of different omics
layers, e.g. the protein content (proteomics) or metabolite levels (metabolomics) of cells. Therefore,
focus has shifted from analysing a single omics layer to integrating different omics datasets. Indeed,
molecular networks reconstructed from a single omics layer, typically transcriptomics, only provide
a partial view of the biological systems at play. For example, by using RNA levels as a proxy for
gene expression, we ignore all the biological complexity arising from post-transcriptional regulation.
Therefore, statistical tools are needed to integrate measurements of different omics molecules. Here,
I focus on the case in which several omics measurements are obtained for a same set of individuals
or samples – which cannot always be done (Hasin et al., 2017). This is akin to measuring different
predictors in the same set of observations.

A number of statistical tools have been developed to integrate omics datasets and extract infor-
mation that would otherwise be missed in single-omics analysis. Advances in this topic have been
extensively reviewed (Eicher et al., 2020; Hawe et al., 2019; Meng, Zeleznik, et al., 2016; Misra et al.,
2019; Zeng & Lumley, 2018), with some reviews focusing on specific fields such as human diseases
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(Subramanian et al., 2020; Yan et al., 2017) or plant biology (Jamil et al., 2020), or on the integration
of specific data types (Cavill et al., 2016). Existing algorithms make use of diverse statistical concepts
(see Zeng & Lumley, 2018; Subramanian et al., 2020 for statistical-oriented reviews) and serve
different objectives (Eicher et al., 2020; Subramanian et al., 2020). For example, several tools aim
at clustering observations (samples, patients), e.g. similarity network fusion (SNF – B. Wang et
al., 2014), iCluster (Shen et al., 2009), moCluster (Meng, Helm, et al., 2016), and multiple dataset
integration (MDI – Kirk et al., 2012). This is especially useful for the analysis of disease-related
data (e.g. cancer), in order to detect different disease subtypes or patients with similar outcomes.
Other tools focus on clustering multi-omics features, such as LemonTree (Bonnet et al., 2015) or
methods based on self-organised maps (SOM – e.g. Fatima & Rueda, 2020). In this case, the focus is
on detecting groups of molecular features across the datasets involved in similar biological processes.
A number of methods have been developed to preform dimension reduction, like nonnegative matrix
factorisation (NMF – Yang &Michailidis, 2015), multiple factor analysis (MFA – Tayrac et al., 2009),
multi-block PCA (Hassani et al., 2013), multiple co-inertia analysis (MCIA – Meng et al., 2014);
and/or feature selection, e.g. DIABLO (Singh et al., 2016), sparse generalised canonical correlation
analysis (sGCCA – Cai & Huo, 2020), multi-omics factor analysis (MOFA – Argelaguet et al., 2018),
orthogonal projection to latent structure discriminant analysis (OPLS-DA – Bylesjö et al., 2006) or
OnPLS (Löfstedt & Trygg, 2011). A number of these tools have very recently been evaluated on
simulated and cancer datasets (Cantini et al., 2021). In the field of human diseases, methods have
been developed for outcome prediction (Kim et al., 2015; Yang et al., 2020). Note that tools often
don’t fall exactly into one category; rather, they can serve more than one purpose, such as dimension
reduction and clustering or feature selection and outcome prediction.

In the context of genotype-phenotype interactions, a few tools have been offered to reconstruct
(undirected) molecular networks that link several omics layers. For example, Acharjee et al. (2016)
used a combination of Random Forest regression and molecular QTL to select features from tran-
scriptomics, proteomics and metabolomics datasets associated with a number of tuber quality traits
in potato. They then used regularised partial correlations to reconstruct for each measured trait an
undirected Gaussian graphical model including transcripts, proteins, metabolites and the phenotype of
interest. Similarly, in the context of human data, Zierer et al. (2016) reconstructed a mixed graphical
model from epigenomics, transcriptomics, glycomics, metabolomics and phenotypic data using the
Graphical Random Forest algorithm (Fellinghauer et al., 2013) in the context of age-associated
disease comorbidities. Recently, Shi et al. (2019) offered a new tool called sparse multiple canonical
correlation network analysis (SmCCNet). SmCCNet uses the concept of canonical correlation analysis
with a sparsity constraint to compute vectors of feature weights for each omics dataset that maximise
the correlation between the datasets and the correlation between each dataset and the phenotype.
Next, based on the sparse canonical weights attributed to each of the omics features, a similarity
matrix is computed and a hierarchical clustering procedure is used to reconstruct a set of association
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networks between the selected features. While such networks provide invaluable information about
the relationships between the different omics, they do not allow to assess the flow of causality between
them.

In this thesis, I am interested in applying the concept of causal inference to reconstructing
molecular regulatory networks, both within a single omics data type, or across several heterogeneous
datasets. Therefore, in the next section, I present the concept of causal inference from a statistical
perspective, and discuss its applications in the realm of biological datasets.

1.4 Causal inference

The concept of causality has been extensively discussed in the literature. Typical experiments to
infer the causality between two variables involve interventions on the system to study the impact of
changing one variable on the others; however, this is not always possible, and relying on observational
data might be the only option in some cases (Glymour et al., 2019), due to ethics concerns, prohibitive
cost of experiments, or destructive sampling methods for example. Therefore, reconstructing the
causal structure amongst a set of variables for which we only possess observational data has generated
a lot of interest. In the following section, I start by reviewing the mathematical notations necessary
for handling the concept of causal systems and their representation in the form of graphs. I then
expand on the assumptions required to be able to infer causal structures from observational data.
This is followed by a review of existing algorithms that aim at uncovering the causal relationships
between a set of observed data. Finally, I discuss the application of causal inference in the context of
biological systems.

1.4.1 Graph terminology

Let G be a graph with G = (V,E), where V is a set of p variables and E is a set of edges {(i, j) |
i, j ∈ V }. A graph is directed if it contains only directed edges in the form i → j (Figure 1.2 a)),
and undirected if it contains only undirected edges in the form i − j. A partially directed graph
can contain both directed and undirected edges. The skeleton of a graph G is the undirected graph
obtained by rendering all edges in G undirected (Figure 1.2 b)). We say that two variables i and j
are adjacent in G if there exists an edge between them. The cardinality of the set AdjG(i) of nodes
adjacent to i in G corresponds to the degree of the node. If the edge (i, j) is undirected, i and j are
termed neighbours. If the edge is directed and in the form j → i, j is a called a parent of i, and i is a
child of j. The set of parents of i in the graph G is denoted as PaG(i).

A triplet of variables i, j, k for which the pairs i, j and j, k are adjacent but i and k are not
adjacent is called an unshielded triple. If the edges are oriented as i→ j ← k, the triplet is called a
v-structure (Figure 1.2 c)). The node j in the v-structure is referred to as a collider. A path π in G
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Figure 1.2: a) A Directed Acyclic Graph (DAG) with 5 nodes and b) corresponding skeleton (all
edges have been rendered undirected. c) The nodes 1, 2 and 5 and the edges connecting them (in red)
form a v-structure.

from i to j is a sequence of nodes (i, ..., j) successively adjacent. π is a directed path if all edges are
oriented toward j. If there exists a directed path π from i to j then j is a descendant of i, and i is
an ancestor of j. By convention, a variable i is considered as a descendant of itself, and therefore
also an ancestor of itself. A path from i to i including at least one other variable is called a cycle. A
directed path from i to i with at least one other node is a directed cycle. A directed graph without any
cycles is termed a directed acyclic graph or DAG.

1.4.2 Causality – mathematical concepts

Let X = (X1, ..., Xp) be a set of variables (discrete or continuous), and P (X) the joint distribution
over this set of variables. We say that two variables Xi and Xj are conditionally independent given a
third variable Xk if P (Xi | Xj , Xk) = P (Xi | Xk), and we note Xi ⊥⊥ Xj | Xk. We can represent
the causal relationships among the variables with a causal graph G = (V,E), where V is a set of
vertices or nodes and E a set of edges. In the graph, each node corresponds to a variable (node i
corresponding to variable Xi) and an edge from node i to node j indicates that i has a direct causal
effect on j, i.e. any intervention on the value of Xi impacts the distribution of values of Xj , in a
process that is not mediated by another variable. Note that in a causal graph, any causal effect of a
variable Xi on another variable Xj mediated by other variables is termed an indirect causal effect. If
variable Xi causally affects Xj both directly and indirectly, the total causal effect corresponds to the
sum of the direct and indirect causal effects. A causal graph together with the conditional probability
distribution of each node is termed a causal model (Lagnado & Sloman, 2002).

Conditional independencies and d-separation

I focus here on a specific family of graphs that are the directed acyclic graphs or DAGs. This particular
class of graphs is chosen for some of their interesting properties. Indeed, the joint distribution of
a set of variables corresponding to nodes in a DAG G can be factorised using the rule of product
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decomposition:

P (X1, ..., Xp) =
∏
i

P
(
Xi | XPaG(i)

)
(1.3)

where PaG(i) are the parents of node i in the DAG G. This corresponds to the causal (Spirtes et al.,
2001) or local (Drton & Maathuis, 2017) Markov condition, stating that in the graph each node is
independent of its non-descendants conditionally on its parent nodes. The conditional dependence
and (in)dependence relationships between the variables can be read from the graph using the concept
of d-separation. Let π be a path between a pair of variables i, j, and S be a subset of variables not
containing i and j. We say that S blocks the path π if:

• π contains a non-collider that is in S. That is, there is a chain l→ m→ k or l← m→ k with
m ∈ S, or

• π contains a collider that has no descendant in S. That is, π contains a v-structure l→ m← k

such that no descendant ofm (includingm) is in S.

If S blocks every path from i to j, then i and j are d-separated by S, and we write i ⊥G j | S (see
Figure 1.3 for an example). This definition can be extended to sets of nodes: the sets A and B are
d-separated by S if S blocks every path from a node in A to a node in B. We say that X satisfies the
global Markov property with respect to the DAG G if all d-separation occurrences in the graph imply
conditional independencies in the distribution P :

A ⊥G B | C ⇒ XA ⊥⊥ XB | XC (1.4)

with XU = (Xu, u ∈ U). The global Markov property together with its reverse implication form the
faithfulness property (Drton & Maathuis, 2017). It states that all conditional independencies in the

Figure 1.3: Examples of d-separation. The two yellow nodes with bold circles are d-separated by
the set of blue nodes with dashed circles. a) Nodes 3 and 4 are d-separated by node 2, as node 2 is a
non-collider in the path between 3 and 4. b) Nodes 3 and 4 d-separate nodes 2 and 5, as node 1 forms
a v-structure with 2 and 5 and node 1 is not a descendant of nodes 3 and 4.
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distribution P are exactly the same as those implied by the d-separations in the graph:

XA ⊥⊥ XB | XC ⇐⇒ A ⊥G B | C (1.5)

The DAG G is then called a perfect map of X (Drton & Maathuis, 2017).

This relationship between conditional independence and d-separation provides the basis for causal
structure learning. Indeed, if we do not know the causal DAG underlying a set of variables X, but we
possess n independent and identically distributed (iid) observations of X, we can use the information
about conditional independencies amongst the data to try and reconstruct the causal DAG G. This
inference relies on the assumption that there exists a causal DAG that is a perfect map of X, i.e. that
the Markov and faithfulness properties hold.

This inference problem is complicated by the fact that several distinct DAGs can encode the
same set of conditional independencies (or d-separation relationships). In this case it is impossible
from observational data alone to infer the exact topology of the causal graph. Graphs that entail the
same set of conditional independencies are termed Markov equivalent; they share the same skeleton
and the same v-structures. The set of all Markov equivalent graphs of a particular DAG is termed a
Markov equivalence class, and can be represented by a completed partially directed DAG or CPDAG
(see Figure 1.4 for an example). In the CPDAG, a directed edge i→ j exists if this edge is present
with the same orientation (i → j) in each DAG of the equivalence class. An edge between node
i and j is undirected (i − j) if the edge is present in one direction (i → j) in some DAGs of the
equivalence class and in the opposite direction (i← j) in other DAGs. Therefore, causal structure
learning usually aim at recovering a causal CPDAG. In some instances a DAG from the equivalent
class can be returned, but this is not advisable as the inferred DAG may not be the true causal DAG
underlying the data, and the uncertainty about edge orientation is not explicitly expressed.

Figure 1.4: a) and b): two Markov equivalent DAGs. They share the same skeleton an v-structure
(formed by the nodes 1, 2 and 5). c) The corresponding CPDAG that represents theMarkov equivalence
class of DAGs a) and b).
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Causal sufficiency

In causal inference, we generally assume that all the variables involved in a causal problem are
observed in our data. This corresponds to the assumption of causal sufficiency. A number of existing
causal structure learning algorithms rely on this assumption, thus assuming that no unmeasured
confounder or common cause are at play in the investigated causal system. However, it can happen
that this hypothesis does not hold, i.e. there exists an unmeasured variable that affect two or more
observed variables. Such unmeasured variables are termed hidden variables or confounders. In
this case, the observed conditional independence among the variables can lead to erroneous graph
reconstruction as the causal Markov condition does not hold any more. We say that the space of DAGs
is not closed under marginalisation (where marginalisation corresponds to removing some causal
variables from the set of observed variables) (Colombo et al., 2012). This means that if there are
some hidden variables affecting a set of observed variables there may not exist a DAG representing
only the observed variables that is faithful to the distribution, i.e. that represents exactly the set of
conditional independencies via d-separation. In this case, trying to learn the causal CPDAG between
the observed variables would lead to adding additional edges in the graph that do not represent true
direct causal effects, but rather are due to the impact of the latent variables.

In this case, it is possible to use a new class of graphs called maximal ancestral graph (MAG) in
order to represent the causal relationships amongst the observed variables generated by a DAG with
latent variables (Figure 1.5 a) and b)). In this class of graph, the interpretation of the edges differ
from the DAGs. Contrary to edges in DAGs that inform about causal relationships, edges in MAGs
inform about ancestral relationships (Heinze-Deml et al., 2018). In a MAG, an edge from i to j with a
tail at i, i j (with the star indicating any type of mark, i.e. an arrow or a tail), indicates that i is an
ancestor of j in the corresponding DAG. If the edge has an arrowhead pointing toward i, i j, then

Figure 1.5: a) A DAG with 11 nodes. Nodes 7 to 11 (with red squares) are latent variables, i.e. are
not observed. b) Corresponding MAG, representing the ancestral relationships between observed
variables. c) Corresponding PAG, representing the Markov equivalence class of the MAG in b).
Adapted from Claassen & Heskes (2012).
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i is not an ancestor of j in the underlying DAG. A bidirected edge between i and j, i j, indicates
the presence of a confounder affecting the two variables. MAGs also account for the presence of
selection variables, which are unmeasured variables influencing the values that we can observe from
of one or more variables. The presence of selection variables is represented by undirected edges in
the MAG (i j). The conditional independencies among observed variables can be extracted
from the MAG using a generalisation of the d-separation principle termedm-separation. Similar to
DAGs, several MAGs can encode the same set of conditional independencies, thus forming a Markov
equivalence class. This equivalence class can be represented by a Partial Ancestral Graph (PAG –
Figure 1.5 c)). The uncertainty about the mark at one end of an edge among the different equivalent
MAGs is represented in the PAG with a circle; for example i j indicates that this edge is present
with an arrowhead in some MAGs (i j) and with a tail in others (i j). It is always possible
to learn the PAG corresponding to a distribution under the faithfulness assumption.

1.4.3 Causal learning algorithms

A number of causal structure learning methods have been proposed to infer the topology of causal
graphs from observational data. They can be classified into three categories, according to the strategy
used for inferring the causal graph. The methods also differ in the assumption they make about the
data.

Constraint-based algorithms

A first approach for causal structure learning is to learn the structure of the causal graph from the
conditional independence information extracted from the data. By assuming that the faithfulness
assumption holds, it is possible to assess d-separation relationships in the graph from conditional
independencies tests. Information about d-separation, in turn, informs the addition or removal of
edges in the graph. An intuitive constraint-based algorithm, such as the SGS algorithm (Spirtes et al.,
2001) (for Spirtes-Glymour-Scheines), typically starts from a complete undirected graph (in which all
possible pairs of variables are linked by undirected edges), and proceeds according to the following
steps:

1. For each pair of nodes i, j, look for a subset of nodes S that d-separates them in the data. If
such a subset exists, remove the edge between the nodes i and j, and record S in Sepset(i, j)
and Sepset(j, i).

2. Once all the tests have been performed, orient the v-structures (because v-structures share
the same orientation in all Markov equivalent graphs) using the results of the conditional
independence tests performed in step 1. More specifically, for a triplet of nodes i, j and k
such that the pairs i, j and j, k are each adjacent, but i and k are not adjacent, if j is not in
Sepset(i, k), orient i− j − k as i→ j ← k.
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3. Iteratively orient as many edges as possible, using the rule that no additional v-structures or
cycles can be created (Spirtes et al., 2001).

The main problem of this approach is the computational cost of testing for d-separation. In particular,
the SGS algorithm systematically tests every possible subset of variables as conditioning set for
each pair of variables. It becomes practically impossible when the number of variables is large.
The PC algorithm (Peter-Clark) (Spirtes & Glymour, 1990) alleviates this problem by iteratively
testing for conditional dependencies with conditioning sets of increasing size. It starts by removing
edges between variables based on zero order conditional independence. It then proceeds to test for
conditional independencies with conditioning set of size one for all pairs of nodes still connected,
then size two, etc. It stops when it has reached a size that is larger than the number of neighbours
of any pair of nodes still connected. The output of the PC algorithm is a CPDAG representing the
Markov equivalence class of the inferred causal graph. One of the limitations of the PC algorithm
is that the order in which the variables are considered affects the result of the inference. Therefore,
Colombo & Maathuis (2014) proposed an alternative version termed the PC-stable algorithm. Other
versions of the PC algorithm include the conservative PC (Ramsey et al., 2006), which deals with a
different orientation of the v-structures, or the parallel-PC (Le et al., 2019) that makes use of parallel
computing.

To circumvent the difficulties in scaling up the PC algorithm for a large number of variables, local
learning algorithms have been proposed. Rather than estimating the causal graph linking all observed
variables, they seek to reconstruct the Markov Blanket of each variable, which is a minimal set of
variables such that, when conditioned on, the variable of interest is independent of the remaining
variables. The Markov Blanket of a variable contains its parents, its children and the children of its
parent variables in the corresponding causal graph. One such algorithm, the IAMB (for Incremental
Association Markov Blanket) was proposed by Tsamardinos et al. (2003a). The IAMB algorithm
consists of two phases: in the first phase, for a given variable of interest Xi, iteratively include
in the potential Markov Blanket set – denoted as CMB – variables Xj that maximise the mutual
information score between Xi and Xj conditionally on the current CMB set. In a second time,
variables in the CMB set are iteratively removed if they are independent of Xi conditionally on
the remaining CMB set, according to the mutual information score. Other methods to estimate the
Markov Blanket of a set of variables have been proposed (e.g. Peña et al., 2005; Nilsson et al., 2007).

In presence of unmeasured confounders, i.e. when the assumption of causal faithfulness is violated,
the PC algorithm can produce an incorrect graph. Indeed, a hidden variable affecting two observed
variables can induce statistical dependencies leading the algorithm to add a causal edge from one to
the other (Spirtes et al., 2001). By performing additional independence tests conditioning on subsets
of variables that are not adjacent to the considered variables, it is possible to remove such spurious
edges. This is the principle of the FCI algorithm (Fast Causal Inference – Spirtes et al., 1999). The
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FCI algorithm starts with a complete undirected graph over the set of observed variables and proceeds
as follows:

1. Use the principle of the PC algorithm to compute an initial skeleton, i.e. by testing iteratively
for increasing i-th order conditional independencies to detect d-separations in the graph. This
step is often referred to as the PC-adjacency search.

2. Orients the v-structures: let F be the resulting graph of the previous step. Orient all edges as
. For triplets of nodes i, j, k such that i and j and j and k are adjacent in F but i and k are

not adjacent, if j is not in Sepset(i, k), orient i j k as i j k.

3. Using the orientation, update the skeleton of the graph:

• Compute for each pair of variables i, j the set of variables k satisfying the following conditions:
there is a path π between i and k such that for every subpath < m, l, h > of π, l is a collider
on the subpath, or < m, l, h > forms a triangle. This set is denoted by Poss-D-Sep(i, j).

• For each pair of nodes i, j, look for a subset S of Poss-D-Sep(i, j) or Poss-D-Sep(j, i) that
d-separates them. If such a subset exists, remove the edge between the nodes i and j, and
record S in Sepset(i, j) and Sepset(j, i).

4. Orient all edges as and use the same process as in step 2 to orient the v-structures of the
updated skeleton.

5. Use repeatedly a set of orientation rules to orient as many edges as possible. The set of
orientation rules to be used was first introduced by Spirtes et al. (1999) and later extended by
Zhang (2008).

Note that the output of the PC adjacency search is a superset of the final skeleton of the output graph,
i.e. it contains too many edges, which are removed in the subsequent graph refinement step. The FCI
algorithm returns a PAG representing the Markov equivalence class of the inferred MAG.

In practice, the FCI algorithm is inapplicable on large sets of variables. In consequence, several
variants have been proposed to scale up the algorithm. For example, Colombo et al. (2012) proposed
the RFCI algorithm (Really Fast Causal Inference). They removed the second step of graph refinement
of the original algorithm, which is the most computationally heavy. Instead, additional conditional
tests are performed before orienting the v-structures. This lower computational complexity comes at
the cost that the output of RFCI can be less informative than these of FCI, as in some cases it can
return too many edges. Moreover, the output graph cannot directly be interpreted as a PAG. Another
variant, FCI+, has been proposed by Claassen et al. (2013). They also address the complexity of
the second step of FCI by using an alternative method to compute the Poss-D-Sep sets of each pair
of variables, directly based on the results of the PC-adjacency search. The FCI algorithm and the
presented variants have been deemed too conservative (Frot et al., 2019) and with a poor performance
on small sample sizes (Ogarrio et al., 2016).



30 Chapter 1. Literature Review

Score-based algorithms

The second category of causal discovery algorithms relies on a scoring scheme that evaluates the
fit of a given causal network to the data, in order to select from a set of candidate graphs the one
best explaining the data. Such algorithms rely on heuristics to explore the space of candidate causal
graphs. A first greedy algorithm proposed by Meek (1997) explores the search space of causal DAGs
in two phases, starting from an empty graph:

1. Forward phase: iteratively add an edge to the graph, selecting the edge addition that most
improves the score, until a local maximum is reached.

2. Backward phase: iteratively remove an edge to the graph, selecting the edge deletion that most
improves the score, until a maximum is reached.

It is important that the scoring criterion used to evaluate candidate moves is score equivalent (Chick-
ering, 2003; Nandy et al., 2018), which means that two graphs from a same Markov equivalence
graph will be assigned the same score. The score must also be decomposable into the sum of the con-
tributions of each variable given its parents, and consistent, i.e. a graph not entailing the conditional
independencies of the true graph will receive a lower score than a graph that does. If two graphs entail
(a subset of) the conditional independencies of the true graph, the sparsest model, i.e. the graph with
the lowest number of edges will be attributed a higher score. The l0- or l1-penalised log-likelihood
score (Nandy et al., 2018) or the Bayesian Information criterion (BIC – see e.g. Chickering, 2003)
are commonly used in score-based algorithms.

The GES (Greedy Equivalence Search) version of Chickering (2003) improves upon this first
algorithm by applying the greedy search on the search space of equivalence classes (CPDAGs) instead
of the search space of all DAGs. In practice, they defined new moves for the greedy search, that
consists of a sequence of 1) one or more edge reversal (i.e. switch the orientation of the edge), 2)
single edge addition, 3) one or more edge reversal again. An optimised implementation of the GES
algorithm, termed FGS or FGES, was proposed by Ramsey et al. (2017). The mathematical concept
is identical, but the algorithmic complexity is decreased notably by caching score information and
parallelisation of some of the steps. Such score-based algorithms scale in general better than their
constraint-based counterparts when the number of variables is large, but can become computationally
expensive when the search space is densely connected.

Hybrid algorithms

Methods have been proposed that combine the constraint- and score-based approaches. For example,
the Sparse Candidate algorithm (Friedman et al., 1999), improves upon classical heuristics for
Bayesian networks learning (score-based approaches) by restricting the search space with a constraint-
based search for candidate parents of the variables. This first search is denoted as the Restrict phase.
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In a second step, the Maximise phase, a heuristic is applied to find a Bayesian network that maximises
the score while respecting the constraints inferred in the previous step. The output is used to update
the set of potential parents for each variables. This cycle is repeated until convergence. This approach
is modular, in that different methods can be chosen independently for the restrict and maximise phases.
Friedman et al. (1999) chose to use the mutual information score to select the set of potential parents
in the first phase, and a greedy hill-climbing algorithm for the second phase. The principal advantage
of the method is that the Restrict phase decreases the complexity of the maximise phase by reducing
the search space. An obvious drawback of the method is that the first step of the algorithm restricts
the size of the set of potential parents of each variable to a constant k to be defined by the user.

A similar framework is used in the MMHC (Max-Min Hill Climbing) algorithm by Tsamardinos et
al. (2006). The restrict phase is performed by the MMPC algorithm (Max-Mix Parents and Children
– Tsamardinos et al., 2003b), which outputs for each variable the list of its parents and children. More
specifically, for a given variable i, the MMPC proceeds as follows:

1. Initialise the set of candidate parents and children of i, CPC(i), as an empty set.

2. For each other variable f , look for the subset of CPC(i) that minimises the association
between i and f . The association between any two variables is computed from a conditional
independence test. Retain the associated minimum score, denoted assocf .

3. Select the variable f with the highest minimum score assocf . If the selected assocf is non-null,
add f to CPC(i).

4. Repeat until no more variables can be added to CPC(i).

The output of this first step is used to construct an undirected graph in which each variable is linked
to each of its potential parents and children (variables in CPC(i)). A greedy hill-climbing search is
then performed to find the graph optimising a scoring criterion. The possible moves of this greedy
search include edge addition, edge removal and edge reversal, with the constraint that only edges
present in the undirected graph from step 1 can be considered. Nandy et al. (2018) have showed that
the MMHC algorithm is inconsistent, i.e. the probability that the inferred graph is the true graph
does not tend to one when the number of observations becomes really large. They proposed a related
algorithm, ARGES (Adaptive Restricted Greedy Equivalence Search). The algorithm also starts by
finding a first graph skeleton by applying either the MMPC algorithm as shown above, or the adaptive
LASSO (Zou, 2006), a feature selection algorithm that builds on the LASSO (Tibshirani, 1996).
Then, they apply a restricted version of the GES algorithm, in which the possible moves performed in
each step of the greedy search are restricted according to the skeleton inferred in the first step and the
current graph. This modification restricts the search space of the GES algorithm and allows to prove
the consistency of ARGES in certain high dimensional settings.
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Tsirlis et al. (2018) extended the concept of MMHC by relaxing the condition of causal sufficiency.
They showed that if the assumption of causal sufficiency is violated, the MMPC algorithm returns for
a given variable a superset of the true parents and children of the variables. To circumvent this, their
M3HC algorithm (MAG Max-Min Hill Climbing) starts by applying the MMPC algorithm to each
variable, as in the MMHC algorithm. A greedy search is then applied, starting from an empty graph.
The difference with the MMHC algorithm is that the moves considered during the greedy search allow
to search the MAG space, therefore allowing for the presence of confounders. In addition, the scoring
criterion used, here the BIC, is a valid criterion for comparing MAGs. In a similar spirit, Frot et al.
(2019) extend the GES-based hybrid algorithm to the case of latent variables. However, contrary to
the M3HC algorithm, they restrict themselves to cases where a few unobserved variables impact many
of the observed variables, and in which the underlying DAG among the observed variables is sparse.
They apply the low-rank plus sparse algorithm (Chandrasekaran et al., 2012) to the data to estimate
the inverse covariance matrix between the observed variables conditional on the hidden variables.
The low-rank plus sparse matrix estimates a sparse graphical model between the observed variables
conditionally on the latent variables, under the hypothesis that the number of latent variables is
smaller than the number of observed variables. If the assumption holds, then the matrix summarising
the effect of the latent variables has a low rank. This covariance matrix is then used for the GES
algorithm, allowing to reconstruct the causal graph among the observed variables after correcting for
the effect of the confounders.

All the above algorithms use the strategy of reducing the search space for score-based methods by
applying in a first step a constraint-based algorithm. Ogarrio et al. (2016) take the reversed approach.
Their goal is to combine GES, asymptotically correct but which requires the assumption of no hidden
confounders, with FCI, that allow for hidden variables but performs poorly on small samples. The
optimised version of GES, FGS, is applied in a first step to obtain a CPDAG. In the presence of
hidden variables, the skeleton of the output CPDAG is a hypergraph of the correct causal skeleton,
and the orientations of the edges are potentially incorrect. The FCI algorithm is then applied to the
skeleton of the output CPDAG. This phase is identical to the FCI algorithm with the exception of the
v-structure orientation steps that are performed using information about the output of the GES phase.

Additional assumptions to break the Markov equivalence

Recently, a number of models have been proposed in order to distinguish between several DAGs
from a same Markov Equivalence class (Glymour et al., 2019; Zhang et al., 2018). Such models
have to make additional assumptions on the distribution of the observed data, as the conditional
independencies alone cannot separate two Markov equivalent DAGs. They form a subgroup of the
class of Functional Causal Models, i.e, models that model a response variable Y as a deterministic
function of its cause(s) X and an unmeasured noise or disturbance term ε:
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Y = f(X, ε)

In particular, Shimizu et al. (2006) makes the assumption that the response depends linearly on
its cause, and the noise term is non-Gaussian:

Y = bX + ε

This model is called a Linear Non-Gaussian Acyclic Model (LiNGAM). If two variables follow
such a generative model, it becomes possible to test the directionality of the causal relationship by
assessing the independence of the error terms with each of the two variables. Indeed, the residuals of
a regression of Y on X will be independent of X , while the residuals of a regression of X on Y will
not be independent from Y . Other similar models have been proposed, such as the nonlinear additive
model (NAM – Hoyer et al., 2008):

Y = f(X) + ε

where f is a non-linear function, or the post-nonlinear model (PNL – Zhang & Chan, 2006),
which assumes:

Y = f2(f1(X) + ε)

These methods are mentioned for the sake of completeness, but are outside the scope of this thesis,
as they rely on a deterministic representation of the variables, and due to the additional assumptions
they make about the distribution of the data.

1.4.4 Structural Equation Modelling

The algorithms presented above rely on probabilistic graph models to model causal relationships
amongst a set of variables. An alternative approach is to use Structural Equation Modelling (SEM –
Hox & Bechger, 1998; Schumacker & Lomax, 2016). Structural equation models also use a graph to
represent the causal relationships between the variables. Variables whose values depend on other
variables are termed endogenous variables. Variables whose values do not depend on other variables
are termed exogenous variables. The difference between Structural Equation Modelling and methods
presented above, that rely on probabilistic graphs, lies in the mathematical model used to encode the
causal relationships between variables. In a structural equation model, structural linear equations
depict each variable as a linear combination of the values of its parent nodes, with the addition of an
error term called disturbance. The error term is sometimes considered as an exogenous variable that
we do not observe. This gives, in a matrix notation:

Y = BY + ΓX + ζ
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where X and Y represent the set of exogenous and endogenous variables, respectively, and ζ
corresponds to the disturbance term. Γ is the matrix of fixed effects of the covariates, and B is the
matrix of structural coefficients that represent the effects of a parent node on its children. For a given
causal graph, it is possible to estimate the parameters of the models and assess the fit of the model
to the data, i.e. with a maximum likelihood approach. Therefore, structural equation models are
generally used to test the validity of a causal model defined a priori, rather than performing causal
structure learning.

1.4.5 Causal inference in biological systems

The concept of causal inference has been applied to biological systems as early as the 2000’s, although
its use in this context has been far from wide-spread. Studies aiming at linking genotype and
phenotype have made use of the unidirectionality of genotype-to-phenotype relationships. Indeed, the
genomic make-up of individuals inform their phenotypes, including molecular phenotypes such as
gene expression. On the other hand, a phenotypic trait or the expression of a gene does not influence
the individual’s genomic composition. Therefore, genomic variants can be seen as causal anchors,
i.e. source variables from which causality flows (unless if one considers evolutionary feedback, which
is outside the scope of this thesis). This concept has been used in two ways: Mendelian randomisation
and causal inference tests for triplets of variables.

Mendelian randomisation makes the parallel between the random allocation of alleles during
gamete formation and the allocation of a treatment to each individual at random in a randomised
controlled trial (Davey Smith & Ebrahim, 2003). Therefore, genetic variations between individuals in
observational studies can be considered as treatments allocated at random. Because of this, genetic
variants can be used as instrumental variables to test for the causal relationships between a risk factor
(say, the expression of a gene) and an outcome (e.g. a phenotypic trait of interest) – see for example
Burgess et al. (2017). The use of the instrumental variable allows to test for the effect of an unobserved
confounder on the relationships between risk factor and outcome. This concept has been applied to
epidemiology, but it has also been used to study the directionality of causal relationships between
pairs of (molecular) phenotypes. For example, Aten et al. (2008) proposed the NEO software, which
relies on non-common markers for a pair of traits in order to score the possible causal orientations
between them. This information can then be used to reconstruct a directed network between a set
of traits. Interestingly, Mendelian randomisation has also been used to link different omics layers.
For example, Shin et al. (2014) and Bartel et al. (2015) used eQTLs and mQTLs as instrumental
variables to reconstruct the causal relationships between transcripts and metabolites in human blood.
Recently, Qiu et al. (2020) used a combination of molecular QTL mapping, multi-omics integration
tools and Mendelian randomization to identify biomarkers of osteoporosis.

In a similar fashion, a number of studies have made use of co-localised genetic markers associated
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with pairs of traits, phenotypic traits, or levels of a molecule (e.g. mRNA or protein). The co-
localisation of markers associated with each of two traits T1 and T2 (phenotypes or molecular levels)
indicates a common genotypic cause. One can then test the causal structure linking the variant and
the traits. This is made possible by the fact that only a number of causal scenarios are possible, since
no causal edge can target the genetic variant. For example, the genetic variant can control the trait
T2 only through its impact on trait T1 (causal model); conversely, T2 can be the mediator of the
effect of the variant on T1 (reactive model). In another scenario, the association of the variant with
the traits can arise from independent processes (independent model) (Schadt et al., 2005). Schadt
et al. (2005) derived a likelihood-based causality model selection (LCMS) to distinguish between
these three causal scenarios by comparing the goodness of fit of each model. Later, Lin Chen et
al. (2007) proposed the Trigger algorithm, based on a causality equivalence theorem which assess
the probability of the causal model L → T1 → T2 between a given locus L and a pair of trait T1
and T2. The causality equivalence theorem rules that a causal relationship in the form of the causal
model exists if the variables satisfy: (i) L → Ti, (ii) L → Tj |L → Ti; and (iii) L ⊥⊥ Tj |Ti. All
three conditions are tested using appropriate likelihood ratio tests. Resulting orientations between
genotype-traits triplets are assembled to obtain a directed transcription regulatory network. In the
same vein, Millstein et al. (2009) developed a Causal Inference Test to test the causal model between
a genetic variant and a pair of phenotypes, by fitting and comparing linear regressions. More recently,
the FINDER algorithm (Wang & Michoel, 2017) has been used to reconstruct GRNs using genetic
variants as causal anchors. Alternatively, genomic variants have been used in parallel with Structural
Equations modelling to reconstruct GRNs (Liu et al., 2008) or phenotype networks (Li et al., 2006;
Peñagaricano et al., 2015b).

Both Mendelian randomisation-based approaches and causal inference tests between triplets of
variables have been compared in the context of molecular networks in recent studies (Ainsworth et
al., 2017; Auerbach et al., 2018). However, these approaches are limited by the fact that they focus on
triplets of variables independently (a genetic variant and two traits, either molecular measurements of
phenotypes). A few other studies have applied genomic variants to causal inference in a more general
setting. For example, Zhu et al. (2004) used common eQTLs to assess the set of potential parents
for each gene from an expression dataset. This information was used as prior knowledge for the
reconstruction of a Bayesian network between the transcripts. Later, they added transcription factor
binding sites as a prior to help in the reconstruction of the network (Zhu et al., 2008). Furthermore, they
also used this approach to reconstruct a directed network comprising both transcripts and metabolites
(Zhu et al., 2012). Li et al. (2006) and Liu et al. (2008) also used results from QTL mapping to
help in reconstructing Structural Equation models for a set of genes. Nevertheless, the application of
causal learning algorithms for the reconstruction of regulatory networks using observational studies
has been limited (Glymour et al., 2019). One example of such application is by Neto et al. (2008),
which combines the PC algorithm with a generalisation of the LCMS test to reconstruct a causal GRN.
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Peñagaricano et al. (2015a) uses the IAMB algorithm (Tsamardinos et al., 2003a), a local structure
learning algorithm, to reconstruct directed gene-phenotype networks. Montastier et al. (2015) used
Mixed Graphical Models and canonical correlation analysis to reconstruct causal networks between
mRNA levels, fatty acids and a number of bio-clinical traits related to weight change. Finally, it is
to note that Sedgewick et al. (2019) developed a web-based algorithm CausalMGM to reconstruct
directed graphs linking both continuous and discrete variables. This is a promising tool for the
reconstruction of causal networks for across different omics layers.

Moreover, while a number of causal inference algorithms presented in this section have been
evaluated and compared in recent benchmarking studies (Constantinou et al., 2020; Heinze-Deml
et al., 2018), there is a lack of assessment of such tools in the context of reconstructing molecular
networks. This is an important point, as biological measurements are typically noisy and susceptible
to violate a number of assumptions necessary to causal inference. It is therefore important to assess
whether such tools can be applied to the reconstruction of biological processes, and to pinpoint
possible areas of improvements. This will pave the way for the development of improved algorithms
more suited to the unique nature of biological datasets.

1.5 Simulation of Gene Regulatory Networks

When developing statistical tools and algorithms to extract information from biological data, it is
crucial to assess their performance. This allows to evaluate the methods’ strengths and weaknesses,
to compare it to other methods and to highlight potential areas of improvement. I focus here on the
specific problem of inferring regulatory networks from biological measurements (either association
or causal networks), typically transcriptomics data. A first way to do so is to apply the given tool to
an existing experimental dataset, and compare the results of the inference to known regulations and
pathways (e.g. Simoes et al., 2013). However, such an approach presents a number of drawbacks.
First, the comparison is limited to our existing knowledge about the biological system at play which
can be biased, incomplete or even erroneous. Also, additional experimental measurements needed
to validate new results can be very expensive and time-consuming, thus hindering the capacity to
assess the potential for new discoveries. Lastly, existing biological gold-standards are biased towards
well-known model organisms and might not be representative of all biological datasets on which the
tool will be applied.

Therefore, a second approach to assess the performance of network inference algorithms is to
apply them to simulated datasets for which the underlying generating regulatory network is known
(for example Mendes et al., 2003). Simulated datasets offers several advantages. First, because the
model used to generate the data is known, it is possible to objectively compare the inference results
to the true network, and thus produce performance metrics such as precision or recall. One can also
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generate several datasets by changing some aspect of the generating model, and compare the changes
in performance of the tool across these different simulation scenarios (e.g. inclusion of technical
noise). Also, one has complete control over the model used to simulate the data, and can therefore
tune different aspects of the simulation, which can be used for example to represent non-model
organisms, or include technical noise. Of course, simulations are a crude, partial, simplified, idealised
representations of biological systems and are also biased by our incomplete knowledge about those
systems. Nevertheless, simulated datasets have been widely used to evaluate and compare gene
regulatory networks, independently or through competitions such as the DREAM challenges.

There are many aspects of designing a simulator for assessing the performance of network
inference methods. In the following paragraphs, I review the main aspects of constructing a simulator,
and discuss existing tools to generate simulated gene expression datasets. A list of existing simulators
that simulate gene expression for the purpose of evaluating network inference algorithms is presented
in Supplementary Table A.1.

1.5.1 Topology of the simulated GRNs

As our knowledge about regulation between gene products increased and was summarised into
GRNs, it has been found that these networks exhibit a number of properties. For example, most
regulatory genes only control a small number of target genes, while a few genes termed hubs regulate
a large number of targets. Consequently, the distribution of in- and out-degree of the genes (i.e. the
number of incoming and outgoing edges from the genes) can be described by a power-law distribution
(Albert & Barabási, 2000; Barabási & Albert, 1999; Emmert-Streib et al., 2014; Neal et al., 2021;
Ouma et al., 2018), or in some cases by a exponential distribution (Balaji et al., 2006; Guelzim
et al., 2002). Networks obeying such property are termed scale-free networks. Also, biological
networks have a tendency to form groups of highly interconnected nodes or modules (Wagner & Fell,
2001; Watts & Strogatz, 1998). Genes from one module are less likely to interact with other genes
from a different modules. Moreover, the hub genes mentioned previously form the link between
different modules (Ravasz et al., 2002). These two characteristics are referred to as the modularity
and hierarchical organisation properties. Biological networks are also small-world networks, meaning
that any component in the network can easily be reached from any other component (Jeong et al.,
2000).

Different approaches have been employed to account for these properties when simulating gene
expression regulation. Simulators such as the ones implemented in (Di Camillo et al., 2009; Mendes
et al., 2003; Pinna et al., 2011; Roy et al., 2008) use algorithms that generate networks with some of
these properties. For example, Di Camillo et al. (2009) proposed an algorithm to generate hierarchical
and modular networks, and used it in their simulator. Generation of networks has been criticised for
the fact that it often does not account for all the properties of biological networks. Therefore, other
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simulators rely on sampling sub-networks from known GRNs (Bulcke et al., 2006; Schaffter et al.,
2011). In their simulator GeneNetWeaver, Schaffter et al. (2011) use known GRNs from Escherichia
coli and Saccharomyces cerevisiae as templates. It then generates a GRN with N nodes by sampling
N nodes and the corresponding interactions from one of these templates. Again, this has the drawback
of biasing the resulting GRNs towards known topologies and model organisms, resulting in networks
that are possibly not representative of some biological systems. In addition, subsampling from a
template network might alter the topological properties of the resulting subnetwork.

1.5.2 Mathematical framework

Along with a graph representing the regulations between genes, a simulator must include a model
of gene expression. There are a number of mathematical frameworks that can be used to define
such a model. A simple approach is to use a Boolean model, i.e. to consider each gene as a binary
variable, with two possible states: activated or repressed (Bornholdt, 2008). In their activated state,
the genes produce mRNAs and proteins; in their repressed state they do not. A more detailed model
can be obtained under a deterministic framework (de Jong, 2002). Variables are used to represent the
concentration of mRNAs or other gene products in the system. A set of differential equations model
the evolution over time of these concentrations. The differential equations account for the production
and decay of the different gene products, as well as the impact of other molecules’ concentrations on
these processes. A third approach is to employ an agent-based or stochastic model (Higham, 2008).
In this case, we model the absolute abundance of each molecular species present in the system of
interest. A list of biochemical reactions describes the interactions between the different species and
allows to simulate the evolution of the system’s state over time.

In order to evaluate network inference methods, simulated data must take the form of quantitative
measurements of gene expression across a set of observations. Therefore, approaches that output
numerical output, i.e. differential equation systems or agent-based models, are preferentially employed
by simulators. Deterministic models have the advantage of being fast and straightforward to simulate,
while stochastic models can become computationally expensive for moderate-size systems. On the
other hand, the assumptions underlying deterministic models break down when some molecules are
present in low numbers in the cell, which is typically the case for some transcription factors (Zlatanova
& Van Holde, 2016). In this case, differential equations may not be appropriate to represent the state
of the system, as biological noise plays an important role in guiding the state of the system, and
one might turn to stochastic models instead. Indeed the latter intrinsically accounts for the variation
arising from biological noise. Simulators such as those presented in Mendes et al. (2003), Haynes
& Brent (2009), or Hache, Wierling, et al. (2009) rely on systems of ODEs for the simulations. On
the contrary, Ribeiro & Lloyd-Price (2007) and Tripathi et al. (2017) offer stochastic simulators.
GeneNetWeaver (Schaffter et al., 2011) also use deterministic models, but also offer an option to
include biological noise through the use of Chemical Langevin Equations, which bridge the gap
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between stochastic and deterministic models.

1.5.3 Mathematical representation of gene regulation

An important part of the models of gene expression concerns the representation of expression
regulation by regulatory molecules. This amounts to transcribing the GRNs into mathematical
models. For example, in a Boolean model, regulators propagate their state to their targets through
logic gates such as AND and OR. In the deterministic case, the expression of a target gene is modelled
as a function of the concentration of its regulators. Such regulation can be represented as first order
process or more complex non-linear functions (see Figure 1.6). A popular choice is to use a Hill
function to express the expression of the target gene as a function of its regulation concentration (e.g
Ackers et al., 1982; Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, et al., 2005b). Hills functions
account for the effect of promoter saturation, i.e. once the regulator is present in high concentration,
a further increase of its concentration does not increase the expression of the target gene. In the
case of stochastic models, the biochemical reactions represent the biological processes of regulation.
They can be used to model each step of the transcription process, e.g. the binding and unbinding of
regulatory molecules to their binding site. On the contrary, several such steps can be summarised in
one reaction, for example the presence of the regulatory molecule triggering the creation of a target’s
mRNA.

Another key aspect of models of gene expression regulation is the type of molecules performing
the regulation. Early models focused on simulating the production of mRNAs from genes and used

Figure 1.6: Possible transcription rate law functions. a) The rate law accounts for a linear dependence
between the concentration of the regulator (x) and the transcription rate of the target gene (f(x)).
b) The Hill function accounts for the saturation of the regulation: when x is high, the variation of
the transcription rate tends to zero. The parameterK corresponds to the concentration at which the
regulatory molecules induce a transcription rate equal to half its maximum value. c) With a step
function, the target gene is only transcribed when the concentration of the regulator exceeds a certain
threshold, hereK.
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mRNA levels as a proxy for the levels of the corresponding transcription factors (Bulcke et al., 2006;
Di Camillo et al., 2009; Mendes et al., 2003). This has been justified by the difficulty at the time to
record protein measurements experimentally, and was therefore regarded as a valid approximation.
We now know that post-transcriptional regulation and other biological processes decouple the levels
of mRNAs and proteins. Therefore, it is necessary to explicitly represent proteins in the models,
which act as regulators of gene expression. It is to note however that none of the existing simulators
account for post-transcriptional regulations. This results in simulated levels of proteins that are very
close of corresponding mRNA levels. It is an important weakness of existing simulators, as in the
resulting simulations the correlation observed between mRNAs and proteins is higher than what is
observed experimentally. This results in a possibly biased assessment of the performance of network
inference methods, since the complexity arising from post-transcriptional modification is ignored.

1.5.4 Model simplifications

As mentioned previously, simulations arising from mathematical models do not grasp the full com-
plexity of experimental datasets. This arises from the simplifications made to the representations
of the biological processes at play. One example is the use of mRNA concentrations as a proxy for
protein levels, which amounts to ignoring translation and related processes. Another example is the
focus on transcription regulation, without accounting for post-transcriptional events. Both points are
however crucial, as post-transcription regulation is assumed to be one of the main reason driving the
lack of correlation between RNA and corresponding protein levels (e.g. estimated to 0.41 in yeast –
Vogel & Marcotte, 2012). Similarly, regulation acted by small non-coding RNAs is often left outside
of simulators. They have been however found to be pervasive in biological systems and are thus likely
to play a role in the complexity of experimental datasets.

Additionally, it is important to account for the impact of genetic variations on gene expression
and regulatory interactions. This has been included in some simulators. For example, Pinna et al.
(2011) models the effect of cis-acting genomic variants, i.e. modifying the expression of a gene
nearby (promoter-like function), as well as trans-variants, which affects the strength of the regulation
between a regulator and its target (likely a sequence modification of the regulator, impacting its
affinity for its targets). In contrast, Schaffter et al. (2011) represents genetic variations between
different individuals or observation as a multifactorial perturbation that affects the basal expression
of all the genes simultaneously with a small effect. However, other simulators such as those from
Tripathi et al. (2017) or Bulcke et al. (2006) do not account for the impact of genetic variation on
the regulatory networks. Lastly, the inclusion of experimental noise can offer an additional layer of
complexity to the resulting simulations and is important when assessing the performance of network
inference methods as it clouds the patterns of regulation.

More generally, there is still a lack of tools approaching the simulation of gene expression regula-
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tion from a Systems Biology perspective, i.e. moving away from the traditional dogma of biology by
accounting for the different molecular layers involved as well as the plethora of biological mechanisms
via which cells can control the expression of their genes. Only with such models, will we be able to
explain the gap in performance of inference tools between simulated and experimental datasets. This
would also enable to researchers to quantify the loss of information related to independent analyses on
single omics layers. For example, one question that has yet to be answered is how much we can learn
from reconstructing GRNs from transcriptomics data alone – which is still a very popular approach
to GRN reconstruction – when alternative mechanisms of expression regulation are at play, such as
post-transcriptional regulation, or regulation via non-protein regulators.

1.6 Conclusion

The problem of understanding the relationship between genotype and phenotype has been intensively
investigated in the past decades. Two orthogonal approaches have been applied to try and answer this
arduous question. QTL mapping and association studies have focused on detecting genomic regions
responsible for variations in phenotypic traits of interest. In parallel, network inference methods
have aimed at reconstructing from observational measurements the interactions between molecular
features. While network inference has firstly been applied to reconstructing gene regulatory networks
from transcriptomics datasets, the focus has now shifted to integrating measurements obtained at
different molecular scales. In particular, it would be very interesting to be able to decipher regulation
across the different cellular layers. By gaining an understanding of these across-omics regulations, we
can decipher the mechanisms by which genetic variation affects the phenotype, thus drawing a link
between association studies and molecular networks. However, this is complicated by the extreme
complexity of biological systems, and the pervasivity of post-transcriptional regulation events that
cannot be detected from single omics studies alone. Moreover, it is necessary to start looking at
biological systems in terms of causality. Statistical tools have been developed in order to infer the
causal relationships between a set of variables using observational data, but their use in the context
of biological systems has been limited so far. In particular, proper benchmarking of these tools with
simulations that mimic biological systems is missing. Specifically, performance evaluation must
account for the diversity of regulatory mechanisms through which cells control the expression of
their genes. Also, the use of causal inference tools for reconstruction of regulatory networks across
different omics datasets must be investigated. These directions will be explored in the present thesis.





Chapter 2

Simulating gene regulatory networks
and gene expression with the R package
sismonr

2.1 Introduction

A first essential step in inferring from biological datasets molecular interactions, or deciphering
causal relationships among genes and gene products, is to assess the performance of the statistical
methods used for such inference. In particular, it is interesting to see in which conditions or for which
type of data the methods perform best or worst, and what kind of information can be extracted or
is systematically missing from the data. Due to the highly complex nature of biological datasets
and our incomplete knowledge of biological causal networks, the performance of network recon-
struction methods, including causal inference methods, is traditionally assessed using simulated
data (e.g. Ainsworth et al., 2017; Ahmed et al., 2018; Muldoon et al., 2019), although experimental
datasets can also be used (Auerbach et al., 2018; Mooij et al., 2016). This consists in generating gene
expression data from an underlying causal network, applying the causal inference method on the
simulated data, and comparing the inferred causal graph to the one used to generate the data. Such
comparison allows us to produce performance estimators such as precision, recall, etc, that inform on
the method’s strengths and weaknesses.

However, simulating suitable data that will provide useful insights into the statistical methods’
performance is no trivial task. Each step of the simulation process must be subject to careful design.
For example, the first stage of simulating data to evaluate causal inference methods is to decide on a
network that describes the causal relationships between the variables to be simulated (here, genes,
RNAs or proteins). A first approach is to extract a sub-network from existing biological pathways in
public databases, as it is done for example in Marbach et al. (2009). Another option is to generate a
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simulated network with characteristic resembling those of biological networks (e.g. Di Camillo et al.,
2009). Both approaches have their limitations (Bulcke et al., 2006): sampled networks from existing
datasets are biased due to our incomplete knowledge of biological networks, while generated networks
might be a simplification of biological networks as they might not possess all the characteristics
of true biological pathways. The next step in the simulation process is to generate values for the
variables (e.g. abundance or concentration of RNAs or proteins). A statistical or mathematical model
is required to sample values for the different variables obeying the causal relationships dictated by
the causal graph. A simple approach is to choose a distribution for each node in the graph, whose
parameters depends on the values of the parent nodes, and use the sampled values as a proxy for the
genes’ expression. However, in order to obtain simulations that better resembles biological data, one
can design a mathematical model mimicking the biological process of gene expression, describing
the expression of the genes as a function of their regulators’ levels. I will focus on the latter type of
data simulation.

There are a number of modelling choices to be made when developing a model for gene expression:
deterministic (better suited to represent the concentration of abundant molecules) versus stochastic
modelling (absolute abundance of molecules), type of function describing the impact of a regulator’s
level on the expression of its targets (e.g. linear, Hill’s function), parametrisation of the model, etc.
One particular point of interest is the biological mechanisms of gene expression that are modelled.
Early simulators focused on simulating the production of RNAs in order to model gene expression.
They assumed that the RNA abundance of regulator genes can be used as a proxy for their activity
on their targets’ expression (e.g. Mendes et al., 2003). Later models included the translation of
RNAs into proteins, in an effort to account for the lack of correlation found in biological datasets
between RNA and protein expression (Roy et al., 2008). However, simulators focus on a certain
aspect of gene expression that concerns the regulation of transcription. While this is a critical aspect
of gene expression, it is not the only means by which a cell can control the expression of its genes.
Post-transcriptional regulation of gene expression has been found pervasive in biological systems
(Buccitelli & Selbach, 2020; Liu et al., 2016; Merchante et al., 2017). This mechanism is crucial as it
impacts the observed patterns in gene expression measurements, and contributes to the complexity of
biological datasets. When simulating such expression measurements, overlooking post-transcriptional
relationships between genes can lead to over-simplification of the data and thus to optimistic evaluation
of the methods’ performance. However, there is currently a lack of simulation tools that account for
post-transcriptional regulation. The reader is referred to Chapter 1 for a review of existing simulators
of gene expression.

In this chapter, I am interested in developing a simulator of gene expression that models tran-
scriptional as well as post-transcriptional regulations among genes. This new simulator, sismonr, is
available as an R package on the CRAN at https://CRAN.R-project.org/package=sismonr;

https://CRAN.R-project.org/package=sismonr
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the code is publicly available at https://github.com/oliviaAB/sismonr. sismonr can be used
to generate realistic expression data to evaluate network or causal inference methods, or even multi-
omics integration methods, as the simulator models both RNA and protein abundance for the simulated
genes. It also includes the presence of non-coding genes in regulatory networks and explicitly models
the ploidy of the simulated system, i.e. the number of copies of each gene present in the biological
system, two points that have not yet been incorporated into gene expression simulators. Non-coding
regulatory RNAs have been found pervasive in biological systems, and their inclusion in synthetic
GRNs is an important factor. Indeed, regulation by RNA entails a different dynamics in biologi-
cal systems than regulation by proteins, as the regulatory genes do not need to be translated, and
thus the regulation occurs on a shorter timescale. In addition, transcriptomics measurements of-
ten exclude non-coding RNAs, and thus the latter act as unobserved confounders in the networks.
Therefore, benchmarking network inference methods when unobserved regulatory RNAs are at play
allows us to assess the impact of these hidden variables in the network reconstruction performance.
Moreover, sismonr accounts for genetic mutations impacting the properties of the system, which
is a fundamental aspect for causal inference assessment. Indeed, causal inference relies on small
random perturbations between observations of a set of variables’ values in order to estimate causal
relationships among them. In a biological setting, and more specifically for inference of relationships
between gene products, it has been argued that genetic mutations or differences among individuals
in a population of interest, also termed Mendelian randomisation (Davey Smith & Ebrahim, 2003)
emulate these random changes and allows researchers to extract causal information from observa-
tional expression data. In the present simulator, I accounted for different types of genetic mutations,
each affecting the expression of a gene in a different way, that mimics genotype-gene expression
relationships uncovered in biological experiments.

A schema of the sismonr pipeline is presented in Figure 2.1. This work has been published as
an Application Note in the Bioinformatics journal, in which I provide an overview of the simulator
and its implementation (Appendix C). A review of existing simulators and a comparison of sismonr
with previous simulators have been made available as a Supplementary file for the Application
Note (Supplementary file 1 available online at https://academic.oup.com/bioinformatics/
article/36/9/2938/5711287). I repeat this information, specifically the comparison of sismonr
with existing tools, in Section 2.5 of the present chapter. In a second Supplementary file for the
Application Note, I provided more details about the implementation of sismonr and the mathematical
model used to simulate gene expression data. This work is presented in the present chapter (Sections
2.2 to 2.4). Finally, examples of the use of sismonr along with the corresponding R code have
been made available as a third Supplementary file, and can be found in Appendix D. In addition, a
comprehensive tutorial presenting how to use sismonr is available at https://oliviaab.github.
io/sismonr/. Table 2.1 displays the abbreviations used throughout this document and in sismonr.

https://github.com/oliviaAB/sismonr
https://academic.oup.com/bioinformatics/article/36/9/2938/5711287
https://academic.oup.com/bioinformatics/article/36/9/2938/5711287
https://oliviaab.github.io/sismonr/
https://oliviaab.github.io/sismonr/
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Figure 2.1: Schema of the sismonr package pipeline. Input/output datasets and endpoints are
presented in black rounded boxes and algorithm steps are shown in white rectangle boxes. The
coloured rectangles outline different steps in the algorithm. The programming language used for each
step is indicated above the top-right corner of each algorithm step.

2.2 Creating the in silico system

In sismonr, an in silico system is characterised by the list of protein-coding and non-coding genes
and regulatory complexes existing in the system, together with the regulatory interactions among
them, summarised in a graph representing the gene regulatory network (GRN) of the system. In
sismonr, I define a gene as a DNA sequence that is transcribed into mRNAs (for protein-coding
genes) or regulatory non-coding RNAs (for non-coding genes). The mRNAs of a protein-coding gene
are then translated into proteins. I detail below how the genes are represented in this model. sismonr
generates in silico systems in two main steps: it first creates a list of in silico genes constituting the
system (box SG1 in Figure 2.1), and secondly it generates the GRN linking the genes (box SG2 in
Figure 2.1). In addition, the system is characterised by a ploidy level (parameter ploidy), which
describes the number of copies of each gene carried by the different in silico individuals.
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Table 2.1: List of abbreviations used for sismonr.

Abbreviation Meaning

TC Transcription
TL Translation
RD RNA decay
PD Protein decay
PTM Post-translational modification
GRN Gene regulatory network
PC Protein-coding
NC Non-coding
Pr Promoter binding site
RBS RNA binding site
P Protein
Pm Modified protein
C Regulatory complex

2.2.1 Creating the genes

The number of genes G in the system is defined by the user. The coding status of each gene
(i.e. protein-coding or non-coding) is randomly sampled according to the parameter PC.p, giving the
probability of a gene to be protein-coding. This parameter can be specified by the user; the default
value is (arbitrarily) set to 0.7. The coding status of a gene determines what its active products will
be, that is which of its products (RNAs or proteins) will perform the regulatory actions on the gene’s
targets. The active products of a protein-coding gene will be the protein molecules encoded by the
gene, and its RNA molecules for a non-coding gene. If in the GRN a protein-coding gene is targeted
for post-translational modification, only the modified version of its protein will be active (i.e. will be
able to carry the gene’s regulatory role).

Each gene is assigned a biological function, describing the type of regulation its active products
will exert on its targets in the GRN. The biological function is randomly sampled for each gene
depending on its coding status and according to the default (and arbitrary) probabilities given in
Table 2.2. It must be noted that the biological function “metabolic enzyme” for protein-coding genes
indicates that the genes cannot perform any regulatory action in the GRN. This biological function
has been included to account for genes that are only target in the GRN and not regulators, and to
allow for a future extension of sismonr where metabolic reactions will be simulated as well.

The user can customise the composition of the system by specifying values for some or all of
these probabilities. Taking the example of the protein-coding genes, if the user specify values for
only some of the biological function probabilities, and the sum of these values is equal or greater than
one (say PC.TC.p = 0.9, and PC.TL.p = 0.6), then the specified probabilities are normalised so that
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Table 2.2: Possible biological functions of protein-coding and non-coding genes and associated
default probabilities, with the name of the parameters representing these probabilities in the sismonr
package.

Coding status Biological function Default probability Parameter name

Protein-coding

Regulator of transcription 0.4 PC.TC.p
Regulator of translation 0.3 PC.TL.p
Regulator of RNA decay 0.1 PC.RD.p
Regulator of protein decay 0.1 PC.PD.p

Regulator of protein
post-translational modification 0.05 PC.PTM.p

Metabolic enzyme 0.05 PC.MR.p

Non-coding

Regulator of transcription 0.3 NC.TC.p
Regulator of translation 0.3 NC.TL.p
Regulator of RNA decay 0.3 NC.RD.p
Regulator of protein decay 0.05 NC.PD.p

Regulator of protein
post-translational modification 0.05 NC.PTM.p

their sum equals one (here PC.TC.p = 0.6 and PC.TL.p = 0.4) and the other probabilities are set
to zero. Consequently, there will only be regulators of transcription and translation in the system.
On the other hand, if the specified values don’t sum up to one (e.g. PC.TC.p = 0.3 and PC.TL.p

= 0.3), the non-specified probabilities are assigned equal non-null values such that the sum of all
probabilities is one (i.e. PC.RD.p = PC.PD.p = PC.PTM.p = PC.MR.p = 0.1).

Table 2.3: Kinetic parameters assigned to each gene and their default sampling distribution with the
name of the parameters representing these distributions in the sismonr package. The notation of
each parameter for a geneGi that will be used in the following sections as well as its unit are indicated
below the parameter.

Kinetic parameter Default sampling distribution Parameter name
Transcription rate

TCrbasali

(RNA/sec)

10x/60
with x ∼ N (µ = −0.92, σ = 0.35)

basal_transcription_rate_samplingfct

Translation rate
TLrbasali

(protein/RNA/sec)

10x/3600
with x ∼ N (µ = 2.146, σ = 0.7)

basal_translation_rate_samplingfct

RNA lifetime
1/RDrbasali

(sec)

10x × 60
with x ∼ N (µ = 1.36, σ = 0.2)

basal_RNAlifetime_samplingfct

Protein lifetime
1/PDrbasali

(sec)

2x × 60
with x ∼ N (µ = 5.43, σ = 1)

basal_protlifetime_samplingfct

Lastly, each gene is assigned a number of kinetic parameters describing its transcription, translation
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(if applicable) and decay rates. The values for these parameters are sampled from functions that can
be customised by the user. The default functions are shown in Table 2.3 overleaf. These sampling
distributions have been designed according to experimental results found in the literature. For the
sake of consistency, I tried to retrieve when possible values measured in the organism Saccharomyces
cerevisiae (budding yeast). If these were not available, I used experiments performed on other
eukaryotes, and the organism studied will be indicated in brackets. The advantage of using S.
cerevisiae is two-fold: first, it is used as a model organism for eukaryotes and hence is extensively
studied. Second, the relative high RNA and protein turnovers allows us to reduce the simulation
time required to observe the effects of gene regulation on expression levels. In accordance with the
results of (Pelechano et al., 2010), I designed the sampling distribution of transcription rates such that
sampled values range from 10−4 to 10−2 RNA/sec. The translation rate sampling distribution has
been constructed using results from (Siwiak & Zielenkiewicz, 2010) and (Schwanhäusser et al., 2011)
(using work on mouse fibroblasts), and provide values ranging from 10−4 to 1 protein/RNA/sec. The
RNA and protein lifetime sampling distributions are based on (Wang et al., 2002) and (Belle et al.,
2006), respectively, and give values that approximately range from nine minutes to one hour for the
RNAs and from 11 minutes to 2.7 hours for the proteins. Once sampled, the molecule lifetimes are
transformed into decay rates according to the formula decay rate = 1

lifetime .

Note that the different kinetic rates associated with the expression of genes can vary significantly
between different classes of organism (e.g. bacteria vs yeast or human). For example, while the
half-life of RNAs ranges from one to 15 minutes in Escherichia coli, it ranges from 10 minutes to a
few hours for yeast, and from five hours to a day in humans. This impacts the amount of RNA and
proteins of the genes in the system.

2.2.2 Creating the regulatory network

The next step of the algorithm is to construct the GRN that specifies the regulations among the
genes. First, a regulatory network is created separately for each type of regulation (i.e. regulation
of transcription, translation, RNA decay, protein decay, and post-translational modification). To
create one of the aforementioned regulatory networks, the genes that will act as regulators in the
network are selected, i.e. the genes with the corresponding biological function (e.g. only regulators
of transcription will be selected as regulators for the transcription regulatory network). The set of
potential target genes is selected according to the type of regulation considered: all genes can be
targeted for transcription or RNA decay regulation, but regulation impacting translation, protein
decay or protein post-translational modification can only affect protein-coding genes.

For a given type of regulation, a regulatory network for protein-coding regulators and one for non-
coding regulators are created separately (both networks share the same set of potential target genes).
This is to allow the user to give different properties to protein-coding and non-coding regulators in a
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same regulatory network. For both protein-coding and non-coding regulated networks, the different
steps of the generation process are:

1. Sampling of the out-degree kout (i.e. number of targets) of each regulator, according
to either a power-law or an exponential distribution (parameter [Regulation type].[Coding

status].outdeg.distr1 set to either “powerlaw” or “exponential”), with the following densities:

Power-law distribution: P (kout) ∝ k−γout, or

Exponential distribution: P (kout) ∝
1

γ
· e−

kout
γ

By default, the out-degree distribution for both protein-coding and non-coding regulators in all
five regulatory networks is chosen to be a power-law distribution. The value of the γ parame-
ter in the out-degree distribution is determined by the parameter [Regulation type].[Coding

status].outdeg.exp (set in the transcription regulatory network to three for protein-coding regu-
lators – according to (Albert & Barabási, 2002) – and to five for non-coding regulators, and in all
other regulatory networks to four and six for protein-coding and non-coding regulators, respectively,
to ensure sparsity). Please note that a higher γ value implies a sparser network.

2. For each regulator (starting with the regulators with the highest out-degrees), sampling
of its targets from the set of potential target genes. The probability of each potential target being
regulated by the considered regulator is computed following one of two possible preferential attach-
ment schemes (parameter [Regulation type].[Coding status].outdeg.distr set to either
“powerlaw” or “exponential”) defining the probability of a gene being chosen as target of a new
regulator given its current in-degree (i.e. the number of regulators already targeting it) during the
graph construction process. The first scheme, proposed by (Barabási & Albert, 1999) stipulates that
the probability of a node with in-degree kin being chosen as target is:

P (kin) ∝ kin + 1

The +1 term ensures that genes with an in-degree of zero still have a non-null probability to be
chosen. Under this scheme, the resulting in-degree distribution is supposed to follow a power-law
distribution (given a sufficiently large number of nodes). The second preferential attachment scheme
has been proposed by (Lachgar & Achahbar, 2016). They set:

P (kin) ∝ 1− kin∑
genes

kin

1E.g. the out-degree distribution of protein-coding regulators (Coding status = PC) in the transcription regulatory
network (Regulation type = TC) is dictated by the parameter TC.PC.outdeg.distr.
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In this scenario, genes that have a lower in-degree are more likely to be chosen as target for the current
considered regulator. This preferential attachment is supposed to lead to an in-degree distribution that
is approximately exponential. However, this does not appear to be the case for graphs with a high ratio
of regulators to target genes. Note that the probabilities are computed by first computing the right-hand
side of the preferential attachment formula for each possible target, then dividing by the sum of these
values across all possible targets, such that the sum of the P (kin) across all possible targets equals
one. According to these probabilities, a number of targets corresponding to the out-degree of the
considered regulator are sampled. An edge is created in the regulatory network between the regulator
and each of its targets. The parameter [Regulation type].[Coding status].autoregproba

defines the probability of each regulator to perform autoregulation (i.e. to select itself as its target).
Setting the parameter to zero ensures that there will not be any autoregulation in the network. The
boolean parameter [Regulation type ID].[Coding status].twonodesloop dictates whether
or not the target of a regulator can regulate the regulator in the same regulatory network (only valid if
the target is also a regulator in this regulatory network).

Once generated, the protein-coding-regulated network and the non-coding-regulated network (for
the considered type of regulation) are merged into one network, i.e. the edges from the protein-coding
regulators network and those from the non-coding regulators network are added to create a single
network. There won’t be any overlapping edges as the set of source nodes (or regulators) in the two
networks are distinct.

3. (Optional) Creation of regulatory complexes among regulators targeting a common gene.
The parameter regcomplexes dictates the creation of these complexes. If set to “none”, this step
will be overlooked and no regulatory complexes will be created. If set to “prot”, only protein-coding
regulators of a common target can form a regulatory complex. If set to “both”, all regulators of
a common target can form a complex. The size of the complexes is determined by the parameter
regcomplexes.size, with a default value of two (for computational efficiency).

I now describe the process that allows sismonr to generate regulatory complexes. Let nreg be the
number of regulators targeting a given gene (nreg > 1). I will define the number of “complex trials” as
the result of the integer division nreg/regcomplexes.size (i.e. the maximum number of complexes
of size recomplexes.size that can be simultaneously created from the nreg regulators). For each
complex trial, there is a probability regcomplexes.p (arbitrary default value of 0.3) to create a
regulatory complex. If successful, then recomplexes.size regulators are sampled with replacement
from the list of the gene’s regulators. In the regulatory graph, the edges between the selected regulators
and the target are removed. Instead, an edge is added between the created regulatory complex and the
target. It must be noted that some components of a regulatory complex can be present in more than
one copy in the complex (e.g. a complex of size two can be composed of two copies of a same gene
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product, that is can be a homodimer).

The composition of each created regulatory complex is stored, and the complexes are each
assigned a formation and dissociation rate, defining the rates at which its components assemble to
form a complex or dissociate from each other. By default, the rates are sampled from the distributions
specified in Table 2.4. I based these sampling distributions on experimental values (Kastritis &
Bonvin, 2012; Schreiber et al., 2009). It has been shown that association rates of protein complexes
range from 105 to 109 M−1.s−1. Assuming that the cellular volume is ∼ 5× 10−14 L (S. cerevisiae
cell, see Milo & Phillips (2016)), we can convert these values from M−1.s.−1 to molecule−1.s.−1

with 1 M = Nav × Vcellular ∼ 6 × 1023 × 5 × 10−14 ∼ 1010 molecules. From the same sources,
dissociation rates range from 10−2 to 106 s−1.

Table 2.4: Kinetic parameters assigned to each regulatory complex and their default sampling
distributions with the name of the parameters representing these distributions in the sismonr package.
The notation of each parameter for a gene Gi that will be used in the following sections as well as its
unit are indicated below the parameter.

Kinetic parameter Default sampling distribution Parameter name
Formation rate

formri
(/molecule/s)

10x, x ∼ N (−3, 0.7)
complexesformationrate_

samplingfct

Dissociation rate
dissri (/s)

10x, x ∼ N (2, 1.2)
complexesdissociationrate_

samplingfct

4. Sampling of the sign of the edges in the regulatory network, a plus sign (encoded as “1”)
indicating a positive regulation or activation and a minus sign (encoded as “-1”) a negative regulation
or repression. The meaning of activating/repressing regulation varies according to the type of
regulation considered:

• For regulation of transcription, a positive edge implies that the regulator increases the transcrip-
tion rate of its target; while a negative sign on the edge means that the regulator suppresses the
transcription of the target. The same definition of activation or inhibition applies to translation;

• For RNA and protein decay, there can only be positive regulations, i.e. the regulator increases
the decay rate of its target. In biological systems there exist molecules protecting their target
from degradation, but for the sake of computational simplicity I simplified the model to not
include such a type of regulation;

• For protein post-translational regulation, a positive edge means that the regulator transforms
the “original” or non-modified protein form of its target (similar to the action of a protein
kinase on its target(s)), while a negative regulation implies that the regulator transforms back
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the modified version of its target into its original form (similar to the action of a phosphatase
on its targets).

The probability of each edge being positive is defined separately for the different types of regulation
with the parameter [Regulation type].pos.p set by default to 0.5. As previously mentioned,
RD.pos.p and PD.pos.p are automatically set to one as RNA or protein decay regulation can only
be positive.

5. Sampling of kinetic parameters for each edge in the regulatory network. The sampled
kinetic rates depend on the type of regulation considered. Table 2.6 displays the parameters for each
type of regulation as well as the default distributions from which they are sampled. These parameters
arise from the way the different types of regulation are modelled (see Section 2.4.1 and in particular
Figure 2.2).

The sampling distributions for the values of these parameters have been chosen according to
experimental evidence. For the parameters relating to regulation of transcription, I made use of
experimental evidence from (Nalefski et al., 2006), (Biggin, 2011) and (Milo & Phillips, 2016).
More specifically, the unbinding rates of regulators from their target are directly sampled from the
distribution specified in Table 2.6. As the dissociation constantKd = unbinding rate

binding rate is often close to
the steady-state concentration of the regulators (Milo & Phillips, 2016), I compute the binding rate of
a transcription regulatory edge i→ j as follows:

• Sample an unbinding rate value unbindrTCij .

• Compute the steady-state abundance of regulator i’s active products (i.e. RNAs for non-coding
regulators and proteins for protein-coding regulators), according to the balance formula SSi =
production rate

decay rate . If the regulator is a regulatory complex, the minimum value among the steady-state
abundances of its components is selected.

• Compute the value µ =
unbindrTCij

SSi
.

• Sample a value for the binding rate bindrTCij according to:

bindrTCij = 10x, x ∼ T N (log10(µ), 0.1, log10(µ),∞) (2.1)

where T N (µ, σ, a, b) is a truncated Gaussian distribution with mean µ and s.d. σ, with a and b as
lower and upper boundaries, respectively. Indeed, we want to sample values for the binding and
unbinding rates such that the regulator steady-state abundance ensures that the occupancy rate of
its target binding site is at least 0.5. As the dissociation constantKd corresponds to the abundance
of regulators at which the target binding site has an occupancy probability of 0.5, hence we want
Kij
d =

unbindrTCij
bindrTCij

< SSi ⇒ bindrTCij >
unbindrTCij

SSi
.
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I use the same reasoning and values for kinetic parameters corresponding to translation regulatory
edges. It must be noted that each edge corresponding to a transcription or translation regulation
is assigned a fold-change, corresponding to the change in the rate of transcription or translation of
the target gene when the regulator is bound. If such an edge is assigned a negative sign in step 4,
i.e. represents a repression, the associated fold-change is automatically set to zero. This means that
when the regulator is bound the transcription or translation of the target is blocked. In case of an
activation, I chose a minimal fold-change value of 1.5 to represent moderate to strong regulation. In
absence of experimental estimates for the rates of regulated RNA degradation, protein degradation or
post-translational modification, I chose a sampling distribution spanning several orders of magnitude
(based on experimental values of kcat/KM of enzymes) to allow for a wide range of regulatory
behaviours.

2.2.3 Customising the system

The sismonr package gives the opportunity to the user to customise the system, by adding genes, or
adding/removing edges or regulatory complexes. More details are available in the online tutorial. Note
that when adding regulatory complexes in the system, the user can create complexes of complexes:
for example the products of genes G1 and G2 can form a first complex C1. The products of gene
G3 can bind to the complex C1 to form a second regulatory complex C2. This allows for example
to model the formation of a multimer as a multi-step process. In addition, the complexes are not
required to have the same size, i.e. in a same system complexes composed of a different number of
constituents can coexist.

2.3 Creating the in silico population

Similarly to different individuals of a same species carrying different alleles of the same set of
genes that characterise this species, I want to simulate the system’s behaviour for different in silico
individuals that carry different alleles of the genes present in the in silico system. The genetic
variations between the different alleles of a gene impact the kinetic properties of the gene or of the
regulatory interactions. The same regulatory interactions described by the GRN in the in silico system
apply to the genes of each in silico individual, but their properties can be impacted by the genetic
variations simulated.

2.3.1 Modelling genetic variation

In a biological system, a genetic mutation in the sequence2 of a gene can have different consequences
(Pai et al., 2015) on the gene’s expression or activity. In sismonr, similarly to (Pinna et al., 2011),
I consider two categories of mutations: cis-mutations, i.e. that directly affect the expression of a

2Here the “sequence” of a gene comprises coding as well as regulatory regions of the DNA.
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Table 2.5: The different modelled mutations, their associated QTL coefficient effect variables and the
effect of these mutations on the different gene kinetic parameters in sismonr.

Kinetic parameter affected QTL effect
coefficient name Effect of the mutation

Transcription rate qtlTCrate
Mutation that affects the transcription

rate of the gene

Translation rate qtlTLrate

Mutation that affects the translation
rate of the gene

(only applicable to protein-coding genes)

RNA decay rate qtlRDrate
Mutation that affects the RNA decay

rate of the gene

Protein decay rate qtlPDrate

Mutation that affects the protein
decay rate of the gene

(only applicable to protein-coding genes)

Binding rate of gene’s
transcription regulators qtlTCregbind

Mutation that affects the binding
rate of transcription regulators to

the gene’s binding sites

Binding rate of gene’s
translation regulators qtlTLregbind

Mutation that affects the binding
rate of translation regulators to
the gene’s RNA binding sites

(only applicable to protein-coding genes)
RNA decay rate
triggered by RNA
decay regulators

qtlRDregrate

Mutation that affects the rate at which
RNA decay regulators trigger the

decay of the gene’s RNAs

Protein decay rate
triggered by protein
decay regulators

qtlPDregrate

Mutation that affects the rate at which
protein decay regulators trigger the

decay of the gene’s proteins
(only applicable to protein-coding genes)

Protein post-translational
modification rate
triggered by post-

translational regulators

qtlPTMregrate

Mutation that affects the rate at which
protein post-translational regulators

trigger the gene’s proteins modification
(only applicable to protein-coding genes)

Gene’s active products
activity rate qtlactivity

Mutation that affects the activity of a
gene’s active products, i.e. the rate at

which its active products bind their target’s
binding sites or trigger the modification

or degradation of its targets
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Table 2.6: Kinetic parameters assigned to each edge (interaction) in the GRN according to the type of regulation and their default sampling distributions
with the name of the parameters representing these distributions in the sismonr package. The notation of each parameter for the edge i→ j that will be
used in the following sections as well as its unit are indicated below the parameter. The distribution T N (µ, σ, a, b) is a truncated Gaussian distribution
with mean µ and s.d. σ, with a and b as lower and upper boundaries, respectively.

Regulation type Kinetic parameter Parameter name Default sampling distribution

Transcription
regulation

Binding rate of the regulator on the target
promoter – bindrTCij (/molecule/s)

TCbindingrate_samplingfct see in text

Unbinding rate of the regulator from the
target promoter – unbindrTCij (/s)

TCunbindingrate_samplingfct 10x, x ∼ N (−3, 0.2)

Multiplying factor of the target’s transcription
rate when the regulator is bound – FCTCij (1)

TCfoldchange_samplingfct T N (3, 10, 1.5,∞)

Translation
regulation

Binding rate of the regulator on the target
RNA binding site – bindrTLij (/molecule/s)

TLbindingrate_samplingfct see in text

Unbinding rate of the regulator from the
target RNA binding site – unbindrTLij (/s)

TLunbindingrate_samplingfct 10x, x ∼ N (−3, 0.2)

Multiplying factor of the target’s translation
rate when the regulator is bound – FCTLij (1)

TLfoldchange_samplingfct T N (3, 10, 1.5,∞)

RNA decay
regulation

Rate at which a regulator molecule encountering
its target RNA triggers the target’s degradation

– regrateRDij (/molecule/s)
RDregrate_samplingfct 10x, x ∼ N (−4, 1.1)

Protein decay
regulation

Rate at which a regulator molecule encountering
its target protein triggers the target’s degradation

– regratePDij (/molecule/s)
PDregrate_samplingfct 10x, x ∼ N (−4, 1.1)

Post-translational
modification

Rate at which a regulator molecule encountering
its target protein triggers its modification

– regratePTMij (/molecule/s)
PTMregrate_samplingfct 10x, x ∼ N (−4, 1.1)
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gene (e.g. its basal transcription or translation rate, or the affinity of its binding sites for regulatory
molecules) and trans-mutations, which do not impact the expression of a gene but only the activity of
its active products, e.g. the affinity of its proteins for the regulatory sequences of its targets. Instead of
modelling a gene allele as a genetic sequence directly, I represent the allele by the quantitative effects
of its different mutations, termed QTL effect coefficients.3 More specifically, I model different types
of mutations, each impacting a specific kinetic parameter of the gene, and for each type of mutation
the associated QTL effect coefficient will be applied (i.e. multiplied) to the corresponding kinetic
parameter in the stochastic system (see Section 2.4.1). The different types of mutations and associated
QTL coefficients are shown in Table 2.5. QTL effect coefficients can only take real positive values.
As they are multiplicative coefficients, a gene allele with a QTL effect coefficient of one for a given
kinetic parameter indicates that the allele carries no mutation affecting this kinetic parameter. A
coefficient larger than one corresponds to mutations that increase the concerned kinetic parameter,
whereas a coefficient smaller than one corresponds to mutations decreasing the kinetic parameter.
For example, the following gene allele:

{qtlTCrate = 1; qtlTLrate = 1; qtlRDrate = 1; qtlPDrate = 1; qtlTCregbind = 1;

qtlTLregbind = 1; qtlRDregrate = 1; qtlPDregrate = 1; qtlPTMregrate = 1}

corresponds to the reference version of the considered gene, as it has no mutation affecting any of its
kinetic parameters. The allele:

{qtlTCrate = 0.5; qtlTLrate = 1; qtlRDrate = 1; qtlPDrate = 1; qtlTCregbind = 1;

qtlTLregbind = 1; qtlRDregrate = 1; qtlPDregrate = 1; qtlPTMregrate = 1}

has a mutation affecting its transcription rate, more specifically its transcription rate is divided by two
compared to the original version of the gene.

2.3.2 Creating the segregating gene alleles

In order to create a population of in silico individuals, the first step is to construct for each gene of the
in silico system the list of alleles of this gene existing in the in silico population (box IG1 in Figure
2.1). The number of alleles existing for each gene is controlled by the parameter ngenevariants
(with an arbitrary default value of five). The generation of the list of alleles for any given gene follows
the steps:

1. Sampling the number of mutations for each allele. The alleles of protein-coding genes can
possess at most 10 different types of mutations, whereas those of non-coding genes can only possess

3Note however that simulating genomic data for each individual can easily be achieved with tools such as sim1000G
(Dimitromanolakis et al., 2019) or PedigreeSim (Voorrips & Maliepaard, 2012), for example. These genomic data can in
turn be transformed into QTL effect coefficients by choosing causal variants and assigning them an effect on the genes or
GRN properties.
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five different types of mutations (see Table 2.5). The number of mutations carried by each allele is
sampled from a discrete uniform distribution DU(1 : 10) for protein-coding genes and DU(1 : 5) for
non-coding genes.

2. Defining the types of mutations that each allele possesses. For each allele, the types of
mutations they carry is sampled from the list of possible mutations (defined in Table 2.5), according
to the number of mutations sampled in step 1.

3. Sampling the QTL effect coefficient of each mutation. For each allele, the QTL effect
coefficients corresponding to the mutations selected in step 2 are assigned a value, sampled from the
default distribution shown in Table 2.7. Values of the QTL effect coefficients for the mutations that
the alleles do not possess (i.e. not sampled in step 2) are set to one.

Table 2.7: Default sampling distribution of the QTL effect coefficients with the name of the variable
representing this distribution in the sismonr package. The distribution T N (µ, σ, a, b) is a truncated
Gaussian distribution with meanµ and s.d. σ, with a and b as lower and upper boundaries, respectively.

Default sampling distribution Parameter name
T N (1, 0.1, 0,∞) qtleffect_samplingfct

2.3.3 Creating the in silico individuals

An in silico individual is characterised by the list of alleles that it carries for each gene of the in
silico system. The in silico individual is created by sampling (with replacement) for each gene a
number of alleles from the list of existing alleles (box IG2 in Figure 2.1). The number of homologs
of each gene that the individuals carry is defined by the ploidy of the simulated system. By default,
the different alleles of the genes have the same probability of being chosen, but the user can define
these probabilities for each allele of each gene. As the sampling is performed with replacement, an
individual can carry more than one copy of the same allele for a given gene (if the ploidy is at least
two). An individual can have at most p different versions of each gene, or carry at most p copies of
the same allele, if p is the ploidy of the system.

During the generation of each in silico individual, the initial abundance of each molecule
(i.e. RNAs and proteins for each allele of each gene) is computed as its steady-state abundance
in absence of any regulation. The parameter initialNoise controls whether or not noise is added
to these values. If initialNoise is set to TRUE (default behaviour), the initial abundance of a given
molecule is instead sampled from a normal distribution with a mean equal to this no-regulation steady
state abundance, and a standard deviation equal to the square root of the aforementioned steady-state
abundance. Note that the square root of the mean is used as standard deviation to reduce the variation
for molecules with low abundance.
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The user can decide if the initial abundance of the different molecules in the system are the
same for all the in silico individuals (parameter sameInit set to TRUE or FALSE). If not, the in silico
individuals are assigned for the RNA and protein versions of each gene an initial abundance variation
coefficient that will be multiplied to the default initial abundance of the corresponding molecules
(see Section 2.4.1 for the computation of the initial abundance of each molecule).

2.4 Simulating the system

In order to simulate the expression profile of the genes (i.e. their RNA and protein abundance over
time) for each in silico individual, a stochastic system is generated (box GES1 in Figure 2.1). The
stochastic system is defined by the list of all molecular entities in the system as well as the list
of biochemical reactions and associated rates occurring in the system. A Stochastic Simulation
Algorithm (Gillespie, 2007) is then used to simulate the evolution of the abundance of the different
entities over time (box GES2 in Figure 2.1). I preferred a stochastic approach over a deterministic
one, as a deterministic model is only valid if the abundance of each molecule in the system is high
enough for any variation in this abundance to be modelled as a continuous change. This is not true
for molecules present in only a few copies, as it can be the case for some low-expressed genes, for
example. In such a microscopic setting, in which the molecules are present in very small quantity,
the deterministic assumption is challenged by the fluctuation in the timing of the different reactions.
For these reasons, I prefer to run stochastic simulations to model the behaviour of a system, the major
drawback being a commensurate computational burden.

2.4.1 Generating the stochastic system

A stochastic system is generated from the in silico system, according to the kinetic properties of the
genes and the regulations specified by the GRN. It must be noted that while the list of entities and the
list of reactions in the system is identical for all the in silico individuals, the rates of the reactions can
differ because of the genetic mutations affecting the kinetic properties of the system. For the sake of
clarity, I first present the different steps of the construction of the in silico system assuming that the
ploidy of the in silico system is one (only one copy of each gene). Next, I explain how to introduce a
higher ploidy in the model. A schematic representation of the model of expression regulation used,
detailed in the following section, is presented in Figure 2.2.

DNA and transcription
I first construct the different transcription reactions occurring in the system and the associated

entities. In the simple case of a gene Gi not targeted by any transcription regulator, its transcription
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Figure 2.2: Modelling of the different types of expression regulation in the sismonr package. Each
edge j → i in the GRN is transformed into a set of biochemical reactions with associated rates, as
presented.

reaction can simply be written:

∅ → [RNA form of gene i] (2.2)

The RNA form of the gene will be discussed later. For an individual carrying the allele v of the gene,
the rate of the reaction is:

TCri = TCrbasali × qtlTCratevi (2.3)

where TCrbasali represents the basal transcription rate of gene Gi as described in the in silico system,
and qtlTCratevi represents the QTL effect coefficient of the allele v affecting the gene transcription
rate. For this reaction, we do not need to explicitly represent the DNA form of gene Gi, as it is
present in only one copy throughout the simulation and does not intervene in any other reaction in the
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stochastic model. Now, let us assume that gene Gi is targeted by a regulator Rj (edge j → i in the

Table 2.8: Different possible active forms ai of a regulator Rj . It must be noted that if there exists a
modified form of the protein encoded by a regulator gene Rj , only its modified form Protmj is active
(and not the original form Protj).

Nature of regulator Rj Form of aj
Non-coding gene RNAj

Protein-coding gene Protj
Protein-coding gene targeted by
post-translational modification Protmj

Regulatory complex Cj

regulatory network), with Rj either a single gene or a regulatory complex. Throughout this section, I
use the notation aj to represent the molecular entity performing the regulation j → i. The actual
entity performing the regulation depends on the type of Rj (protein-coding or non-coding gene, or
regulatory complex), as presented in Table 2.8. Let us assume that the regulator possesses exactly
one binding site in the promoter of gene Gi, denoted Pri_regj with an indication of its free or bound
status. The binding and unbinding reactions of the regulator to and from its binding site are:

Pri_regj_free + aj → Pri_regj_bound (2.4)

Pri_regj_bound → Pri_regj_free + aj (2.5)

with rates, for an individual carrying the allele v of gene Gi and the allele w of the regulator Rj :

bindrTCji × qtlTCregbindvi × qtlactivitywj (2.6)

unbindrTCji (2.7)

with Equation (2.6) corresponding to the rate of Equation (2.4) and Equation (2.7) corresponding to
the rate of Equation (2.5). bindrTCji and unbindrTCji are the binding and unbinding rates associated
with the edge j → i in the GRN. The binding rate of the regulator on its binding site is influenced by
qtlTCregbindvi , the effect of a mutation on allele v of gene Gi affecting the affinity of its regulatory
regions for regulators of transcription, and by qtlactivitywj representing the effect of a mutation on
allele w of regulator Rj affecting the activity of its active products. If regulator Rj is a regulatory
complex, qtlactivityj is obtained by multiplying the QTL effect coefficient qtlactivity of each of
its components. The unbinding rate of the regulator from its binding site is not affected by genetic
mutations. This allows the mutations to affect the occupancy time of the binding site by the regulator,
and hence the efficiency of the latter.

The transcription rate of gene Gi depends on whether or not its binding site is occupied by a
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regulator. If the binding site is free, the transcription occurs at rate TCri (as defined by Equation
(2.3)), and follows:

Pri_regj_free → Pri_regj_free + [RNA form of gene i] (2.8)

If on the contrary a regulator is bound, the following transcription reaction:

Pri_regj_bound → Pri_regj_bound + [RNA form of gene i] (2.9)

occurs at a rate TCri × FCTCji . If regulatorRj is a repressor of geneGi transcription, then FCTCji = 0

and the resulting transcription rate when the regulator is bound is zero.

This formalism can be generalised to the case where gene Gi is targeted by a set of s regulators
{R1, ..., Rs}, again either as single genes or regulatory complexes. In this case the DNA form of the
gene is represented by the sum of its binding sites for each regulator, or:

s∑
j=1

Pri_regj (2.10)

For example if the gene Gi is targeted by regulators R1, R2 and R3, its DNA form is Pri_reg1 +

Pri_reg2 + Pri_reg3. This representation of the DNA region encoding a gene by the sum of its
regulator binding sites is inspired by (Tripathi et al., 2017), who use the same approach in their model.
Each binding site can either be in a free or a bound state, so we must consider every combination of
free/bound binding sites for the transcription. The general form of the transcription reaction is now:∑

unbound
regulators j

Pri_regj_free +
∑
bound

regulators k

Pri_regk_bound →

∑
unbound

regulators j

Pri_regj_free +
∑
bound

regulators k

Pri_regk_bound + [RNA form of gene i]
(2.11)

with rate TCri×
∏

bound
regulators k

FCTCki . This type of combinatorial control implies that as soon as a repressor

is bound to its binding site the transcription rate becomes null.

RNA and translation
The RNA form of the genes and the translation reactions are modelled similarly to the DNA form

and transcription rates presented above. If gene Gi is not targeted by any regulators of translation,
then its RNA form is simply RNAi and its transcription reaction is:

RNAi → RNAi + Proti (2.12)
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with rate, for an individual carrying the allele v of Gi:

TLri = TLrbasali × qtlTLratevi (2.13)

If gene Gi is targeted by a set of s regulators of translation {R1, ..., Rs} (either single genes or
regulatory complexes), then the RNA form of the gene is modelled as the sum of its binding sites for
the regulators:

s∑
j=1

RBSi_regj (2.14)

It must be noted than the transcription reaction will create each of the binding sites in a free state, so

in Equations (2.2) and (2.11) the term [RNA form of gene i] can be replaced by
u∑
l=1

RBSi_regl_free

if the gene is targeted by a set {R1, ..., Ru} of u regulators of translation, or by RNAi if the gene is
not controlled at the translational level.

The binding and unbinding reactions of each regulator are:

RBSi_regj_free + aj → RBSi_regj_bound (2.15)

RBSi_regj_bound → RBSi_regj_free + aj (2.16)

with rates, for an individual carrying the allele v of gene Gi and the allele w of regulator Rj :

bindrTLji × qtlTLregbindvi × qtlactivitywj (2.17)

unbindrTLji (2.18)

with Equation (2.17) corresponding to the rate of Equation (2.15) and Equation (2.18) corresponding
to the rate of Equation (2.16). The general form of the translation reaction is:∑

unbound
regulators j

RBSi_regj_free +
∑
bound

regulators k

RBSi_regk_bound → (2.19)

∑
unbound

regulators j

RBSi_regj_free +
∑
bound

regulators k

RBSi_regk_bound + Proti (2.20)

with associated rate TLri ×
∏

bound
regulators k

FCTLki , TLri being defined in Equation (2.13).

Protein post-translational modification

In the GRN, a protein-coding gene Gi can be targeted by a set of regulators of post-translational
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modification; each activator regulator Rj for Gi (i.e. for which the edge j → i is assigned a plus
sign) triggers the modification of the protein according to:

aj + Proti → aj + Protmi (2.21)

with rate regratePTMji ×qtlPTMregratevi ×qtlactivitywj . Accordingly, regulatorsRj exerting a negative
regulation (i.e. for which the edge j → i is assigned a minus sign) will trigger the transformation of
the protein back into its original form:

aj + Protmi → aj + Proti (2.22)

with the same rate regratePTMji × qtlPTMregratevi × qtlactivitywj . It must be noted that during the
initial translation of geneGi the created protein is in its original form, Proti, and never in its modified
form.

RNA and protein decay

With the exception of DNA, each molecule in the system has a finite lifetime and can therefore
decay naturally. The natural decay of RNAs can be written:

RNAi → ∅ (2.23)

or:

s∑
j=1

RBSi_regj → ∅ (2.24)

depending on the RNA form of the gene, with rate:

RDrbasali × qtlRDratevi (2.25)

Note that in Equation (2.24), the different RNA binding sites can be in different states, i.e. either free
or bound by a regulator. sismonr hence generates a decay reaction for each possible combination of
the different binding sites in all possible states, all with the same rate, as described in Equation (2.25).

The same modelling applies for the natural decay of proteins. For proteins targeted by post-
translational modifications, I consider that the original and modified forms of the protein have the
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same lifetime, hence:

Proti → ∅ (2.26)

Protmi → ∅ (2.27)

both occur at the same rate:

PDrbasali × qtlPDratevi (2.28)

The decay of RNAs and proteins can also be regulated. If gene Gi is targeted by a set {R1, ..., Rs}
of regulators of RNA decay, then for 1 ≤ j ≤ s the reaction:

aj + [RNA form of gene i] → aj (2.29)

with [RNA form of gene i] equal to either RNAi or
∑
j
RBSi_regj_free, occurs at rate:

regrateRDji × qtlRDregratevi × qtlactivitywj (2.30)

If the gene is targeted by a set {R1, ..., Rs} of regulators of protein decay, then for 1 ≤ j ≤ s the
reaction:

aj + Proti → aj (2.31)

aj + Protmi → aj (2.32)

occurs both at rate:

regratePDji × qtlPDregratevi × qtlactivitywj (2.33)

It must be noted that the natural and regulated decay of molecules occur even if the latter is bound to
a binding site or in complex. In the first case, the molecule decays and the regulator returns to its free
form. In the second case, the other components of the complex are released.

Regulatory complex formation

As mentioned previously, the products of some genes can assemble into a regulatory complex that
controls the expression of its target genes. Let us consider a complex Ci composed of the products of
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u genes {G1, ..., Gu}. Its formation and dissociation reactions are:

u∑
j=1

[active product of gene j] → Ci (2.34)

Ci →
u∑
j=1

[active product of gene j] (2.35)

with rates formri and dissri, respectively. The form of the active product of each gene can be found
in Table 2.8.

Initial abundances

An initial abundance is assigned to each entity in the stochastic system that corresponds to the
number of copies of these entities at the beginning of the simulation. I will use the notation [X]0 to
represent the initial abundance of entity X . The following rules are applied:

• The different promoter binding sites of the genes are present in one copy in the system and are
in a free state, i.e.:

∀i, j
[
Pri_regj_free

]
0

= 1,
[
Pri_regj_bound

]
0

= 0 (2.36)

• For each gene, the biosynthesis of RNAs has reached a steady state (ignoring any regulation),
so:

∀i, [RNAi]0 =
TCrbasali

RDrbasali

(2.37)

or, if the RNA of gene i is on the form
∑
j
RBSi_regj , assume that all regulator binding sites are in a

free state:

∀j,
[
RBSi_regj_free

]
0

=
TCrbasali

RDrbasali

,
[
RBSi_regj_bound

]
0

= 0 (2.38)

• For each gene, the biosynthesis of proteins has reached a steady state (ignoring any regulation),
so:

∀i, [Proti]0 = [RNAi]0 ×
TLrbasali

PDrbasali

(2.39)

and all existing proteins are in their original form, so for all genes i for which Protmi exists:

[Protmi ]0 = 0 (2.40)
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• No regulatory complex has been formed, so for all complexes j:

[Cj ]0 = 0 (2.41)

The fact that the RNAs and proteins of all genes are present at a steady-state level ignoring any
regulation implies that the simulation mimics the sudden activation of the regulatory network as a
response to a stimulus.

Modelling ploidy

If the ploidy of the system is set to P , each gene is present in P copies or homologs in the system.
I denote the k-th homolog with the suffix GCNk, and use this notation to differentiate the homolog of
origin of the different gene products. The products of the k-th homolog of gene Gi will thus be:

DNA:
∑
j

Pri_GCNk_regj (2.42)

RNA: RNAi_GCNk or
∑
j

RBSi_GCNk_regj (2.43)

Protein: Proti_GCNk and if applicable Protmi _GCNk (2.44)

This is essential as the different homologs can be different alleles of the gene and hence possess
different mutations that affect their kinetic properties.

Let the protein-coding geneGj control the transcription of geneGi. There is still only one binding
site for the regulator’s active products on the promoter of each homolog of gene Gi, but the different
versions of the regulator (arising from the different homologs of the regulator gene) can all bind to
these binding sites. The entity representing the bound binding site must carry the information about
which version of the regulator is bound, in order to correctly model unbinding reactions. The binding
and unbinding reactions of the protein originating from the l-th homolog of gene Gj (1 ≤ l ≤ P ) to
and from its binding site on the k-th homolog of gene Gi (1 ≤ k ≤ P ) are:

Pri_GCNk_regj_free + Protj_GCNl → Pri_GCNk_regj_GCNl_bound (2.45)

Pri_GCNk_regj_GCNl_bound → Pri_GCNk_regj_free + Protj_GCNl (2.46)

Hence, for a ploidy of P , the number of binding/unbinding reactions sets to generate for the edge
i→ j in the GRN is P 2 (P versions of the regulator can bind to each of the P homologs of the target).
The same reasoning can be applied to regulatory complex formation, where each of the versions
of the components can form a complex. The number of formation/dissociation reactions sets for a
complex of size c is P c.



68 Chapter 2. Simulating GRNs and gene expression with the R package sismonr

2.4.2 Stochastic simulation

The stochastic system generated for each in silico individual is used to simulate the evolution over
time of the abundance of the RNAs and proteins encoded by each gene. To do so, I use an existing
Julia implementation of the Stochastic Simulation Algorithm (SSA, Gillespie (2007)) available in
the module BioSimulator (Landeros et al., 2018). A more detailed description of the principle of
stochastic simulation is available in (Gillespie, 2007), but I briefly present here the main steps of the
algorithm.

For each reaction of the system, it is possible to compute its propensity, that is the probability of
the reaction to occur in the next time step. Its value depends on the rate of the reaction as well as
the abundance of the different reactants. It must be noted that the SSA makes the assumption that
the system is homogeneous, that is, there is no specific spatial distribution of the molecules in the
system. At a given time-point t, the SSA samples from an exponential distribution the interval of time
τ before the next reaction occurs. The next reaction to be “fired” is also randomly sampled, according
to the propensities of the reactions. The system state (i.e. the abundance of the different molecules)
is updated according to the stoichiometry of the chosen reaction, and the time is incremented by τ .
This so-called direct method simulates each individual reaction firing in the system. Other exact
implementations of the SSA (simulating each individual reaction) have been proposed. In addition,
approximate methods have been implemented. They trade accuracy of the simulation for efficiency,
by means of simplifying assumptions. The BioSimulator package implements several versions
of the SSA, including exact and approximate approaches. The current methods implemented are
the Direct method (Gillespie, 1977), the First Reaction method (Gillespie, 1976), the Next Reaction
method (Gibson & Bruck, 2000), the Optimised Direct method (Cao et al., 2004), the Tau-Leaping
method (Gillespie & Petzold, 2003) and the Step Anticipation Tau-Leaping method (Sehl et al., 2009).
A description of each method is provided in (Landeros et al., 2018). Each of these methods can be
called by sismonr for the system simulation.

2.5 Comparison of sismonr with existing tools

I aim at comparing sismonr with existing tools with similar objectives. Consequently, I review here
existing algorithms that generate artificial in silico gene regulatory networks (GRNs) and simulate the
expression profiles of their genes using a mathematical model of the system. Tools that only simulate
(deterministically or stochastically) a given mathematical model, e.g. different implementations of
the Stochastic Simulation Algorithm, are thus not considered here.
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2.5.1 Existing GRN simulators

SynTReN

SynTReN (Bulcke et al., 2006) is a Java application that simulates steady state RNA abundances for
genes in subnetworks sampled from a source network. The transcriptional networks of Saccharomyces
cerevisiae and Escherichia coli are available as source networks; users can also provide their own.
The user can set the desired number of genes in the extracted subnetwork, and can also add a number
of background genes, i.e. genes not involved in the network. Two-regulators interactions are possible
in the network. There is no visualisation feature in the application, but the extracted network is saved
both as a sif and an xml file, the latter describing the value of the different kinetic parameters used
for the simulation.

The translation of genes is not modelled; instead the mRNA level of a given regulator gene is
used a a proxy for the abundance of its proteins. Gene expression is modelled deterministically, and
Michaelis-Menten and Hill equations are used to model gene transcription regulation. It is possible
to simulate different experiments representing different external conditions: a set of source genes
(i.e. genes without regulatory input) is randomly chosen, and their expression levels is set to a different
value for each experiment. Several simulations or samples can be performed for each experiment.
Normalised RNA concentrations are simulated at the steady state, and it is not possible to obtain time
series data.

SGNSim

SGNSim (Ribeiro & Lloyd-Price, 2007) is a command-line tool composed of two algorithms: sgne, a
generator of systems of reactions describing GRNs, and sgns, a Stochastic Simulation Algorithm
implementation optimised for incorporating time delays in the simulated reactions. The sgne program
is used to generate regulatory networks of desired size. Users can choose between two possible
topology models when generating a system, or alternatively can provide their own topology as a file
indicating the target-regulator pairs. Combinatorial regulation is allowed, as regulators can form
homodimers or heterodimers that control the target’s transcription. Other parameters, such as the
sampling distributions of the different rates (transcription, translation) or initial concentrations, can
be specified in the form of an input file. There is no default value defined for the parameters but
the software manual includes several examples to guide the user. The output of this step is a file
containing the necessary information to simulate the system: a list of species in the system with
their initial abundance, and a list of reactions with associated rates and time delays. In a second step,
the sgns program takes as input the output of sgne, and runs a stochastic simulator algorithm to
simulate the abundance of the different molecules over time. The result of the simulation is saved in
a tab-delimited file.
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One of the key strengths of SGNSim is its ability to simulate time delays in the transcription and
translation reactions. This notably permits to simulate different cellular compartments. Also, the
sampling distributions for the different parameters necessary to the generation of the system can be
defined by the user, in the limit of implemented distributions. It is to note however that the generated
network representing the regulation among genes is not available to the user, which impairs the user’s
ability to compare any network inference result to the true GRN.

GeneNetWeaver

GeneNetWeaver (Schaffter et al., 2011) is a Java-implemented software for GRN generation and
simulation. Networks are generated by sampling subnetworks of desired size from source networks,
i.e. known transcriptional regulation networks from model organisms. The transcriptional networks of
Escherichia coli and Saccharomyces cerevisiae are available as source networks. Alternatively, users
can provide their own network structure. The software includes a network visualisation feature.Once
the network is defined, a kinetic model is generated. To the best of my knowledge, the user has no
control over the generation of this kinetic model and hence cannot specify the distributions from
which values for the different kinetic parameters are sampled. It is not clear from the user manual,
nor from the associated publication what distributions are used for the different reaction rates, what
their biological justification is or which mathematical model is been used. Combinatorial regulation
is possible, but again the exact formalism is not presented. Then, the user can simulate different
experiments from the network:

• wild-type data, which corresponds to simulating the system as is;
• knockouts or knockdowns, which correspond to partial and complete gene transcription reduc-
tion, respectively;

• Multifactorial perturbation, which amounts to adding small perturbations to the transcription
rates of the different genes, in order to mimic genotypic variability.

It is possible to obtain time series or steady state data for each of these experiments. The system
can be simulated deterministically, through the use of differential equations, or semi-stochastically,
through the use of chemical Langevin equations. The latter are equations representing the evolution
of the abundance of the different molecules over time. The first part of such equation is identical
to their deterministic counterpart, but a noise term is added, proportional to the square root of the
deterministic term. The user can control the level of noise in this case. The use of deterministic or semi-
deterministic model for the simulation enables the software to generate data for large networks in only
a few seconds. After the simulation, it is possible to add noise to the results of the simulation in order
to mimic experimental noise. In particular, GeneNetWeaver integrates a model of microarrays-like
noise.
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sgnesR

sgnesR (Tripathi et al., 2017) is an R package providing an R interface for the SGNSim simulator. It
aims at simulating stochastic time series RNA and protein profiles for genes interacting through a
transcriptional regulatory network, accounting for delays in the transcription and translation reactions.
In a first step, the user has to provide a graph structure representing the transcriptional regulation
among genes. The package does not provide a synthetic GRN generator. The user then sets the
different kinetic parameters of the system (transcription, translation, RNA and protein decay, protein
binding and unbinding rates). It must be noted that, for each of these parameters, a unique value
is chosen and applied to all genes. There is hence no possibility to simulate genes with different
transcription rates, for example. Reaction rates functions can also be specified, i.e. allowing the rate
of a reaction to vary non-linearly as a function of the abundance of some other species. The user can
also specify the delays of the different reactions. No values are provided by default. Alternatively, the
user can construct the list of biochemical reactions defining the system by adding the reactants and
products of each reaction one by one to the system. This method of constructing in silico systems is
outside the scope of this review, since it amounts to directly simulating a system of reactions rather
than using a generator of GRN. In a second step, the system is simulated stochastically for a defined
amount of (simulated) time, and molecules abundance are read at regular intervals (specified by the
user) during the simulation. This is achieved using the stochastic simulator algorithm of SGNSim that
accounts for delays in the reactions.

A major limitation of the package is the lack of flexibility in terms of kinetic parameters. As
mentioned above, all genes are assigned the same transcription rate, translation rate, etc., which limits
the biological relevance of the simulated system. Furthermore, sgnesR performs only one simulation
of a system at a time. There is no way to generate time series with environmental or genotypic
perturbations, which makes it impractical to generate benchmarks for gene network reconstruction.

Other tools not considered for the comparison

Other tools with similar objectives have been proposed, but are no longer available/supported, and
consequently were not included in the comparison:

• A-BIOCHEM (Mendes et al., 2003): this simulator uses a deterministic representation of the
RNAs’ concentration, and transcription regulation is represented by Hill functions. The
translation of genes is not modelled. This software is not available publicly, and thus cannot be
used for the comparison.

• RENCO (Roy et al., 2008): RENCO is a C++ command line program for generating differential
equations to simulate protein-protein and transcriptional regulation networks, allowing to
model combinatorial regulation of transcription. An important point is that RENCO does not
perform the simulation of the system; instead, the system of differential equations representing
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the system is saved as a SBML format, which can be used by other software to simulate the
system.

• NETSim (Di Camillo et al., 2009): this R package generates in silico gene regulatory networks
using a hierarchical modular topology model, and simulates deterministic RNA and protein
time series. Combinatorial regulation of transcription is modelled via fuzzy logic. However,
this R package is not maintained and could not be installed.

• GRENDEL (Haynes & Brent, 2009): GRENDEL is a command line tool for generating GRNs
incorporating time-dependent experimental stimuli impacting genes transcription. The kinetic
parameters for the deterministic model are sampled from values measured experimentally in
yeast. It is to note that the software is not maintained and could not be compiled.

• GeNGe (Hache, Wierling, et al., 2009): GeNGe is a web application for generating and simulating
synthetic GRNS, using deterministic equations. Transcription regulation is modelled via non-
linear kinetics, that allow for combinatorial regulation of a common target by different regulators.
The simulator allows the user to model local or global perturbations of the system. This web
application is however not available any more.

• SysGenSIM (Pinna et al., 2011): this GRN simulator allows to generate synthetic systems
genetic data, as it explicitly models eQTLs, that are genetic mutations affecting the different
properties of the genes. The tool is implemented in Matlab, a proprietary software. Moreover,
it has a dependency towards Matlab’s Bioinformatics toolbox. In consequence, I was not able
to use it for comparison with sismonr.

2.5.2 Comparison of sismonr and sgnesR Stochastic Simulation Algorithm imple-
mentations

I show that the results obtained with sismonr are reproducible with any other implementation of
the Stochastic Simulation Algorithm. As the sgnesR package allows to simulate a predefined set of
biochemical reactions with the SGNSim stochastic simulator, I used it to simulate the behaviour of an in
silico system generated with sismonr (see Figure 2.3, the different rates of production and decay used
for each gene are presented in Supplementary Table B.1). I thus input the same set of biochemical
reactions with identical rates and initial abundances in both simulators. This does not compare
the GRN and system generator of the two packages but only their stochastic simulator algorithms:
the Julia BioSimulator module (Landeros et al., 2018) for sismonr and the SGNSim simulator for
sgnesR. As the simulations are stochastic, identical results are not expected, but the profiles of
molecules abundance should be similar. I confirm that for an identical set of biochemical reactions,
both packages produce very similar results, as can be seen in Figure 2.4 and Figure 2.5. The simulated
expression of the genes over 100 simulation runs for sismonr can be found in Supplementary Figure
B.1, and one of the simulation runs is depicted in Supplementary Figure B.2.
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Figure 2.3: Transcription regulatory network used for the comparison of sismonr and sgnesR
simulations. The system has 10 protein-coding genes, linked through transcription regulations as
depicted. Solid lines represent activating regulations, dashed lines represent repressing regulations.
The plot is produced with the plotGRN() function of sismonr.

2.5.3 Comparison of the simulations of a same regulatory network

In this section, I compare different aspects of the genes profiles simulated by sismonr and different
existing simulators using their default settings. Namely, I compare sismonr to the Java application
SynTren (Bulcke et al., 2006), the command-line tool SGNSim (Ribeiro & Lloyd-Price, 2007), the
software GeneNetWeaver (Schaffter et al., 2011) and the R package sgnesR (Tripathi et al., 2017).
To facilitate the comparison, I used the same network topology across the simulators (i.e. same
edges and types of regulatory interaction, that is activation or repression, see Figure 2.6). The other
parameters are kept to their default values as provided for each simulator. It must be noted that the R
package sgnesR does not provide default values for the different kinetic parameters. I instead use
the same values as in the example presented in their publication. Similarly, SGNSim does not come
with a default parameter file; I used instead the values provided as example in the sgne manual. For
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Figure 2.4: RNA (bottom panels) and protein (top panels) abundance of the genes (one colour per
gene) over time as generated by the stochastic simulation algorithm of sgnesR (left panels) and
sismonr (right pannels). The simulation was reproduced 100 times for each simulator. The solid
lines represent the mean molecules abundance over the 100 simulations at each time-point. The
coloured areas represent the 2.5% and 97.5% quantiles of the molecules abundance over the 100
simulations at each time-point. For visualisation purpose, an offset of 0.5 was added to the abundance
of each molecule at each time-point for the 100 simulations of each simulator before plotting.

sismonr, I set the ploidy of the system to one (haploid situation) to make the results comparable
with those of other simulators. I note that, for the sake of fairness, I can only compare features of
sismonr that are also present with the other simulators. Novel features such as post-transcriptional
regulation or ploidy of the system cannot directly be compared with existing simulators, and will
instead be discussed in Section 2.6.

I produced 100 simulations of the same network with each simulator. For SGNSim and sgnesR, it
amounts to repeating the simulation of the same set of equations, as they do not allow to generate per-
turbations of the system. For SynTReN, I generated 100 experiments, with one sample per experiment.
Each experiment corresponds to setting the initial abundance of a few source genes (i.e. without
regulatory input) to a different random value. With GeneNetWeaver, I simulated 100 multifactorial
perturbations. Each multifactorial perturbation corresponds to modifying the transcription rate of all
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Figure 2.5: Distribution of the RNA (bottom pannel) and protein (top pannel) abundance of the
genes at t = 5000s of the simulation over 100 simulations of the system with the sgnesR simulator
(in red) and sismonr simulator (in blue). For visualisation purpose, an offset of 0.5 was added to
the abundance of each molecule at each time-point for the 100 simulations of each simulator before
plotting.

genes by a small random amount. With sismonr, I generated a population of 100 individuals, each
carrying one of five possible allele of each gene.

RNA and protein abundances

Figure 2.7 depicts the RNA and protein levels of each gene at the last time-point of the simulations for
each simulator. For stochastic simulators, namely sismonr, sgnesR and SGNSim, the values obtained
correspond to the absolute abundance of the RNA and proteins. For both deterministic simulators,
GeneNetWeaver and SynTReN, the values obtained correspond to normalised concentrations instead.
As SynTReN does not model the translation of genes, protein concentrations are not available.

First, sismonr, GeneNetWeaver and SynTReN simulate genes with varied RNA and protein
levels, contrary to sgnesR and SGNSim. sismonr is the only simulator that uncouples transcription
and translation of the genes. For other simulators, genes with similar RNA levels also exhibit similar
protein values. Second, protein levels simulated with sismonr are a few orders of magnitude higher
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Figure 2.6: Transcription regulatory network used for the comparison of the different simulators. The
system has 20 protein-coding genes, linked through transcription regulations as depicted. Solid lines
represent activating regulations, dashed lines represent repressing regulations. The plot is produced
with the plotGRN() function of sismonr.

than corresponding RNA levels. This is in better agreement with experimental values observed in yeast
(Milo & Phillips, 2016) than the similar levels of RNA and proteins displayed by stochastic simulators
(sgnesR and SGNSim). These two points are also illustrated in the previous simulation example in
Section 2.5.2 (see notably Supplementary Figure B.1). Deterministic simulators (GeneNetWeaver
and SynTReN) only provide relative concentrations.

RNA and protein correlation

This paragraph is concerned with the correlation between the RNA and protein levels of each gene. I
exclude from this comparison SynTReN, as it does not model proteins. In Figure 2.8, I represent the
distribution of RNA-protein Pearson correlation coefficients across the 20 genes for each simulator.
The mean RNA-protein correlation for GeneNetWeaver, sismonr, sgnesR and SGNSim are 0.68,
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Figure 2.7: Distribution of the RNA and protein abundance (left column, stochastic simulators) or
relative concentration (right column, deteriministic simulators) of the different genes at t = 2000s
of the 100 simulations of the system with the different simulators. Molecules absolute abundance
(left column) are plotted on a log10 scale, while normalised concentrations are plotted on a non-
transformed scale. An offset of 0.5 was added to all abundance values in the results of all stochastic
simulators (sismonr, sgnesR and SGNSim) for better visualisation.

0.63, 0.32 and 0.33, respectively. These results can be explained. For sgnesR and SGNSim, the
observed variation in the data stems from the stochastic noise representing biological variability,
which reduces the correlation between mRNA and the corresponding protein abundance across the
simulations. On the contrary, sismonr and GeneNetWeaver include biological noise and genetic
variability between the different simulations. The genetically induced variation in kinetic parameters
extends the range of RNA simulated abundance. The amplitude of the biological noise does not depend
on the simulated genetic mutations. In other words, within a genetic background, the RNA-protein
correlation is the same for sismonr as for sgnesR and SGNSim. For GeneNetWeaver, all simulated
individuals are genetically unique and the population does not reflect any structure. I illustrate this for
one gene in Figure 2.9. Note that the RNA-protein correlations obtained are optimistic compared to
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what can be observed experimentally. This is due to the absence of any post-transcriptional regulation
in these simulations. Contrary to other simulators, sismonr can model such regulations and thus
provide more realistic RNA-protein correlations. Lastly, it can be observed in the simulations that,
as expected, the level of correlation between a regulator abundance and its targets’ level is higher
with the fully deterministic simulator SynTReN (mean correlation overall regulations of 0.72) and
smaller for fully stochastic simulators (mean correlation overall regulations of 0.13, 0.1 and 0.09 for
sgnesR, sismonr and SGNSim, respectively), with GeneNetWeaver ranking in between those (mean
correlation overall regulations of 0.33). This is expected as stochastic simulation introduces noise in
the abundance of the molecules and can cloud the regulator-target relationship.

Running time

For this example, sismonr generated the simulations in under five minutes, with an average of 2.85
seconds per simulation of an in silico individual. The other simulators took under a minute to generate
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Figure 2.8: Distribution of the correlation coefficient between RNA and protein levels of the different
genes in the system for each simulator. These correlations were computed at the last time-point of the
simulations, across 100 simulations for each simulator.
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Figure 2.9: RNA and protein abundance (for sismonr, sgnesR and SGNSim) or relative concentration
(for GeneNetWeaver) of gene 15 in the 100 simulations performed by each simulator. The colour
of the points represent the point density in this region: a darker (blue) colour signifies lower point
density, while a lighter (yellow) colour represents a higher density of points.

the simulations. This depends of course on the size of the system in terms of number of regulatory
relationships and on the abundance of the different molecules. The strength of (semi-)deterministic
simulators such as GeneNetWeaver and SynTReN is the ability to generate very large datasets in
only a couple of seconds. At the other end of the spectrum, stochastic simulators have to simulate
the evolution of molecules abundance reaction by reaction, leading to increased running time. It
is especially the case for sismonr, as the default kinetic parameter distributions lead to realistic in
silico systems in which the different molecules can be present in tens of thousands of copies. This is
the price to pay to obtain more realistic simulations.
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2.6 Concluding remarks

I present sismonr, an R package for the generation and the simulation of in silico biological systems.
sismonr simulates the expression profiles of the genes linked via a regulatory network. I illustrated the
behaviour of sismonr, sgnesR, SGNSim, GeneNetWeaver and SynTReN by simulating the expression
of genes (and proteins when available) for a 20 gene-network. It was shown that, contrary to existing
simulators, sismonr generate genes expression profiles in which the transcription and translation of
genes is uncoupled, and with protein-to-RNA ratios in the range of observed experimental values.
This comparison also highlighted (i) the impact of simulating genetic variability in the resulting
RNA-protein levels correlations, and (ii) the impact of simulating biological noise to generate more
realistic regulator-target relationships. In addition, sismonr offers some unprecedented features that
cannot be compared to existing simulators.

Modelling of non-coding genes and post-transcriptional regulation

One of the main novelties of sismonr is the ability to simulate post-transcriptional regulations among
genes. Namely, in addition to transcription regulations, sismonr allows a regulator to control a
target gene at the level of: translation (the regulator influences the rate at which an RNA molecule
is translated into a protein), RNA decay (the regulator can increase the decay of the RNAs of its
target), protein decay (the regulator can increase the decay rate of the proteins of its target), and
post-translational modification (the regulator can transform its target proteins into their modified form).
Post-transcriptional regulatory relationships are key factors in the reconstruction of real regulatory
networks from experimental data, as they modify the correlation patterns between the RNA levels
of regulators and targets and between the RNA and protein levels of coding genes. This explains
the impeded ability to decipher regulatory networks from transcriptomics data alone. Modelling
post-transcriptional regulation is hence an important consideration when generating benchmark data
to be used for assessing the performance of network inference methods.

sismonr also includes non-coding regulators –transcripts are not translated into proteins and
instead directly act as regulators– in the generated systems, while in existing simulators, all genes are
translated into proteins. This is an important aspect of generating realistic in silico simulations, as
regulation by non-coding regulators is pervasive in biological systems (Storz et al., 2005).

Modelling of ploidy and genetic mutations

The second main improvement made by sismonr over existing simulators is the explicit modelling of
the ploidy of the system. The number of copies of each gene present in the system can be defined by
the user during the generation of an in silico system, and is not restricted to the haploid situation as in
other tools. Furthermore, sismonr keeps track of the homolog of origin of each molecule, allowing
to simulate and compare the expression of different homologs of a same gene.
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Additionally, sismonr includes genetic variability in the simulations for each gene by defining
a set of different alleles. Each of these alleles encodes different genetic mutations that affect the
kinetic properties (transcription rate, translation rate, etc.) of the gene. The user can thus simulate
the expression of genes in a system for different in silico individuals, each carrying a potentially
different set of alleles for the genes in the system. This idea is similar to the concept of multi-factorial
perturbations in GeneNetWeaver, allowing to repeat the simulation of a system by introducing small
random perturbations of the genes transcription rates in each simulation. However, with the concept
of in silico population and different alleles, the user can choose to introduce a population structure in
the set of simulations, as some individuals will carry the same alleles for some genes.

A similar concept is implemented in SysGenSIM, which permits the modelling of the impact of
eQTLs on gene expression. These eQTLs can affect the basal transcription rate of genes (cis-eQTLs)
or the strength of a transcription regulation (trans-eQTLs). sismonr improves upon this idea by
introducing genetic mutations affecting other aspects of the expression process of each gene like the
translation of the gene or its products efficiency to bind to their targets.

Improved user interaction with the generated networks and mathematical models and visual-
isation capacity

Existing tools such as GeneNetWeaver or sgnesR, in addition to the random generation of synthetic
networks, allow the user to provide an existing network as input. However, once the network is
generated, the user cannot (easily) interact with it to modify the regulatory interactions or the kinetic
parameters of the associated mathematical model. With sismonr, I provide functions to easily add
or remove genes and regulatory interactions from the network. In addition, all kinetic parameters
are stored in clearly labelled data frames, which are accessible to the user, who can also interact
with them and modify their values. Furthermore, sismonr offers visualisation tools to represent the
regulatory network as a graph (box SG3 in Figure 2.1), as well as functions to plot the results of a
simulation, either in the form of abundance curves or time-dependent heatmaps (box GES3 in Figure
2.1).

The package can be used to generate benchmark datasets for the evaluation of network inference
methods. As the algorithm provides the abundance of both RNAs (coding and non-coding) and
proteins, and models the impact of genetic variations, the benchmark datasets can also be used to
validate multi-omics integration methods.
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Areas of future work

sismonr uses a preferential attachment scheme to ensure that the in- and out-degree distributions of the
generated networks follow a power-law distribution, which has been shown to be an important property
of biological networks. Biological networks also exhibit other properties (such as betweenness
centrality, closeness, or local topology properties like the presence of motifs), which have not been
explicitly accounted for in the network generation by sismonr. This modelling choice is motivated
by the fact that, while most of these properties have been reported for transcription regulatory
networks, less is known about gene regulatory networks encompassing other types of regulators.
This is especially true for the presence of motifs that are typical to transcription factors. It would be
interesting to integrate such properties in the network generation process.

When simulating the binding of transcription factors to their target, sismonmakes the assumption
that different regulators bind independently to their binding sites. However, this assumption might be
violated in biological systems, for example due to the opening and closing of the chromatin affecting
the binding of successive regulators. This was not considered in the current version of sismonr, as
it would introduce additional complexity. It could however be implemented by varying the binding
propensities of regulators according to the number of previously bound regulators.

Lastly, any simulation tool would benefit from a validation of the generated simulations against real
data. In the case of sismonr, comparing the topology of generated networks to regulatory networks
reconstructed from experimental data for a range of organisms would be valuable. However, such
comparison is hindered by the fact that our knowledge about organism-specific regulatory networks
is incomplete. Experiments have to date only uncovered a fraction of all regulatory interactions
between genes’ products. Therefore, it is possible that the true underlying biological networks and
the reconstructed networks exhibit slightly different properties. Similarly, comparison of generated
gene expression profiles to measured RNA protein levels would require 1) knowledge of the different
rates in the biological system investigated and 2) the ability to measure the absolute abundance of
RNAs and proteins.



Chapter 3

Investigating causal inference methods
performance in uncovering transcription
and post-transcriptional gene regulatory
networks

3.1 Introduction

In biological organisms, information encoded in the DNA is processed through the expression of
genes: genes are first transcribed to produce messenger RNAs (mRNAs), which are later translated
into proteins. Gene expression is a complex multi-step process, each of these steps being tightly
regulated by molecular factors such as proteins (e.g. transcription factors) or regulatory RNAs. This
complex regulation allows cells to adequately respond to environmental perturbations or extracellular
cues. Therefore, deciphering patterns of regulation among genes and their products provides insight
the functioning of cells and allows us to answer questions about diverse topics such as the devel-
opment of disease or the molecular mechanisms driving specific biological phenomenon (e.g. the
colouration of plants). The advent of high-throughput technologies such as microarrays or more
recently RNA-sequencing data brought us one step closer to reconstructing these regulations at a
genome-wide scale through measurements of RNA levels for a large fraction of the genes expressed
in an organism of interest. Historically, study of gene expression regulation has been focused on
regulation of the transcription step. This is mainly due to the fact that measurements of mRNA levels
(i.e. transcriptomics datasets) were easier to obtain and thus used as a proxy for gene expression.
However, it has been shown than post-transcriptional regulation is a pervasive mechanism in biological
systems (Angelin-Bonnet et al., 2019; Buccitelli & Selbach, 2020), and thus plays a crucial role in
gene expression regulation.
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Information about gene-gene interactions – regulatory interactions as one gene’s products regulates
the expression of another gene, or interaction between the two genes’ products, etc. – can be
summarised in graphs in which nodes represent the genes and edges between them depict evidence
that the genes interact or are associated (de Jong, 2002). When these graphs inform us about regulatory
interactions, i.e. the impact of a gene or its products on the expression of a target gene, they are
termed gene regulatory networks or GRN. A common approach to gaining a better understanding of
such regulatory networks is through the reconstruction of co-expression among the genes, typically
based on transcriptomics data. Reconstructing co-expression networks can be done by using a
similarity metric such as correlation or mutual information (Altay & Mendi, 2017; Li et al., 2015).
However, such reconstructed networks typically lack information about the directionality of the
regulations. In recent years, attention has thus shifted from co-expression networks to the search for
a better understanding of the flow of information through genes. The concept of causal inference is
appealing, as it allows to reconstruct the chain of effects and causes among the measured variables
– for example between genes based on a measure of their expression (Drton & Maathuis, 2017).
Similarly to regulatory networks, causal graphs can be used to summarise our knowledge about causal
relationships between variables or genes.

There are different approaches to reconstructing causal relationships among a set of observed
variables. A first option is to consider the (in)dependences between variables. Testing whether two
variables are independent conditionally on a set of other variables allows us to decide whether the two
investigated variables are causally related (Colombo & Maathuis, 2014; Spirtes & Glymour, 1991;
Tsamardinos et al., 2003a). Methods that rely on conditional independence tests are referred to as
constraint-based methods. Another approach is to iteratively reconstruct the causal graph by testing
how modifications in the candidate graph improve its fit to the data (Chickering, 2003; Ramsey et
al., 2017). Methods implementing this strategy are termed score-based methods; as they rely on a
score to assess the fit of a candidate graph to the data. Lastly, hybrid methods aim at leveraging the
advantages of both constraint- and score-based methods by merging the two strategies, typically using
the former to constrain and guide the latter (Nandy et al., 2018; Tsamardinos et al., 2006). Importantly,
one of the common hypotheses of causal inference is that of causal sufficiency: we assume that all
variables that play a causal role in the system under investigation are observed. However, it is rather
common that some hidden confounders affect the measured variables. In consequence, methods
were developed that do not assume causal sufficiency and instead seek to assess the impact of these
confounders or hidden variables along with the causal relationships among the observed variables
(Ogarrio et al., 2016; Spirtes et al., 1999; Tsirlis et al., 2018). It is of special interest in the context of
gene regulation as it is a multi-step process that involves different molecules, e.g. RNAs and proteins,
while the reconstruction is typically performed on measurements of a single cellular level, often
RNAs.
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A number of reviews and comparison studies have been published, that aim at contrasting existing
causal inference methods (e.g. Heinze-Deml et al., 2018; Constantinou et al., 2020; Scutari et al.,
2019); however comparisons of such methods in the context of reconstructing biological networks
are scarce, with studies generally focusing on causal inference between triplets of variables (Ahmed
et al., 2018; Auerbach et al., 2018; Hill et al., 2016). Often, such studies use a mathematical model to
simulate data in order to assess the performance of the causal inference methods considered. The
advantage of using simulated data is that it allows researchers to focus the evaluation on some specific
aspects of the data. For example, the recent review by Constantinou and collaborators (Constantinou
et al., 2020) focuses on the impact of noise, missing or incorrect values, merged states (for discrete
variables) and presence of unobserved variables on the reconstruction of causal graphs. In a similar
spirit, I aim at assessing the performance of a number of causal inference methods on simulated
datasets that mimic biological datasets, specifically in the presence of post-transcriptional regulation
among genes. This is important as it affects the patterns of associations observed between genes at the
RNA level, an thus the reconstruction of regulatory networks from observations of RNA abundance.

In the present study, I evaluate the performance of nine state-of-the-art causal inference methods
along with two popular network inference methods across a number of different simulation configura-
tions, that differ in the type of regulation occurring between the genes. The simulated datasets are
designed to match as closely as possible typical experimental data, via the use of a stochastic simulator
that mimics biological noise, small genetic perturbations across the observations in each given dataset,
presence of genes unrelated to the network and confounders in the form of protein products that are
not observed. These simulations have been designed to test the performance of causal inference
methods in realistic scenarios, i.e. in cases where the assumptions made by the methods – causal
sufficiency, i.e. all variables are observed, or acyclicity, i.e. absence of feedback loops in the causal
graphs – are violated. This will allow us to determine how well the methods are robust to deviations
from their assumptions and whether they can still detect causal signal in such scenarios. I start by
presenting the settings of the evaluation, from the generation of simulated datasets using the New
Zealand eScience Infrastructure (NeSI) high-performance computer, with a brief presentation of the
different methods evaluated, to the methodology used for the performance evaluation. I then analyse
the performance of the different methods across the simulation scenarios, including a discussion about
the running time of each method, the choice of the different tuning parameters, and the performance
in reconstructing different types of causal relationships via answering causal queries.

3.2 Materials and methods

A schema of the analysis workflow used throughout this chapter is presented in Figure 3.1.
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Table 3.1: Configurations investigated: for each configuration, I simulated networks with 20 genes,
among which 10 regulator genes. The configurations differ in the number of transcription and
post-transcriptional regulators as well as the type of post-transcriptional regulation modelled.

Configuration Number of
TC* regulators

Type of
post-TC* regulation

Number of
post-TC* regulators

Configuration 1 10 - 0

Configuration 2 7 Translation 3
Configuration 3 7 RNA decay 3
Configuration 4 7 Protein decay 3
Configuration 5 7 Protein PTM† 3

Configuration 6 5 Translation 5
Configuration 7 5 RNA decay 5
Configuration 8 5 Protein decay 5
Configuration 9 5 Protein PTM† 5

Configuration 10 3 Translation 7
Configuration 11 3 RNA decay 7
Configuration 12 3 Protein decay 7
Configuration 13 3 Protein PTM† 7
* TC = transcription
† PTM = post-transcriptional modification

3.2.1 Simulation settings

The R package sismonr (Angelin-Bonnet et al., 2020) was used to generate the simulated data. Briefly,
sismonr generates random regulatory networks satisfying default or user-controlled properties, and
a set of in silico individuals, each carrying different versions or alleles of each gene. For each gene,
the different alleles carry unique genetic mutations that affect the kinetic properties of the gene or of
its regulatory interactions. sismonr then uses a stochastic simulation algorithm to simulate, for each
in silico individual, the evolution over time of the absolute abundance of the gene products (RNAs
and proteins) for all genes in the regulatory network. For more details about the sismonr package,
the reader is referred to Chapter 2.

I evaluated the performance of causal inference methods for 13 different simulation configurations.
Each configuration differs in the type of regulation occurring between the genes, and in the number of
transcription and post-transcriptional regulators present in the regulatory networks (Table 3.1). For
each configuration, 20 regulatory networks of 20 genes were generated, among which 10 regulator
genes, and the remaining 10 genes considered as target genes i.e. that cannot regulate gene expression
(box DS1 in Figure 3.1). The topologies of the 20 networks generated for each configuration are
unique, i.e. not repeated between the configurations. Each network was obtained using the network
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Figure 3.1: Schema of the analysis workflow used throughout the chapter. Input/output datasets and
endpoints are presented in black rounded boxes and analysis steps are shown in white rectangle boxes.
The coloured rectangles outline different themes in the analysis.

generator implemented in sismonr. The choice of generating networks with 20 genes, and using 20
networks for each configuration, stems from a need for computational efficiency. This choice will be
discussed in Section 3.4 (Concluding remarks). This yielded 260 simulated datasets. Note that not all
20 genes in a network are linked by regulatory interactions. Genes not involved in regulation act as
decoy in the inference task, i.e. observed variables that do not play a causal role. Moreover, feedback
loops are possible in the generated networks, consistently with observed biological networks. For
each network, 3,000 observations of the RNA and protein abundance of the genes were generated, by
simulating the expression of the genes for 3,000 in silico individuals. More specifically, for a given
network, 100 different alleles were generated for each of the 20 genes , where one allele corresponds
to one unique set of perturbation parameters for the given gene. The perturbation parameters have a
small impact on the “basal” properties of the gene and its regulatory interactions. Then, for each in
silico individual, two alleles are sampled with replacement for each gene from the pool of 100 alleles
created for this gene. I chose to generate 100 alleles for each gene so that the generated individuals
can be quite different, similarly to sampling from a population of unrelated individuals. The number
of 3,000 individuals was chosen as it can be considered as a upper limit to the number of observations
typically available in experimental datasets, but provides enough observations to assume that causal
inference can be performed. I then simulated the expression of the genes for 2,000 (simulated) seconds
for each in silico individual. The expression data for a given network was obtained by recording for
each individual the RNA abundance of each gene at the final simulation time.
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3.2.2 NeSI High Performance Computing Platform

The simulations were run on the NeSI high-performance computing (HPC) platform (https://www.
nesi.org.nz – box DS2 in Figure 3.1). The different networks were simulated in parallel on 260
cores on the Mahuika cluster, using a SLURM (set of commands passed to the cluster job scheduler)
and a R scripts to run the simulation of each network on a different core. Prior to running the full
simulation, the running time and memory usage of the full job (i.e. simulation of 3,000 individuals for
each network) were estimated by simulating for all networks a subset of the individuals of increasing
size, ranging from 10 to 90. For each subset size, the running time in seconds and memory usage in
MB were recorded and a linear regression model was used to predict the running time and memory
usage for 3,000 individuals. As the estimated running time varied across the networks, I selected the
maximum running time and memory usage across all networks, plus 25% of the estimated value, as a
limit for the full simulation. Note that this method provided an upper limit for the running time of the
simulations, but some simulations finished in one-third of this upper limit. Therefore, running time
estimation could be improved by estimating the total running time independently for each simulated
network. The simulation yielded 260 datasets containing mRNA levels for 20 genes across 3,000
observations.

3.2.3 Causal inference methods investigated

This evaluation was focused on methods that had an available implementation in R. I also included
two popular network inference methods that are not inferring causal relationships, for comparison.
Therefore, the present study includes the following algorithms:

Constraint-based methods

• PC (Peter-Clark – Colombo & Maathuis, 2014): The PC algorithm starts with a full undi-
rected graph (i.e. all pairs of variables linked). Starting from i = 0, the algorithm seeks for
each possible pair of variables connected in the graph a subset of size i of their neighbours
conditionally on which the two variables are independent. Conditional independence can be
assessed by a choice of statistical tests, depending on the nature of the variables (discrete or
continuous). If such a subset exists, the edge between the two considered variables is removed
from the graph and the conditioning subset is recorded. Once all pairs of variables have been
tested, the algorithm increases i by one and repeats the search, until no pair of variables still
linked in the graph has i or more neighbours. The algorithm then tries to direct the remaining
edges using information about the conditioning sets found in the previous step, starting with
the v-structures in the graph (i.e. triplets of variables A,B,C such that A and B are adjacent,
B and C are adjacent but A and C are not adjacent, and B is not in the conditioning subset
that separates A and C). It then iteratively orients as many edges as possible without creating
new v-structures. I used the stable version of the algorithm presented by Colombo & Maathuis

https://www.nesi.org.nz
https://www.nesi.org.nz
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(2014). The PC algorithm makes the assumption of causal sufficiency, i.e. it assumes that all
variables involved in the causal system are observed.

• FCI (Fast Causal Inference – Spirtes et al., 1999): The FCI algorithm uses a search strategy
identical to the PC algorithm in order to infer the skeleton of the causal graph, and to direct
the v-structures in the resulting graph. Using this orientation, the FCI algorithm then updates
the skeleton to account for the presence of confounders by performing additional conditional
independence tests, before orienting as many edges as possible using a set of orientation rules.
Contrary to the PC algorithm, FCI does not makes the assumption of causal sufficiency, and
therefore accounts for latent variables (also called hidden confounders) that impact two or more
observed variables.

• FCI+ (Claassen et al., 2013): The FCI+ algorithm is a variant of the FCI algorithm that seeks
to reduce the computational burden of the additional conditional independence tests performed
in the second phase of the skeleton reconstruction in FCI. Specifically, the FCI+ algorithm
proposes a faster alternative to selecting the subsets of variables used as possible conditioning
sets in the additional conditional independence tests.

Score-based methods

• GES (Greedy Equivalent Search – Chickering, 2003): The GES algorithm uses a two-step
approach to reconstruct the causal inference graph for a set of observed variables. In a first
step termed the forward phase, the algorithm iteratively tests all possible one-edge additions
in the candidate causal graph and selects the one that best improves the fit of the candidate
causal graph to the data, according to a scoring criterion such as the Bayesian information
criterion (BIC) or log-likelihood criterion. Once a local maximum is attained, the algorithm
moves to the second or backward phase. In this phase, it iteratively seeks edge removals that
best increase the score, until a local maximum is reached.

• FGES (Fast Greedy Equivalence Search – Ramsey et al., 2017): The FGES algorithm is a
variant of the GES algorithm, that aims at optimising computations through the use of caching
and parallelisation.

Hybrid methods

• MMHC (Max-Min Hill Climbing – Tsamardinos et al., 2006): The hybrid algorithm MMHC
aims at making the best out of the concepts of both constraint-based and score-based algo-
rithms. In a first phase termed the restrict phase, the MMHC algorithm computes the set of
potential parents of each variable, using the Max-Min Parent and Children algorithm (MMPC)
(Tsamardinos et al., 2003b). The latter uses the concept of mutual information to search a subset
of variables to which a given variable is highly associated, conditionally on the other variables.
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In the second or maximise phase, MMHC uses a greedy hill-climbing scheme to iteratively
add, remove or re-orient edges in the graph in order to best improve a score measuring the fit
of the candidate causal graph to the data. Edge additions are restricted to edges between any
variable and its set of potential parents as computed in the first phase.

• ARGES (Adaptive Restricted Greedy Equivalence Search – Nandy et al., 2018): The ARGES
algorithm seeks to improve the score-based GES algorithm, by restricting the set of possi-
ble edges that can be added to the candidate causal graph during the forward phase. The
set of possible edges is computed using the graphical LASSO (gLASSO) graph estimation
method (Meinshausen & Bühlmann, 2006), a variable selection scheme similar to LASSO
with penalisation to enforce sparsity.

Network-inference methods

• ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks – Margolin et al.,
2006): The ARACNe algorithm is a network inference method, i.e. it does not seek causal
relationships among variables. Instead, it uses the concept of mutual information to detect pairs
of variables that are highly associated, and removes indirect interactions in triplets of variables
by removing the edge between the two variables that share the lowest association score.

• GENIE3 (Gene Network Inference with Ensemble of trees – Huynh-Thu et al., 2010): GENIE3
is another network inference method that relies on random forest to learn independently for
each gene the list of its regulators. The average importance score of a candidate regulator in
a set of many trees is used as confidence score or weight in the resulting adjacency matrix
between all genes or variables.

For the PC, FCI, FCI+, GES and ARGES algorithms, I used the versions implemented in the
pcalg package (Kalisch et al., 2012). For the FGES algorithm, I used the implementation available
in the rcausal package (Wongchokprasitti, 2019). For the MMHC algorithm, I used the bnlearn
package (Nagarajan et al., 2013). For the ARACNe algorithm, I used the version implemented in
the minet package (Meyer et al., 2008). For the GENIE3 algorithm, I used the GENIE3 package
(Huynh-Thu et al., 2010).

In addition to the algorithms mentioned above, a number of other causal inference methods have
been proposed in the literature, which use additional assumptions on the data distribution in order
to distinguish between different DAGs from a same Markov Equivalence class (e.g. Shimizu et al.,
2006; Hoyer et al., 2008). Such algorithms were not included in the present comparison because of
the additional assumptions they make. In addition, I left out of the comparison other variants of the
PC and FCI algorithms (e.g. Colombo et al., 2012), as there already is a version of these algorithms
included.



3.2. Materials and methods 91

3.2.4 Types of output causal graph

A key point when evaluating the performance of different causal inference methods is to understand
the type of causal graph returned by each method. Indeed, different methods return causal graphs
of different nature, that cannot be interpreted in the same way. Ignoring this difference during the
evaluation leads to biased results. In the present section I briefly describe the different types of causal
graphs returned by the methods considered (see also Table 3.2) and how to interpret them in terms of
causal relationships (for a definition of causal graph the reader is referred to Section 1.4.2).

DAGs

Directed acyclic graphs (DAGs) are fully directed graphs with no loops. The nodes in the DAG each
represent a variable, and when it is interpreted as a causal graph, a directed edge from one variable A
to another variable B (i.e. A→ B) indicates that A has a direct causal effect on B. We refer to A as
a parent of B. Any node C for which there exists a directed path from C to B (e.g. C → A→ B) is
called an ancestor of B. By convention, the parent A is also considered as an ancestor of B. If the
DAG represents a causal graph, it informs about the conditional independences among the considered
variables.

CPDAGs

Several DAGs sharing a same skeleton (i.e. set of edges when ignoring their orientation) but with
different edges orientation can encode the same set of conditional independences among a set of
variables. These DAGs are termed Markov equivalent, and the set of all Markov equivalent DAGs is
named the Markov equivalence class of the DAGs (see also Section 1.4.2). In consequence, methods
such as PC or GES cannot infer the orientation of all edges based on observational data alone, and
instead aim at reconstructing the Markov equivalence class of the true causal graph. Therefore, the

Table 3.2: Output graph and tuning parameters of the causal inference methods evaluated

Type of output graph Tuning parameter

Method Undirected graph DAG CPDAG PAG α Penalty Threshold

PC × ×
FCI × ×
FCI+ × ×
GES × ×
FGES × ×
MMHC × × ×
ARGES × ×
ARACNe × ×
GENIE3 × ×
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output of these methods is a completed partially directed DAG (CPDAG). In a CPDAG, a directed
edge is present fromA toB (i.e.A→ B) if this edge is present in all DAGs in the Markov equivalence
class with the same orientation. The edge indicates that A is a parent of B (i.e. has a direct causal
effect on B). On the contrary, the edge between A and B will be undirected (i.e. A B) if this
edge is present with one orientation in some of the Markov equivalent DAGs (e.g. A→ B) and with
the opposite orientation in others (e.g. A← B). Therefore, an undirected edge in a CPDAG can be
interpreted as information that the two variables are causally related, but we cannot say that one is
parent of the other solely based on the available data.

PAGs

DAGs and CPDAGs assume that all variables involved are observed (this is the assumption of causal
sufficiency). However, it is possible that unobserved or hidden variables causally influence some
of the observed variables. The presence of these latent variables hinder our ability to reconstruct
parental causal relationships among observed variables. Information about causal relationships
between observed variables in the presence of hidden variables can be represented with a maximal
ancestral graph (MAG). In such graph, the edges cannot be interpreted in the same way as in DAGs;
instead, the endpoints of the edges hold the causal meaning. An edge from A to B with a tail at A,
A B, where the star symbol means “any type of endpoint symbol” (i.e. either a tail or an arrow),
signifies that A is an ancestor of B. On the contrary if the edge has an arrowhead pointing toward A,
A B, it means that A is not an ancestor of B. A bidirected edge between the variables, A B

indicates the presence of a hidden variable affecting both A and B. Methods that account for the
possible presence of hidden variables, such as FCI and FCI+, return a partial ancestral graph (PAG),
which represents the Markov equivalence class of the underlying MAG. In a PAG, arrowheads and
tails can be interpreted in terms of ancestral causal relationships in the same way as for a MAG. In
addition, uncertainty about the orientation of an edge endpoint is denoted as A B, with the circle
representing the method’s inability to orient the endpoint as either an arrow or a tail.

3.2.5 Methods tuning parameters

Each method investigated relies on one or more tuning parameters (see Table 3.2), which impact the
causal graph reconstruction. Therefore, I evaluated the performance of the nine methods over a range
of values for these parameters (box CI1 in Figure 3.1). I briefly present below the meaning of each
tuning parameter as well as the range of values investigated in this study.

• α: a constraint-based method needs to make a decision on the result of a conditional indepen-
dence test between two variables. The tuning parameter α is used as a significance threshold
for the p-values of such tests. If the p-value of a conditional independence test is smaller than
α, the null hypothesis of the test, stating that the two investigated variables are conditionally
independent, is rejected and the two variables are considered as conditionally dependent. This
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Table 3.3: Values tested for the tuning parameters of the different causal inference methods.

Tuning parameters Tested values

α 1× 10−4, 2.5× 10−4, 5× 10−4, 7.5× 10−4, 1× 10−3,
2.5× 10−3, 5× 10−3, 7.5× 10−3, 5× 10−4, 0.01 to 0.4 every

0.01
Penalty 1× 10−4, 5× 10−4, 1× 10−3, 0.05 to 0.15 every 0.01, 0.2 to 5

every 0.2,
Threshold 0.01 to 0.99 every 0.01

leads to adding an edge in the causal graph between the two variables (or not removing the edge
from the complete graph). Therefore, lower values of α yield sparser inferred causal graphs as
less p-values are below the α threshold and thus more variables are considered conditionally
independent. For the evaluation, I tested values for α ranging non-linearly from 1× 10−4 to
0.4 (see Table 3.3). While this upper limit is an unrealistic value to use in practice (as it would
lead to graphs that are very dense), high α values were included to assess the behaviour of the
methods for these extreme cases.

• Penalty: a score-based method has to assess the fit of a given candidate causal graph to the data
using some model selection criterion, e.g. the log-likelihood criterion. Such scores balance the
fit of the model with its complexity, in order to avoid overfitting, by penalising the number of
edges in the causal graph. High penalty values will result in sparser estimated causal graphs
as the addition of edges during the graph reconstruction is more heavily penalised. For GES,
MMHC and ARGES, the penalisation constant λ used is the penalty times the log of the number
of observations. For the FGES algorithm, the penalty discount parameter passed to the R
function corresponds to two times the penalty in the scoring criterion. For this evaluation, I
tested values for the penalty ranging non-linearly from 1× 10−4 to 5 (see Table 3.3).

• Threshold: the two network inference methods considered, namely ARACNe and GENIE3,
return weighted adjacency matrices, with values between zero and one, indicating the evidence
or confidence in the existence of an edge between any two variables. In order to interpret this
output as a causal graph, I use a threshold on the edges weight in order to retain only edges
with weight above this threshold. A high threshold will result in sparser estimated graphs as
only edges with the highest scores are retained. I tested here values ranging from 0.01 to 0.99
(see Table 3.3).

To reduce the computational burden, runs of a method (for a given network with a particular value of
tuning parameter) exceeding 10 minutes are stopped and removed from the analyses.
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3.2.6 Different causal queries and evaluation metrics

For each configuration, the performance of the different network and causal inference methods was
evaluated with respect to different inference tasks (box CI1 in Figure 3.1). I assessed the ability of the
methods to correctly reconstruct the skeleton of the causal graph, i.e. to correctly infer the presence or
absence of an edge between two variables or genes, without considering the orientation of the edge or
its causal interpretation. In addition, in order to evaluate fairly the performance of each method with
respect to the type of output graph it infers, the methods’ answers to different causal queries were
evaluated, that each reflect the ability to detect a different type of causal relationship, as suggested in
Heinze-Deml et al. (2018). Namely, for each pair (A,B) of variables, the methods have to answer
the following queries:

• the parent query: is A a causal parent of B? The answer is “yes” if there is a direct causal link
from A to B. As the FCI and FCI+ algorithms only infer ancestral relationships, they cannot
answer this causal query. Moreover ARACNe, which returns undirected graphs, cannot answer
this query either.

• the potential parent query: is A a potential causal parent of B? The answer is “yes” if there
is a direct causal link from A to B or if the orientation of the causal edge between A and B
could not be determined. Parents of a given variable are also considered as potential parents of
the variable.

• the ancestor query: is A an ancestor of B? The answer is “yes” if there is a direct or indirect
causal path directed from A to B. ARACNe, which returns undirected graphs, cannot answer
this query.

• The potential ancestor query: is A a potential ancestor of B? The answer is “yes” if there is
a direct or indirect causal path from A to B, possibly including causal edges for which the
orientation could not be inferred.

In addition, I investigated the following negative queries, which are the complement of potential
queries mentioned above:

• the not parent query: is A not a parent of B? The answer is “yes” if there is no direct causal
link from A to B, even with undetermined orientation. It it the complement of the potential
parent query.

• the not ancestor query: is A not an ancestor of B? The answer is “yes” if there is no direct or
indirect causal link from A to B, even involving edges with undetermined orientation. It it the
complement of the potential ancestor query.

However, the results are redundant with those presented for the potential queries (as they are comple-
mentary), and did not provide useful insight into the performance of the methods. Results for these
two negative queries will therefore not be mentioned in the Results section.
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Table 3.4 presents the types of edges/paths that are considered for a positive answer to each query,
depending on the type of causal graph evaluated. The implementation of these causal queries found
in the CompareCausalNetworks package (Heinze-Deml et al., 2018) was used. Each causal query is
answered with respect to a given graph (G), in the form of a p× p matrix QG (where p is the number
of observed variables). In the answer matrix, QGi,j = 1 (1 ≤ i, j ≤ p) if the answer is positive for the
(ordered) pair of variables (i, j) and 0 if the answer is negative. It is therefore possible to compare
the answers obtained for a given query with two different graphs. In particular, one can compare the
answers obtained with the network used to simulate data (the ground truth) to the graph predicted
with a causal inference method.

For the skeleton reconstruction as well as each query, I compared the answers obtained with the
causal graph reconstructed by a given method to the answers obtained with the true causal graph,
to compute the number of True Positive (TP), False Positive (FP), True Negative (TN) and False
Negative (FN). These counts were used to calculate:

• The precision Pr: Pr = TP
TP+FP , i.e. the fraction of positive answers to the query that are

correct;

Table 3.4: Types of edges between two variables A and B that, if present in a causal graph, lead to a
positive answer for the corresponding causal query between A and B.

Query DAG CPDAG /
undirected graph PAG

A parent of B A→ B A→ B ∅

A potential
parent of B A→ B

A→ B A B

A B A B

A not parent of B Complement of potential parent query

A ancestor of B
path from A

to B with edges
A→ B

path from A
to B with edges

A→ B

path from A
to B with edges

A B

A potential
ancestor of B

path from A
to B with edges

A→ B

path from A
to B with edges
A→ B and
A B

path from A
to B with edges
A B and
A B

A not ancestor
of B Complement of potential ancestor query
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• The recall Re (also termed sensitivity): Re = TP
TP+FN , the fraction of all correct answers that

are positive;

The F1 score (Rijsbergen, 1979), which corresponds to the harmonic average of the precision and
recall scores, was also computed as follows:

F1 = 2
Pr ×Re
Pr +Re

The F1 score quantifies the trade-off between prevision and recall. It takes values between zero
and one, with high values indicating both a good precision and good recall. As each method depends
on one or more tuning parameters, the different scores presented above were first computed for each
simulated dataset and each tested value of the tuning parameters. To compare the different methods,
the value(s) of the tuning parameter(s) yielding the highest mean F1 score across the 20 datasets in a
considered configuration were selected, independently for each configuration and each query. Using
the F1 score as criterion is a sensible choice as it allows to assess the trade-off between precision,
i.e. the ability to make correct predictions and recall, i.e. the ability to not miss information.

The skeleton reconstructed by the different methods were also compared by computing a Skeleton
Similarity Score Sk. Given an inferred graph GA with N nodes, its symmetrical skeleton adjacency
matrix is defined as SA = {SAij}1≤i,j≤N with SAij = SAji = 1 if there is an edge between the nodes i
and j in GA and 0 otherwise. Thus, for two graphs GA and GB , both with the same set of N nodes,
we have:

Sk = 1−

N∑
i=1

N∑
j=1
|SAij − SBij |

N∑
i=1

N∑
j=1

SAij +
N∑
i=1

N∑
j=1

SBij

For each method and causal query, the impact of setting the tuning parameters to different values
was evaluated (box PA1 in Figure 3.1). Next, for each causal query, configuration and inference
method independently, the value of the tuning parameter(s) yielding the best average F1 score across
the 20 datasets was selected (box PA2 in Figure 3.1). The methods performance in each configuration
for the different causal queries was investigated (box PA3 in Figure 3.1).

3.3 Results and Discussion

The aim of this study is to assess how well different causal inference methods are able to reconstruct
gene regulatory networks from RNA level data in the presence of post-transcriptional regulation.
sismonr was used to simulate the expression of genes organised in regulatory networks that comprise
transcriptional and post-transcriptional regulation, i.e. regulation of translation, RNA decay, protein
decay, and protein post-translational modification. sismonr allows to simulate the expression of the
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gene products in a same network for different in silico individuals, each carrying genetic mutations
affecting the kinetic properties of the network. These mutations are key to reconstructing causal
relationships from observational data, as they are source of random noise between the observations
(e.g. see Thomas & Conti, 2004). The performance of the causal inference methods was assessed
across 13 simulations scenarios, each differing in the number of post-transcriptional regulators and
the type of post-transcriptional regulation occurring in the simulated networks. These configurations
are summarised in Table 3.1.

3.3.1 Running time

I present in Figure 3.2 the running time of the evaluated methods as a function of the values of
the tuning parameters, across the 260 simulated datasets. The figure shows that the running time of
the methods depending on the α parameter increases with the values of α. Higher values of α lead to
retaining more edges in the causal graph, thus increasing the search space for conditioning subsets
during the graph reconstruction. For the same reason, the running time of methods using the penalty
parameter decreases when the penalty value increases. Exploration moves in the graph search space
are more restricted for high penalty values, since any addition of an edge in the candidate causal graph
is heavily penalised. The running time of the network inference methods (ARACNe and GENIE3)
do not depend on the threshold parameter as it is applied to the adjacency matrix returned after the
computation. While the α parameter heavily influences the running time of the causal inference
methods, the running time of methods using the penalty had a smaller variation across the range of
values tested. Among the causal inference methods, FGES was the fastest, with an average running
time of 0.23 seconds (SD 0.056s) per dataset across all configurations and tuning parameter values.
MMHC was the second fastest, with an average running time of 0.47s (SD 1.49s), and FCI+ was
third with an average running time of 0.88s (SD 2.23s). FCI was on average the slowest of the causal
inference methods (28s, SD 85.9s) and was the method for which most runs were interrupted for high
α values because they exceeded the 10 minutes limit. Among the network inference methods tested,
ARACNe was on average faster than all causal inference methods, with an average running time of
0.02s (SD 0.010s), while GENIE3 was the slowest of all methods with an average running time of
287s (SD 35.2s), possibly due to its R implementation.

3.3.2 Methods performance when changing the tuning parameters

The performance of the causal inference methods was evaluated across a wide range of values for the
different tuning parameters. Supplementary Figure E.1 presents the number of edges in the graphs
inferred by the different methods across the 260 simulated datasets. As expected, the number of
inferred edges increases with the tuning parameter α, and decreases with the penalty and the threshold
parameters. In order to assess the performance of the methods in answering the different queries, the
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Figure 3.2: Running time (in seconds) of the different methods across all simulated datasets. a)
Running time of the causal inference methods, as a function of the value of the tuning parameters.
The points show the average running time of the methods across the 260 simulated datasets, with
the vertical bars showing the minimum and maximum values. The size of the points represent the
fraction of runs that finished within the 10-minutes limit (i.e. smaller points indicate that more runs
exceeded the limit and were interrupted). b) Running time of the network inference methods across
the 260 simulated datasets, for comparison, as it does not depend on any tuning parameter.
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F1 score of the predicted network was computed for each task in each configuration. In Figures 3.6
and 3.7, I present the mean F1 scores for the six causal queries investigated for each method, in each
scenario, across the range of tuning parameter values tested.

First, it can be seen that the mean F1 score obtained for the parent and ancestor queries are quite
low across all investigated methods (see Figure 3.6), with values not exceeding 0.4. Higher mean
scores are obtained for the potential parent and potential ancestor queries. This is due to the fact that
the parent and ancestor queries require the methods to correctly assess the orientation of edges, and
non-oriented edges are therefore considered as false negative for these queries (see Table 3.4). On
the contrary the potential parent and potential ancestor queries account for the uncertainty in edges
orientation. Note that the MMHC and GENIE3 methods both return fully directed graphs. Therefore,
their answers to the parent query will be identical to their answers for the potential parent query (see
Table 3.4). Indeed, the answers to the parent query rely on directed edges while the answers to the
potential parent queries also include undirected edges; however there will be none with MMHC and
GENIE3. Similarly, their answers to the ancestor and potential ancestor queries will be identical.
Moreover, the F1 scores obtained for the parent and potential parent queries are in general higher than
those obtained for the ancestor and potential ancestor queries. This is because the ancestor queries
informs about the correct inference of paths in the graph, and are thus more sensitive to errors made
during the graph reconstruction.

For the MMHC method, which depends on both α and the penalty, the impact of one tuning
parameter’s value on the results depends on the value of the other tuning parameter. In particular,
when α is already large, further increase in its value only impacts the reconstructed graph if the
penalty is very small. This is because high values of α means that the space of possible edges to add
in the graph during the score-based phase of the algorithm is quite high, however if the penalty is not
low, the cost of adding additional edges in the candidate graph prevents a lot of these potential edges
to be included in the final reconstructed graph. I also note that the GES and ARGES methods yield
almost identical results. As ARGES is an extension of the GES method that aims at improving the
reconstruction by constraining the search space, it means that this additional constraint during the
causal graph reconstruction does not impact or improve much the inference. Also, the results of PC
and FCI for the potential parent query are very similar, which is to be expected as the FCI algorithm
relies on the PC algorithm as a first step to reconstruct the skeleton of the causal graph.
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The values of the tuning parameters for which the maximum mean F1 score is achieved for each
method and each simulation configuration are presented in Figures 3.3 and 3.4. For any given causal
query, these values are quite consistent across the different configurations for each method, except
in some cases, e.g. the FGES method for the parent query. In such cases, the method performs
badly across all values of the tuning parameter. Therefore the value yielding the best F1 score will
be different across the configurations as it reflects small fluctuations in the F1 score rather that a
true improvement of the performance with this value of tuning parameter. On the contrary, when
comparing between causal queries, the value(s) of the tuning parameters yielding the best mean F1

score varies, specially between the parent and possible parent queries, and between the ancestor and
possible ancestor queries. This is explained by the fact that the queries are not equally sensitive to
different errors made in the reconstruction process. For example, the parent query ignores indirect
edges between variables and thus is insensitive to inferred causal relationships that are false positive if
the orientation of the causal relation couldn’t be resolved (i.e. undirected edges in the inferred graph).
The plots show that for the hybrid method MMHC, the choice of the α parameter has more impact on
the resulting performance than choosing a value for the penalty parameter. This can be due to the fact
that the the value of α chosen provides enough constraint on the sparsity of the graph, and guides
the selection of the potential parents of each variable. Thus having a non-restrictive penalty does
not reduce the performance of the method as spurious associations between variables have already
been removed during the first phase of the algorithm. In general (i.e across methods, configurations
and queries) α values ranging from 5× 10−3 to 5× 10−2 and penalty values ranging from 5× 10−2

to 1 seem to yield reasonable performance. For the threshold parameter, values below 0.3 yield
sensible results for ARACNE, while results for GENIE3 depend heavily on the configuration and
query considered.

3.3.3 Comparison of methods’ performance

For each causal query, method and simulation configuration, the value of the tuning parameter that
yielded the best average F1 score across the 20 simulated networks was retained (see Section 3.3.2).
This allows us to compare the best performance of the methods within and across the different
configurations. The resulting mean F1 scores are shown in Figure 3.5.

The best scores across the parent, ancestor and possible parent/ancestor causal queries are
obtained for the configuration with only transcription regulation. Across all methods, the mean F1

score decreases when the number of post-transcriptional regulators in the system increases. Slightly
better scores are obtained for configurations involving regulation of RNA decay, as opposed to other
types of post-transcriptional regulation. It can be easily explained, as the RNA decay regulation
impacts the RNA levels of the genes, which are used for the causal graph reconstruction. Again, we
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Figure 3.3: Values of the tuning parameters for which the highest mean F1 score is obtained across
the 20 datasets for each configuration (x axis) and method, for the parent (top panel) and ancestor
(bottom panel) queries. Each point corresponds to a value of the corresponding tuning parameter
for which the highest F1 score is obtained for the method, configuration and query considered, with
shaded areas and lines delineating the range of values for which the maximum mean score is obtained.
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Figure 3.4: Values of the tuning parameters for which the highest mean F1 score is obtained across
the 20 datasets for each configuration (x axis) and method, for the potential parent (top pannel) and
potential ancestor (bottom panel) queries. Each point corresponds to a value of the corresponding
tuning parameter for which the highest F1 score is obtained for the method, configuration and query
considered, with shaded areas and lines delineating the range of values for which the maximum mean
score is obtained. The corresponding F1 values are shown in Figure 3.5
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Figure 3.5: Mean F1 score obtained with each method across the 20 simulated datasets for each
configuration (x axis) and causal query (rows facetting), with the optimal values of the tuning
parameters. The error bars represent the minimum and maximum F1 score obtained across the 20
datasets of each configuration.

can observe higher average scores for the parent and potential parent queries compared to the ancestor
and potential ancestor queries, as the last two require correct inference of paths in the graph and are
thus more sensitive to errors in the graph reconstruction. In addition, a variable has more ancestors
than parents in the graph, so there is more possibilities to make errors in the case of the ancestor
query. Similarly, better scores are obtained for the potential parent/ancestor queries, compared to the
parent/ancestor queries, as for the former there is no need to infer the correct orientation of the edges.
I illustrate this point with an example network from configuration 1 (only transcription regulators).
The consensus skeletons of the graphs returned by the different methods for each causal query are
presented in Figure 3.8. The consensus skeleton is defined here as the graph of genes in which an
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Figure 3.7: F1 score obtained by the different methods as a function of the value of the tuning parameters for the potential parent (left panel) and
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edge is added between two nodes if at least one of the investigated method inferred this edge. A
weight is given to each edge, which corresponds to the number of inference methods that predicted
the edge. We can see that in order to attain a good F1 for the parent and ancestor query, the methods
have to infer a lot of false positive relationships between the genes, in order to assess the orientation
of the edges. However non oriented false positive edges are not penalised for this query. It is even
more pronounced in the ancestor query, as the methods have to infer correctly oriented paths. On the
contrary, less false positive relationships are inferred when the causal queries account for uncertainty
in the edges orientation, i.e. for the potential parent and potential ancestor queries. Note that a number
of false positive relationships are detected only by GENIE3 for the potential ancestor query. In Figure
3.8, the thick red lines correspond to non-existing causal relationships consistently inferred by all
methods. This is caused by a correlation between two genes’ RNA level, due to the random allocation
of the genes’ alleles amongst the individual, stochastic noise or low expression.

For the parent and ancestor queries, the hybrid method MMHC yields the best average F1 scores
for configurations with mostly regulation of transcription: for example in configuration 1 it obtains
an average of 0.347 (SD 0.103) against an average of 0.284 (SD 0.113) for ARGES which is the
second best. However its performance becomes similar to other methods when the number of post-
transcriptional regulators in the system increases. For example, for the parent query, it reaches an
average F1 score of 0.095 (SD 0.084) for configuration 10 (with seven translation regulators), against
0.069 (SD 0.087) for the next best performer which is ARGES. GES and ARGES are the next best
performers (mean of 0.284 and SD of 0.113 with GES for configuration 1 and parent query), followed
closely by FGES and PC (mean of 0.223 and 0.207 respectively for configuration 1 and parent query,
with SD 0.064 and 0.113 respectively). For the ancestor query, FCI and FCI+ yield the lowest
mean scores across the configurations (e.g. for configuration 1 mean F1 score of 0.077 and 0.068
respectively). For both parent and ancestor queries, MMHC ranks first by obtaining the best precision
(i.e. fraction of the positive queries that are true), at the cost of a slightly lower recall than GES and
ARGES (i.e. the fraction of true queries that are positive). An example is given in Supplementary
Figure E.2 for the parent query and Supplementary Figure E.3 for the ancestor query. It can be seen
that in order to infer and orient as many true edges as possible, the constraint-based and score-based
methods as well as ARGES included a large number of false positive in their reconstructed graphs.
In the case of constraint-based methods for example, they rely on the presence of v-structures in
the reconstructed graph in order to orient as many edges as possible. Therefore if the reconstructed
graph is very sparse, there will be less v-structures and therefore less edges oriented. For the ancestor
query, the poor performance of FCI and FCI+ is due to a very low recall. In the example presented
in Supplementary Figure E.3, this low recall is due to the orientation of the edges that could not be
correctly inferred.

For the potential parent and potential ancestor queries, however, MMHC is outperformed by other
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methods, which all yield very similar mean F1 scores, except for GENIE3. In the example presented
in Supplementary Figures E.4 for the potential parent query and Supplementary Figure E.5 for the
potential ancestor query, we can see that this is because the graphs inferred by the different methods
all share the same skeleton. However, as MMHC returns a fully directed graph, it has to decide on a
direction for each edge. Other methods returning CPDAGs or PAGs on the other hand can account
for the uncertainty in edges direction. Therefore, MMHC is handicapped in its ability to detect
potential parents and cannot be compared with methods including uncertainty. GENIE3 obtains the
lowest scores across all configurations. This poor performance is explained by the high recall but low
precision of the method, i.e. it infers too many causal relationships, mostly false positive (see the
example in Supplementary Figures E.4 and E.5). The other network inference method investigated,
ARACNe, performs on par with the other methods for queries that do not require orientation of the
edges. This is interesting as it is not a method that infers causal relationships, but merely association.

For each method and configuration, the value of tuning parameters yielding the best F1 score
when comparing the skeleton of the inferred graphs to the skeleton of the true causal graph was
selected. The resulting mean F1 scores for each configuration are presented in Figure 3.9. We can
see that all methods perform very similarly, except for GENIE3 which yield the lowest scores. The
mean F1 scores obtained for the configuration with only transcription regulation are quite high, at
around 0.65, while they are below 0.5 for configurations with post-transcriptional regulation, and
below 0.25 for configurations with seven post-transcriptional regulators. The very similar scores
obtained across the different methods suggest that the methods detect the same causal relationships
among the variables. The similarity between the skeleton of graphs inferred by any pair of methods
across all 260 simulated datasets with the optimal values of the tuning parameters are presented in
Figure 3.9. Interestingly, the three constraint-based methods, i.e. PC, FCI and FCI+, consistently infer
the same skeleton graph across all simulated datasets. The MMHC algorithm also returns graphs
with very similar skeletons to the constraint-based methods. Not surprisingly, GES and ARGES also
infer very similar skeletons. In general, the similarity score across the causal inference methods is
above 80%, indicating that, when selecting appropriate values for the different tuning parameters, the
methods differ the most by the orientation of the edges in the reconstructed causal graph rather than
by the edges themselves.

3.3.4 Reconstruction of post-transcriptional regulation

I next break down the performance of the methods in answering a causal query “is A a (potential)
parent/ancestor of B?” based on the biological role of A, i.e. whether it is a regulator of transcription
or a post-transcriptional regulator. I want to see whether the different methods are able to detect
causal relationships when the regulation between the genes occur at a different step than transcription.
We could expect that methods accounting for hidden variables might perform better at detecting
these types of interactions than methods assuming that all variables are observed. When focusing on
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Figure 3.8: A network simulated for configuration 1, and the consensus skeleton of the graphs inferred
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in the network are indicated in colours, with regulators of transcription highlighted in green, while
target genes are shown in gray.
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Figure 3.9: a) Mean F1 score obtained with each method across the 20 simulated datasets for each
configuration, with the optimal values of the tuning parameters, for the skeleton reconstruction. The
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configuration. b) Similarity between the skeletons of the graphs inferred by the different methods
for the optimal values of the tuning parameters. Upper triangle (red scale): mean similarity score
between the skeletons inferred by pairs of methods across the 260 simulated datasets. Lower triangle
(blue scale): standard deviation of the similarity score between the skeletons inferred by pairs of
methods across the 260 simulated datasets.
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regulatory interactions stemming from a transcription regulator, the ranking of the methods observed
in the previous section holds, and the mean F1 scores obtained are higher than those computed over all
genes regardless of their role. For example, for the potential parent query, the PC algorithm obtained
for the second configuration (three translation regulators) a mean F1 score of 0.31 (SD 0.102). When
considering only interactions arising from regulation of transcription, the average F1 score increases
to 0.525 (SD 0.160). On the contrary, when considering post-transcriptional regulations, all methods
perform very poorly, except when the post-transcriptional regulators affect their target’s RNA decay.
For example with the potential parent query for configuration 2, PC obtained an average F1 scores of
only 0.093 (SD 0.126). An example is shown in Figure 3.10, in which I present the mean F1 score,
precision and recall of each method for the potential parent query, depending on whether the query
focuses on a transcription or post-transcriptional regulator. Similar conclusions can be drawn for the
other causal queries; with very poor average F1 scores being obtained with all methods when focusing
on regulations stemming from post-transcriptional regulation. The mean recall for queries about
post-transcriptional regulators is very low across all methods, except for GENIE3, however at the
price of a low precision. It means that the methods are unable to correctly detect the causal relation
between two genes when the regulator does not directly affect the level of mRNAs of the target. In
the case of GENIE3, the higher recall observed is due to the fact that the method infers dense graph,
with a lot of false positive as well. It is interesting to see that even methods that account for latent
variables (FCI and FCI+) cannot detect relationships between genes that affect the protein level rather
than RNA level of the genes. It might be because in this case the hidden variable (i.e. the protein
level) acts as a missing link mediating the effect of one gene on another, rather than an unobserved
variable affecting the two mRNA levels.

One possible option to improve the causal reconstruction in presence of post-transcriptional
regulation is to make use of additional information about the genes expression. As the sismonr
package simulates the abundance of both RNAs and proteins for each gene, the causal inference task
was repeated on a few example networks from different configurations, using the protein level of
the genes as a measurement for their expression (Figure 3.11 and Supplementary Figures E.6 and
E.7). Remarkably, when using protein measurements for the causal inference on the example network
investigated that contains only transcription regulation, the different causal inference methods were
able to detect most of the regulations uncovered at the RNA level, with the added advantage that most
false positive relationships detected with the RNA measurements were not detected at the protein
levels. Indeed, in the absence of post-transcriptional regulation, the correlation between the RNA
and protein levels of a given gene is high. As a results, transcription regulation can be detected both
at the RNA and protein levels. Moreover, correlations between RNA levels of genes that arise due to
noise or low abundance and not regulatory interactions tend to disapear at the protein level.
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Figure 3.10: a) Mean F1 score, precision and recall obtained with each method across the 20 simulated
datasets for each configuration, with the optimal values of the tuning parameters, for the potential
parent query. The values are separated according to whether the causal query implicates a transcription
regulator or a post-transcriptional regulator. The error bars represent the minimum and maximum
values obtained across the 20 datasets of each configuration.
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Interestingly, however, GENIE3, GES and ARGES performed poorly for this reconstruction task,
and inferred many false associations. They were thus excluded from Figure 3.11 and Supplementary
Figures E.6 and E.7 for the sake of clarity. In example networks that contain post-transcriptional
regulation, performing the causal inference on protein measurements increased both the recall and
precision of the methods. For each method and each causal query independently, the value of
tuning parameter yielding the best F1 score for each of the examples presented in Figure 3.11 was
selected. For the parent query, the average F1 scores obtained with the mRNA measurements across
all methods (except GENIE3, GES and ARGES) were 0.171 and 0.065 for the example networks
from configuration 1 and configuration 6, respectively. These values increased to 0.180 and 0.194,
respectively, when using the protein measurements. For the example network from configuration 6, for
the potential parent query, the average F1 score increased from 0.242 with the mRNA levels to 0.547
with the protein levels. It can be noted for example that in the example network from configuration
6 (Figure 3.11), an edge is incorrectly inferred by most methods between genes 8 and 19 (G8 and
G19 in the graph) when using RNA measurements. This is due to a regulator gene 5 (G5) regulating
the transcription of both genes. On the contrary with the protein measurements these genes are not
causally related in any of the methods’ inferred graphs, and genes 5 and 19 are correctly linked. In
addition, in the examples presented, the false positive relationships detected by most methods with
one type of data (i.e. RNA or protein measurements) are different from the ones detected with the
other type of data. An interesting avenue for causal inference of regulatory networks could thus be
to weight the results of the inference obtained with both RNA and protein measurements in order
to assign an higher confidence scores to relationships detected at both levels. However it is still
uncommon to obtain for an experiment both mRNA and protein levels for the same set of samples.

3.4 Concluding remarks

The aim of this study was to investigate the performance of seven popular causal inference methods
along with two network inference methods in reconstructing causal relationships among genes in
the presence of post-transcriptional regulations. The evaluation aimed at assessing the ability of
the methods to detect relevant signal in realistic settings in which typical assumptions of causal
inference methods (e.g. causal sufficiency or acyclicity) are violated. RNA and protein levels were
simulated for 20 networks of 20 genes for each of the 13 different gene regulation configurations,
yielding a total of 260 simulated datasets. For each network, nine different causal and network
inference methods were applied to the simulated RNA levels of the genes over a range of values for the
different tuning parameters of the methods, and compared the precision and recall of each method in
answering different causal queries for pairs of genes. The F1 score was used to quantify the trade-off
between precision and recall. I observed that choosing an appropriate value for the significance
threshold α of conditional independence tests (for constraint-based methods) or for the penalty in the
graph scoring criterion (for score-based methods) is crucial to the performance of the inference. In
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general, methods are better at answering queries about parental causal relationships as opposed to
ancestral relationships, as the latter involves correctly inferring paths in the causal graph, and are thus
more sensitive to reconstruction errors. Similarly, it is important for methods to be able to express
uncertainty about the edges orientation, and methods such as MMHC or GENIE3 that reconstruct
fully directed graphs are more likely to yield a lower performance when assessing the possible parents
or ancestors of a given gene, compared to methods that return CPDAGs or PAGs. Overall, however,
there is not much difference in the average F1 scores obtained by the different methods over the
simulated datasets in each configuration; except for GENIE3 which performed worst than other
methods. This is specially true when evaluating the skeleton of the causal graphs returned by the
methods, i.e. when ignoring the orientation of the causal edges. In particular, methods accounting
for latent variables did not perform better than the other methods in presence of post-transcriptional
regulations.

The performance of all methods decreased when the number of post-transcription regulators in the
networks increases. The methods specifically struggle to correctly detect causal relationships between
genes caused by post-transcriptional regulators, except to some extent when the regulators target RNA
decay. The use of protein measurements for the causal inference was investigated, and I found that it
could lead to increased precision and recall both for transcription and specially post-transcriptional
regulations. Therefore, merging with some weighting scheme the causal inference results obtained
from both RNA and protein measurements could increase the accuracy of reconstructed graphs.
However, such an approach would still be affected by the presence of biological mechanisms triggering
the activation of transcription factors or other regulators without concurrent changes in the expression
of the corresponding gene. It can also be noted that rather than focusing on one causal inference
method, it is advantageous to combine graphs inferred by several methods, as it has been encouraged
by Vignes et al. (2011) for example. However, with these simulated datasets, different classes of
methods inferred very similar relationships, and the difference between inferred graphs lays more in
the orientation of the causal edges rather than in the skeleton of the reconstructed graphs.

There are a number of limitations to this comparison. The main one is that I generated networks
of small size (20 genes in total) with only a subset of them involved in expression regulation. This
is relatively small for biological networks, as the latter can include hundreds of genes. This could
however be a good approximation of small modules within regulatory pathways. This choice stemmed
from a need for computational feasibility. In order to test a number of simulation configurations, the
networks had to be reasonably small so that the data could be generated and analysed in a timely
manner. It would be interesting to repeat this comparison to see if the results obtained hold on
a larger scale, i.e. with thousands of genes, which is closer to the number of genes measured in
typical transcriptomics datasets. Similarly, a higher numbers of networks could be simulated per
simulation scenario to improve variability estimates. I also used simulated gene expression that
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contains biological noise but no additional noise to emulate experimental variability. I am aware
that this leads to optimistic performance scores, as technical noise that characterises experimental
datasets hinders the reconstruction process. The scores obtained here must therefore be used with
caution as they likely represent an upper limit to the performance of the methods for these scenarios.

It could also be interesting to compare the methods on other types of performance metrics. For
example, the F1 score is a special case of the Fβ score, which allows us to tune the relative importance
of the precision and recall. For example, Ahmed et al. (2018) used instead the F0.5 score, with
which the precision is considered twice as important as the recall. This is of interest in the setting of
molecular biology, as it is both expensive and time-consuming to experimentally validate inferred
relationships between any two genes. It is therefore desirable to obtain inferred graphs with high
precision, i.e. a low number of false positive, even at the expense of missing more true relationships,
rather than a denser graph that captures more true relationships but in which a large fraction of
the inferred edges are false positive. Other metrics that could be applied are methods that quantify
the distance in graph space between the true and inferred graph, for example the Balanced Scoring
Function (Constantinou, 2019). Future comparisons could include these metrics in order to draw
wider conclusions. Also, it would be interesting to develop a score that accounts for the difference
in the types of causal relationships (parental vs ancestral) that each method can reconstruct. This
would circumvent the need for comparing the methods’ ability to answer different causal queries.
Moreover, I illustrated on some examples the interest of using protein measurements to reconstruct
regulatory networks. I concluded that it could be interesting to compare the results of causal inference
obtained on mRNA levels to those obtained with protein measurements. Future work could include
performing a complete evaluation of the methods on protein measurements, to see if the conclusions
drawn here on examples can be applied at a larger scale. In particular, it could be interesting to
explore a weighting scheme to combine causal inference results from RNA and protein measurements.
Another option would be to combine both datasets and perform the causal inference on mRNA and
proteins as variables. This however raises the issue of proper normalisation in order to combine
these two heterogeneous types of data. Additionally, as mentioned previously, this would require
validation on experimental datasets including both mRNA and protein measurements. The use of
prior knowledge to guide the reconstruction process could also improve the performance of the causal
inference methods. One option would be to use information about the presence of binding motifs
present upstream of a potential target, in order to confirm the presence of a potential regulatory
relationship. Note that this would be limited to organisms for which a high-quality reference genome
is available.

Lastly, it is to be noted that the choice of causal inference method to use will depend on the
application and dataset considered. The results from these simulations have highlighted that methods
accounting for latent variables might not provide a substantial advantage when reconstructing gene
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regulatory networks. However, there may be cases in which we can expect unmeasured confounders
to impact several of the observed variables. In such cases, FCI or FCI+ might be more appropriate.
This comes at the cost of an increased computational burden. In our experiments, GENIE3, FCI and
FCI+ were the slowest methods amongst all evaluated methods. It can thus be expected that they will
not be appropriate for datasets in which the number of variables is high, or in which the number of
expected relationships is large (see for example Ogarrio et al. (2016) for indications of running time).
For such large systems, faster methods such as MMHC or FGES might be preferred.
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Chapter 4

Investigating genotype-phenotype
relationships for tuber bruising in
autotetraploid potatoes using genomics
and transcriptomics data

4.1 Introduction

Genome-wide association studies (GWAS) use statistical methods to detect causal variants in the
genome that control a trait of interest. Such analyses make use of random genomic variations
segregating in a relevant population, and seek statistical associations between these variations and the
corresponding phenotypic values measured across a panel of individuals. This panel typically consists
of a large population of individuals replicated over several environments, to separate the effect of
environmental and genetic variations on the phenotype of interest. Although it is very difficult to
detect the precise causal variant(s) influencing a considered trait, GWAS studies rely on linkage
disequilibrium between the causal variants and nearby markers (i.e. non-random association of alleles
at the considered loci, due to genomic proximity, selection, or other factors) whose genotype can be
measured in order to detect genomic regions of interest for the phenotype. Such regions can then
be further investigated to uncover genes or regulatory features controlling the trait, notably with the
addition of transcriptomics data that provide information about the expression of genes into mRNAs.
Combining GWAS results with analyses at the transcriptomics levels (such as differential expression
analysis) allows to further investigate the effects of genetic mutations on the expression of genes and
uncover the genes mediating the link between genotype and phenotype.

While such genomic association studies have been extensively investigated in diploid species,
more work is still required for polyploid species, owing to their high genetic complexity. Among them,
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the potato, Solanum tuberosum, is a tetraploid crop of great economic importance. In particular, a
better understanding of its agronomic and quality traits is crucial for breeding programs, in order to
develop improved lines. This has been hindered by the complex genetic architecture of these traits, the
high heterozygosity of the crop, and the lack of tools dedicated to polyploid genetic studies. Therefore,
previous studies have made use of diploid species of potatoes (Bisognin et al., 2018; Hara-Skrzypiec
et al., 2018; Kloosterman et al., 2013; Werij et al., 2007), biparental populations (Bisognin et al.,
2018; Bradshaw et al., 2008; Kloosterman et al., 2013; Werij et al., 2007), restricted the analysis to
dominant markers or diploidised the markers dosage (i.e. the number of alternate alleles carried by a
sample) in order to use diploid tools (e.g. Malosetti et al., 2007), or focused on candidate genes for
the association analysis (Baldwin et al., 2011; Carpenter et al., 2015; Fischer et al., 2013; Li et al.,
2008; Schönhals et al., 2016; Schreiber et al., 2014; Urbany et al., 2011). Despite these drawbacks,
numerous studies have investigated the genetic basis of important potato traits, notably through the
use of GWAS (D’hoop et al., 2014; Rosyara et al., 2016; Schönhals et al., 2017; Schreiber et al., 2014;
Sharma et al., 2018). Recently, a R package for GWAS analysis of tetraploid organisms, GWASpoly,
was proposed by Rosyara et al. (2016). GWASpoly implements several genetic models to explain
the impact of a marker’s dosage on the phenotype. Importantly, it allows the inclusion of population
structure in the model in order to correct for the impact of possible subpopulations on the resulting
marker scores. Population structure can lead to spurious marker-trait associations as the presence of
distinct subpopulations with different trait distributions and allele frequencies can lead to statistical
association between the trait and unrelated markers (Bazakos et al., 2017; Michaelson et al., 2009).
Rosyara et al. (2016), and later Sharma et al. (2018), investigated the impact of failing to account for
population stratification on the results of an association analysis for potato.

Another critical step in a GWAS analysis is to select a significance threshold for the marker scores
that properly accounts for multiple testing. Indeed, a statistical test of association with the phenotype
is performed for each investigated genetic marker, resulting in tens to hundreds of thousands of
p-values computed. Hence, proper correction of these p-values is necessary in order to avoid an
inflation of false positive detections (Goeman & Solari, 2014). There are two popular approaches to
multiple testing correction. The first consists in controlling the family-wise error rate (FWER), which
corresponds to the probability of making at least one false detection across the entire set of tests. The
Bonferroni correction is a popular example of such FWER-based correction (Bland & Altman, 1995).
It is applied by dividing the intended threshold on type-I errors (false positives) by the number of
tests performed. The resulting value is then used as a significance threshold for the markers’ p-values.
Such correction is however very conservative, as it is controlling the probability of making even
one false positive detection across all the markers. Thus, the reduction in false positive comes at
the expense of a large decrease in power to detect associations. To alleviate this problem, a second
approach is to control the False Discovery Rate (FDR), which is the proportion of falsely declared
positive (i.e. significant) tests among all tests coming out as positive. The Benjamini-Hochberg
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correction (Benjamini & Hochberg, 1995), sometimes referred to as FDR correction, and Storey’s
q-value (Storey, 2002), are often used to this end. Both rely on the assumption that, under the null
hypothesis, p-values are uniformly distributed, and therefore the correction is performed based on
the entire set of p-values across all markers. FDR-based corrections are less stringent and therefore
more powerful than FWER-based corrections. However, the application of multiple testing correction
to a GWAS setting must be handled with care. In particular, linkage disequilibrium between the
investigated markers render the tested hypotheses dependent. Specifically, several closely located
markers each with a significant score might not correspond to independent discoveries, but instead
reflect the presence of a single genomic region impacting the phenotype (Brzyski et al., 2017). This
complicates the definition of false discovery rate and therefore its estimation, potentially leading
to under- or over-estimation of the global FDR (Korthauer, Chakraborty, et al., 2019). In response,
methods have been proposed to control the overall FDR based on groups of tests representing single
hypotheses (Barber & Ramdas, 2015; Brzyski et al., 2017; Siegmund et al., 2011). In the case of
the Bonferroni correction, the impact of linkage disequilibrium on the correction can be alleviated
by deriving from the correlation between markers the effective number of independent tests (Gao
et al., 2010). This effective number then replaces the total number of tests when calculating the
threshold to be used. The choice of a specific multiple testing correction method must also be guided
by the relative cost of false positives and false negatives (Noble, 2009). If it is really important to
detect as much true associations as possible, or if the follow-experiments used to validate the results
are accessible enough that a certain fraction of false positives can be tolerated, then a FDR-based
correction will ensure that more true signals are detected. If, on the contrary, validating detected
associations with follow-up experiments is costly, it would be preferable to avoid too many false
positive, and thus a FWER-based correction would be preferred. Note that currently the GWASpoly
packages offers the Bonferroni, Storey’s q-value and permutation-based corrections.

In this study, I focus on unravelling the genotypic component of tuber bruising. Tuber bruising,
also termed enzymatic or blackspot bruising, is the browning of the tuber flesh below the skin
following a mechanical shock. It is caused by the oxidation of phenolic compounds by polyphenol
oxidases (PPO), leading to the formation of melanin pigments that give the brown colouration. Tuber
bruising is an important quality trait as it affects the appearance and flavour of the tubers and thus
impacts their fitness for sale. The development of potato lines that are more resistant to bruising is
therefore a desirable objective for breeding programs, rendering the genetic analysis of this trait an
important task. Previous studies have identified several candidate causal genes and QTL regions for
the bruising phenotype. Urbany et al. (2011) focused on genes from the PPO family, in particular
the POT32 gene which is a major isoform expressed in potato tubers, and other genes involved in
cell structure and shape, membrane stability, as well as carbohydrate metabolism. Some of these
candidate genes were identified by first comparing the concentration of the corresponding proteins to
the trait (Urbany et al., 2012). They uncovered markers in several of these candidate genes associated
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with tuber bruising, notably in the PHO1A, LipIII27, PPO isoforms POT32 and potpoloxA, 4CL
and HQT genes, located on chromosomes 2, 3, 5, 7 and 8. The influence of PPO enzymes on tuber
bruising was already established by Werij et al. (2007), who uncovered a QTL region on chromosome
8 that co-localised with the POT32 gene sequence. Hara-Skrzypiec et al. (2018) later identified
additional candidate genes on chromosome 5, 8 and 12.

Capture sequencing data targeting exonic regions was used on a breeding population of half-
sibling families to uncover regions of interest for the bruising phenotype as well as other agronomic
traits. Furthermore, I used RNA sequencing data to investigate how genetic variations impact the
phenotype of interest. I demonstrate that even as capture sequencing only allows us to measure genetic
variations in a subset of the genome, it is possible to uncover interesting and biologically meaningful
genotype-phenotype associations, especially when combining the GWAS results with additional
information, here transcriptomics data. Moreover, these associations were obtained with samples
selected from a breeding program, demonstrating that available genomics and transcriptomics data
from populations not specifically designed for association study can be used to uncover genomic
regions of interest. Other contributions of the article are as follows: (i) I demonstrate the use of
GWAS on a population of related individuals with complex population structure, (ii) I investigate the
impact of the genetic model used for the association analysis, (iii) I propose a new visualisation to
summarise and interpret GWAS results in combination with differential expression analysis. This
study is a first step toward bridging the gap between genotype and phenotype by combining multi-
omics data (genomics, transcriptomics, phenotypic), to ultimately unravel the mechanisms of potato
tuber bruising.

4.2 Contribution

The plants trial, phenotype recording, and sample acquisition for genotyping and RNA sequencing
were performed by Rebecca Bloomer, Katrina Monaghan, Susan Thomson and Samantha Baldwin
(Plant and Food Research). The preliminary analysis of the genomics data (step G1 in Figure 4.1), as
well as the preliminary processing of the RNA sequencing data (step T1 in Figure 4.1) were performed
by Susan Thomson. I performed all subsequent analyses.

4.3 Materials and Methods

A schema of the analysis workflow used throughout this chapter is presented in Figure 4.1.

4.3.1 Plant materials and phenotyping

Seedlings were obtained by crossing 40 different parental lines (not all possible crosses were realised).
Following seedling selection, progeny lines were cultivated in Lincoln, New Zealand and culled.
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Figure 4.1: Schema of the analysis workflow used throughout the chapter. Input/output datasets and
endpoints are presented in black rounded boxes, analysis steps are shown in white rectangle boxes,
and decision steps are drawn as black diamond boxes. The coloured rectangles outline different
themes in the analysis.

For progeny lines from crosses involving either Crop20 or Crop52, the following phenotypes were
recorded:

• Maturity (Maturity): score of plant senescence as a proxy for plant maturity (from 1 for a
dead plant to 9 for a plant in full flower);

• Vigour (Vigour): score of above-ground biomass and amount of leaves of the plant (from 1
for a very small amount of biomass to 9 for a very vigorous plant);

• Yield (Yield_tha): amount of tubers produced by the plant in kilograms;
• Relative yield (RelativeYield): amount of tubers produced by the plant, relatively to a
standard genotype (percentage);

• Sprouting (spr): score of dormancy; for each line, four to five tubers were harvested, and kept
in the dark at ambient temperature. They were checked every two weeks for sprouting. The
first tubers to sprout were given a score of 1, the ones sprouting two weeks later were given a
score of 2, etc;



122 Chapter 4. Genotype-phenotype relationships for tuber bruising in autotetraploid potatoes

• Dry matter content (Dmperc): dry matter content of the tubers, quantified by measuring the
specific gravity over 40 tubers;

• Sugar content (sugar): glucose content of tuber in mg/g fresh weight tuber, measured with a
diabetes test kit;

• Market (Market_tha): amount of marketable tubers produced by the plant in kilograms,
i.e. after removing tubers that are diseased, green, too small or with unusual shapes;

• Relative marker (RelativeMarket): amount of marketable tubers produced by the plant,
relatively to a standard genotype (percentage);

• Percentage of saleable tubers (Perc_saleable): percentage of produced tubers that are mar-
ketable;

• General impression score (General_Impression): subjective breeder score (from 1 to poor
line to 9 for very good line);

• Bruising score: For each progeny genotype, tubers from two biological replicates were harvested.
Three tubers for each biological replicate were selected. Each tuber was bruised on two
opposite sides by letting a lead weight fall from controlled height on the tuber. The zone
of impact was recorded by inking the weight before bruising. After 24 hours, tubers were
sliced at the site of bruising, and an image was taken of the bruising for the three tubers of
the two biological replicates per genotype. A bruising score was attributed to each tuber
upon visual inspection of the images, from zero (no visible bruising) to five (extensive dark
bruise), in accordance to a predefined visual scale. Two scores were derived per genotype:
the bruising mean score (bruising_mean) was computed as the mean bruising score over all
tubers from both biological replicates (i.e. mean over six values). The bruising fraction score
(bruising_frac) was calculated as the fraction of tubers (six in total) with a bruising score
of three or more. This bruising experiment was designed to replicate as closely as possible
commercial conditions, in which potatoes are susceptible to fall from a palet onto a rock or the
edge of a piece of equipment.

In total, phenotypic measurements were obtained for the 13 above traits across 142 progeny samples.
I used a Shapiro Wilk’s test to assess whether the distribution of recorded values followed a normal
distribution.

4.3.2 Genotyping

Samples were taken from young leaf tissue. Genotyping was performed by Rapid Genomics; further
details can be found in Motazedi et al. (2018). Capture-sequencing data was obtained for 390
samples by paired-end Illumina HiSeq 2000 technology for 20,035 baits. The baits were designed
to target random genes selected to reflect gene density in the corresponding genomic region. The
resulting 100bp paired-end reads were processed as follows (box G1 in Figure 4.1). First, they were
assessed for quality control using FasQC v0.11.2 (Andrews et al., 2018). In particular, FastQC Screen
v0.5.2 (Wingett & Andrews, 2018) was used to check for contamination. Trimming and filtering
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was performed with Trimmomatic v0.36 (Bolger et al., 2014). The paired reads were aligned to
the reference genome PGSC-DM v4.03 (Sharma et al., 2013; Xu et al., 2011) using BWA mem
v0.7.15 (Li, 2013), then sorted and converted using SAMtools v1.3.1 (Li et al., 2009). Picard-tools
v2.10.1 (“Picard toolkit,” 2019) was used to add group information to the reads. TargQC v1.4.4 and
BEDTools v2.21.0 (Quinlan & Hall, 2010) were used to estimate the on/off target rates after mapping.
Variant calling was performed with FreeBayes (Garrison & Marth, 2012).

Variant data pre-processing was performed with the python library scikit-allel (Miles et al.,
2020). Out of the 390 genotyped samples, 184 samples that either had phenotypic measurements or
were parents of progeny samples with phenotypic measurements were retained for further analysis.
Only biallelic SNPs that were polymorphic in the considered samples were retained for the analysis.
Variants were filtered out if they didn’t meet each of the following conditions: (i) less than 10% of
samples with missing genotype, and (ii) QD score of two or more. The QD score of each variant was
computed as the quality score of the variant divided by the sum of its coverage for non-homozygous
samples (box G2 in Figure 4.1). In addition, samples were filtered out if they had missing values for
more than 10% of the variants. Problematic variants were defined as variants for which one allele
was observed in at least one progeny sample but not in the parents.

4.3.3 Transcriptomics

Two hours after the bruising experiment, samples were taken from one bruised side of each tuber,
and the samples obtained from the three tubers of a biological replicate were pooled and snap-
frozen, grinded, and stored at -80◦C. One biological replicate for each genotype was chosen for
RNA measurement. Transcriptomics measurements were obtained for 100 samples (all progeny
samples of Crop52) using an Illumina NovaSeq platform, with a Lexogen SENSE mRNA polyA
library. A copy of the RNA extraction protocol can be found In Appendix F, Section F.1. Re-
sulting reads were processed as follows (box T1 in Figure 4.1). Reads quality was assessed with
FastQC v0.11.7 (Andrews et al., 2018), and rRNA contaminants were removed using SortMeRNA
(Kopylova et al., 2012) using default parameters. Trimming was performed with BBtools v37.93
BBDuk (Bushnell, 2016), with the flag forcetrimleft set to 15, trimpolyg to 30, trimpoly
to 30, k to 13, qtrim to r, trimq to 10 and minlength to 50. The reads were then aligned to
the reference genome PGSC-DM (genome assembly version v4.03 and gene annotation v4.03)
(Sharma et al., 2013; Xu et al., 2011) and the number of reads overlapping each gene in the reference
genome was computed, using STAR v2.6.1 (Dobin et al., 2013), with the following flag settings:
alignMatesGapMax to 20000, outQSconversionAdd to -31, outFilterScoreMinOverLread to
0, outFilterMatchNminOverLread to 0, outFilterMatchNmin to 40, alignSJDBoverhangMin
to 10, alignIntronMax to 200000, quantMode to GeneCounts. Genes for which a read count was
computed are thereafter referred to as transcribed genes (although the term gene will also be used
when no confusion is possible).
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Next, the remaining processing was performed with R (box T2 in Figure 4.1). The raw read counts
were converted to RPKM counts (to correct for transcript length and library size) by dividing the read
count of transcribed gene i for sample j by the length of the gene in kilobases and the library size per
million (i.e. total read counts divided by 1.106) of sample j. For comparison, the raw read counts
were also normalised using the Variance Stabilising Transformation method (Anders & Huber, 2010),
implemented in the R package DESeq2 (Love et al., 2014). The Variance Stabilising Transformation
is estimated by modelling genes’ raw read counts with a negative binomial distribution accounting for
the library size of the samples as well as a gene-specific dispersion and genes’ length. This ensures
that the resulting normalised counts are approximately homoskedastic and not impacted by library
size and gene length. Transcribed genes were discarded if their expression didn’t meet the following
conditions: (i) total (raw) read count across all samples higher than 10, (ii) RPKM count across all
samples higher than 0.75 and (iii) less than 95% of samples with a raw read count inferior to five. The
threshold of 10 for the first condition was chosen according to similar studies in the literature. The
threshold of 0.75 for the second condition was chosen to yield a similar percentage of rejected genes
to the first condition. In practice, transcribed genes that did not fulfil one of the first two conditions
also failed the third one, which was the most conservative. The BiomaRt package (Durinck et al.,
2009) was used to retrieve the description of genes and associated GO annotations from their ensembl
ID.

4.3.4 Population structure analysis

The population structure amongst the potato samples was investigated using discriminant analysis of
principal components or DAPC (Jombart et al., 2010 – box PS1 in Figure 4.1) and STRUCTURE
(Pritchard et al., 2000 – boxes PS2 and PS3 in Figure 4.1), using as input the dosage of the retained
variants across the samples. Briefly, STRUCTURE is a Bayesian model-based clustering method that
investigates the population structure amongst a set of samples using multilocus genotype data. DAPC
is a multivariate approach that clusters samples in different groups and seeks a low-dimensional space
that maximises the variance between groups while minimising the variance within groups. For both
methods, all genotyped samples were used in the analysis (i.e. 182 samples), including samples for
which no phenotype was recorded.

For computational efficiency, 10,000 (out of 602,955) variants were randomly sampled (box
PS2 in Figure 4.1) and used to infer population structure using STRUCTURE (box PS2 in Figure
4.1). The number of subpopulations was estimated by running STRUCTURE with a number of
subpopulations K varying from 1 to 10, using the admixture model (samples can be an admixture of
the subpopulations) and the correlated allele frequency model (assumes similar allele frequencies
across the subpopulations), with a burn-in length of 10,000 and a run length of 20,000. Each run for
a particular value of K was replicated five times, using the R package ParallelStructure (Besnier
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& Glover, 2013). I selected the optimal value of K by inspection of the ∆K values (Evanno et al.,
2005), which represents the ratio of the average over the five runs of the second derivative of the
likelihood (with respect to K) over the likelihood variance. As two values of K yielded similar ∆K,
the smallest of the two was chosen as the optimal number of subpopulations amongst the samples.
To correct for the effect of label switching, i.e. the fact that in different runs of STRUCTURE with
identical parameters, the uncovered subpopulations are not assigned the same label, the correlation
between the computed samples posterior membership probabilities of the five runs of STRUCTURE
(with the optimal value of K) was used to cluster the populations discovered with each run. The final
posterior membership probabilities of each sample (i.e. the estimated probability that the sample
belongs to each of the K inferred subpopulations) was computed as the mean of the estimated posterior
membership probabilities across the five runs.

The DAPC analysis was performed using the R package adegenet (Jombart & Ahmed, 2011).
First, principal component analysis (PCA) was performed over the samples’ variants dosage, and
all 181 principal components (PCs) were used to perform a k-means clustering of the samples. The
detected clusters correspond to the different subpopulations detected by the algorithm amongst the
investigated population. In order to estimate the optimal number of clusters amongst the samples, the
k-means clustering was repeated for a number of clusters k ranging from 1 to 40, and the value yielding
the lowest BIC score was retained as the optimal number of clusters. Next, a discriminant analysis
was performed on the principal components obtained with the PCA. In order to avoid overfitting,
only a subset of the principal components were retained for the discriminant analysis. The optimal
number of principal components to retain was estimated by cross-validation: 90% of the samples
were randomly assigned to a training set, and the discriminant analysis was performed on the training
set. The remaining 10% of the samples (validation set) were used to estimate the performance of the
resulting model in assigning the samples to their respective cluster. The cross-validation scheme was
repeated with a different number of principal components used for the discriminant analysis, and the
optimal number of PCs to retain was estimated as the highest value for which the performance was
still high, and for which the RMSE (Root Mean Squared Error) was still low. A measure similar to the
posterior membership probability of samples was computed, which reflects the probability of each
sample to be assigned to each of the k clusters given its estimated coordinates in the discriminant
analysis space.

4.3.5 GWAS analysis

The association analysis was performed using the GWASpoly package (Rosyara et al., 2016 – box PS1
in Figure 4.1). GWASpoly models the effect of the SNPs on the phenotype using the following linear
mixed model:

y = Xβ + Sτ + Qv + Zu + ε
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where y is a n× 1 vector of measured phenotypic values; β is a p× 1 vector of covariate effects,
with X the n × p covariate incidence matrix; τ is a s × 1 vector of SNP effects, with S is the
n × s incidence matrix; v is a q × 1 vector of subpopulation effects, with Q the n × q incidence
matrix relating the samples to the subpopulations (in practice Q is the matrix of samples posterior
membership for the different subpopulations); u is a n× 1 vector of random polygenic effects with
variance V ar(u) = σ2gK, where σ2g is the genetic variance andK the n×n kinship matrix (i.e. matrix
describing the relationship between samples), with Z the n×n genotype/phenotype incidence matrix;
and ε is a n × 1 vector of residuals, with variance V ar(ε) = Iσ2e , where σ2e corresponds to the
residual variance. The F -test is used to compute a p-value for each marker, with the null hypothesis
that all SNPs effects (i.e. all values in the vector τ of SNP effects) are equal to zero. I refer thereafter
to the negative log10 of such p-value as the marker score.

Six possible genetic models, that describe the impact of a marker’s dosage on the phenotype,
were considered, namely:

• the general model: each dosage can have a different arbitrary impact on the phenotype;
• the additive model: the effect of the marker on the phenotype is linear with the marker’s dosage;
• the simplex reference dominant model, denoted as 1-dom-ref: the effect of the marker on the
phenotype is determined by the presence of at least one copy of the reference allele;

• the simplex alternate dominant model, denoted as 1-dom-alt: the effect of the marker on the
phenotype is determined by the presence of at least one copy of the alternate allele;

• the duplex reference dominant model, denoted as 2-dom-ref: the effect of the marker on the
phenotype is determined by the presence of at least two copies of the reference allele;

• the duplex alternate dominant model, denoted as 2-dom-alt: the effect of the marker on the
phenotype is determined by the presence of at least two copies of the alternate allele.

In addition, similarly to Sharma et al. (2018), different population settings, that correct for population
structure and/or individual relatedness were evaluated:

• Naive model: no correction for population structure nor individual relatedness (kinship matrix
K set to a matrix of zeros with diagonal elements set to one);

• K-only model: accounts for individual relatedness only by computing the kinship matrix as the
realised relationship matrix K = MMT (VanRaden, 2008), where M is the genotype matrix
of variants dosage;

• Q only model: accounts for population structure only by adding the samples posterior member-
ship probabilities for the uncovered subpopulations as covariates in the analysis.

• K+Q model: accounts for both individual relatedness and population structure as described
above.

In order to correct for population structure, the samples posterior membership probabilities computed
with STRUCTURE and DAPC were used, which gave six different population settings: naive model,
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K model, QSTRUCT, QDAPC, K+QSTRUCT and K+QDAPC. This yielded a total of 36 different GWAS
settings (six genetic models × six population settings).

For each GWAS setting, the ability of the model to control for false positive and false negative
was evaluated by computing the inflation factor, which quantifies the deviation of the estimated
marker scores from their expected values. For each setting, the inflation factor was computed as
the regression coefficient of the markers’ observed scores over their expected scores under the null
hypothesis.

To correct for multiple testing, the Bonferroni correction was used for each GWAS setting to
compute the significance threshold for markers score with a type-I error level of 0.05. The Bonferroni
correction was preferred to the Storey’s q-value correction due to the linkage disequilibrium between
investigated markers. Indeed, as markers were obtained from baits designed to capture specific regions
of the genome, we expect groups of markers originating from a single bait to represent one unique
hypothesis. Therefore, the calculation of the FDR as performed by the Storey’s q-value correction
will be biased. The permutation-based correction was not used due to its computational burden.
Markers were then retained as significant QTLs if and only if (i) their computed score was above
the significance threshold set with the Bonferroni scheme and (ii) the inflation factor yielded by
the corresponding GWAS setting was between 0.95 and 1.1 (box GW2 in Figure 4.1). In addition,
any marker whose score was above the 99.99th percentile of the markers score distribution (for this
GWAS setting) was retained as high-scoring marker.

The dosage of high-scoring markers was compared to the expression of the transcribed genes in
which they are found using a correlation test as well as a Kruskal-Wallis test (box GW3 in Figure 4.1).
The later compares the median of the transcribed gene’s expression between samples grouped based
on the dosage of the marker. Contrary to the correlation test, the Kruskal-Wallis test assesses whether
at least one of the dosage groups has a different median gene expression than the others, which allows
us to detect changes in gene expression that are non linear with the dosage of the marker. The FDR
correction (Benjamini & Hochberg, 1995) was used to correct resulting p-values for multiple testing;
it was preferred to the Bonferroni correction in order to increase the detection power. For some genes
of interest, the association between the marker’s dosage and neighbouring genes’ expression was also
assessed, using the same methodology. The analysis was also performed with the raw, RPKM and
VST counts for comparison, however only the results obtained with the RPKM data are shown.

4.3.6 Differential expression analysis

As the RNAmeasurements were done on one biological replicate for each genotype, the bruising mean
score of each sample was computed as the mean of the bruising score obtained for the three tubers of
the corresponding biological replicate. For the differential expression analysis (box E2 in Figure 4.1),
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all samples that had a bruising mean score inferior or equal to one were first classified as the “low
bruising” group. This yielded a “low bruising” group of 41 samples. Consequently, the 41 samples
with the highest bruising mean score were selected and classified them as “high bruising” group. The
remaining samples were removed from the analysis. The DESeq2 package (Love et al., 2014) was used
to perform the differential expression analysis, with the untransformed read counts of the transcribed
genes as input. The DESeq2 packages computes the Variance Stabilising Transformation as described
in Section 4.3.3, and then tests for each gene the null hypothesis that the expression strength of the
gene is identical between the two bruising groups using a Wald test on the log fold-change of the gene.
The transcribed genes p-value obtained were corrected for multiple testing using the FDR correction
(adjustment performed by the DESeq2 package) and the Independent Hypothesis Weighting (IHW)
correction (Ignatiadis et al., 2016) for comparison, which uses the average normalised read counts
of each transcribed gene across samples as a weight applied to the gene’s p-value to improve the
power of detection of differentially expressed genes. Both methods rely on controlling the False
Discovery Rate, which was favoured here to detect as many true differentially expressed genes are
possible. Transcribed genes were considered as significantly differentially expressed if either their
FDR-adjusted or IHW-adjusted p-value was below 0.05. Enrichment of the molecular function- and
biological process-related GO categories for differentially expressed genes was computed with the
gage R package (Luo et al., 2009). gage assesses whether a given set of genes (in this case, a set of
genes grouped in the same GO category) is enriched for differentially expressed genes by comparing
its mean gene score to the mean gene score of all the genes not in the set (referred to as the background
set). Here, I used the differential expression score of the genes, i.e. -log10 of their adjusted p-value,
as the gene scores. The comparison is done using a prototype two-sample t-test, which contrasts
the set of genes of interest to a virtual random set of genes from the background set of the same
size. The resulting set p-values were corrected for multiple testing via the FDR correction. GO
terms were detected as significantly enriched for differentially expressed genes if the corresponding
adjusted p-value was below 0.05. In addition, the distribution of genes’ distance to the nearest GWAS
high-scoring marker was compared between differentially expressed genes and non-differentially
expressed genes using a two-sample Wilcoxon test.

4.3.7 Network co-expression reconstruction

The co-expression network of transcribed genes was reconstructed from transcriptomics measurements
with the R package WGCNA (Langfelder & Horvath, 2008), using the VST transformed counts restricted
to the samples used in the differential expression analysis (box E1 in Figure 4.1). I briefly present the
main steps of the analysis thereafter. First, the similarity matrix (giving the similarity between each
pair of transcribed genes) is computed, as the absolute value of the correlation between each pair of
transcribed genes. The adjacency matrix is obtained by elevating each value in the similarity matrix
to the soft thresholding power β, which increases the similarity between transcribed genes with high
correlation while further reducing the similarity between transcribed genes with low correlation.
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This soft thresholding power β is selected based on how well the resulting network approximates
a scale-free topology (Zhang & Horvath, 2005). Here a value of six was chosen for β. Next, the
adjacency matrix is used to compute a topological overlap matrix (TOM) that describes for each
pair of transcribed genes how many common neighbours they share in the adjacency graph. Two
transcribed genes that share a lot of common neighbours will be assigned a high TOM score (Yip
& Horvath, 2007). The dissimilarity between pairs of transcribed genes is then computed as one
minus their topological overlap. The later is used for module detection in the inferred network,
using hierarchical clustering. Modules can be extracted from the resulting dendrogram using the
dynamic tree cut method (Langfelder et al., 2008). The deepSplit parameter was set to three, and
the minimum cluster size to 10, in order to detect small modules of highly coexpressed transcribed
genes. Lastly, modules with transcribed genes with highly similar expression profiles are merged. In
the present case, because the number of transcribed genes is large, the genes were first split into blocks
using a rough clustering method, and the TOM and resulting modules were separately computed for
each block of genes.

An eigengene was computed for each module, which is the first principal component of a PCA
performed on the expression of the transcribed genes within the module (box E3 in Figure 4.1). The
eigengenes provide a summary of the expression profile of the transcribed genes within each module.
A correlation test was used to detect modules whose eigengene is significantly correlated with the
bruising mean score of the samples. The resulting p-values were corrected for multiple testing using
the FDR correction. The enrichment of each module for genes containing high GWAS-scoring
markers, as well as for previously detected candidate QTL genes, was investigated with a Fisher’s
exact test, through the function runGSAhyper from the piano Bioconductor package (Väremo et
al., 2013). Modules that were significantly enriched for transcribed genes with a high differential
expression score were detected using the gage package (Luo et al., 2009), as described in the previous
section. Modules were detected as significantly enriched for differentially expressed genes if the
corresponding adjusted p-value was below 0.05. A Fisher’s exact test was also used to compute the
enrichment of the detected modules for GO terms.

4.4 Results and Discussion

4.4.1 Phenotypes

The distribution of the different measured phenotypes is displayed in Supplementary Figure F.1. The
yield, market and dry matter percentage traits follow a normal distribution (ShapiroWilk’s test p-value
non significant). I show in Figure 4.2 the correlation between the different measured phenotypes.
As expected, the pairs of phenotypes measuring a same trait (i.e. Yield_tha / Relative_Yield,
Market_tha / RelativeMarket, and bruising_mean / bruising_frac) are highly correlated.
The yield and market phenotypes share a strong correlation (0.93 to 0.98), and are also more modestly
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correlated with the the saleable, general impression, vigour and maturity phenotypes (correlation
coefficients between 0.2 and 0.5). The correlation between the saleable trait and the general impression
score is high (0.79), which indicates that the general impression score captures relatively well the
marketable output of the crop. Maturity and vigour are correlated at 0.55. The bruising, dry matter
content, sprouting and sugar phenotypes, which are post-harvest traits as opposed to previously
discussed phenotypes, are not correlated to any of the measured traits. It is surprising in the case
of the dry matter content, as several previous studies have observed a strong correlation between
starch content and bruising phenotypes (Hara-Skrzypiec et al., 2018). However this can be explained
by the fact that the parental lines used for the crops have been selected for tuber starch content,
and consequently the major factors of tuber bruising related to starch content have been removed.
Therefore the observed variation in tuber bruising arises from factors independent from the tuber
starch content.
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Figure 4.3: Comparison of baits normalised read counts between parent samples. a) Comparison
between two technical replicates of the V390 variety; the normalised read counts of the baits in
replicate 503 are plotted against the corresponding counts in replicate 502. b) Comparison between
two different varieties; the normalised read counts of the baits in the SummitRusset sample are plotted
against the corresponding counts in the Driver sample. c) R2 values of the linear regression of the
baits normalised read counts between each pair of parent samples. Values above 0.5 are depicted in
shades of red, while values below 0.5 are depicted in shades of blue. The samples have been clustered
based on euclidean distance.
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4.4.2 Baits quality

The baits coverage and depth of coverage are discussed for the parents samples. As expected, the
coverage depth is highest for bases in the middle of the baits and decreases as we move away from
the baits. For all parent samples, most bases within the baits have a coverage depth ranging from 10
to around 200, and up to 800 for some parent samples. For all parents samples, less than one percent
of all bases within baits across the genome have no coverage, and more than 95% of the baits are
completely covered. The average number of reads per bait across the parent samples (normalised for
each sample by the total read count) is modestly correlated with the GC content of the baits (adjusted
R2 between the log10 of average read count per bait and GC content of 0.097, p-value < 2.10−16).
For baits with a GC content below 0.3, baits with low GC content have on average less reads than baits
with higher GC content. For baits with GC contents higher than 0.3, the GC content doesn’t affect
the average read counts much. As can be seen in Figure 4.3, the read counts per bait (normalised by
the total read count per sample) is consistent between technical replicates (Figure 4.3 a)), while there
is more variability between samples from different varieties (Figure 4.3 b)). This variability can arise
from technical (e.g. due to batch effects) or indels or copy number variation in the regions targeted by
the baits in one of the varieties, or the presence of off-targets. In particular, some baits are covered in
one parent (i.e. reads detected for the bait) but not the others (null read count), possibly indicating
some deletion or mutations in the targeted region. The R2 of a linear regression between the baits
read counts of each pair of samples in depicted in Figure 4.3. Higher R2 are observed for pairs of
parents that are related (e.g. Crop20 and Bondi or RedRascal), while lower values are observed for
pairs of parents that are not related (e.g. Tutaekuri vs Crop20 and related parents).

4.4.3 Genomics data

A total of 1,388,205 variants were called, out of which 1,280,324 were SNPs (92.2%). Amongst them,
940,103 biallelic SNPs (67.7% of all variants), for which both alleles were observed in the samples
of interest, were retained for further analysis. Furthermore, variants with 10% or more missing data,
or with a QD score (quality normalised by coverage) of less than two were discarded, yielding a
total of 602,955 variants (64.1% of biallelic SNPs) that passed the filtering step. This number is
not unexpected given the high heterozygosity of tetraploid potatoes and the population design, in
which parents with varied genotypes were crossed. The QD score is an interesting metric to perform
variant filtering, as it allows to filter out variants with good quality score and depth of coverage but
for which there is little evidence for the alternate allele. This is illustrated in Figure 4.4, in which we
can see variants with reasonable quality and coverage that are assigned a null QD score. In addition,
out of the 184 genotyped samples, two of them didn’t meet the criteria of less than 10% of missing
data and were consequently discarded, leaving 182 samples with genotype information. Interestingly,
43.2% of the variants (before filtering) were detected as problematic in at least one half-sibling family,
i.e. one of the two alleles was observed in one or more progeny samples from the family, but not in the
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Figure 4.4: Variants depth of coverage (x axis), quality (y axis) and QD score (colour). Variants with
a null QD score are represented in black. Note that variants with a quality score of zero were excluded
from the plot (for the log10 transformation of quality scores) and are assigned a QD score of zero.

corresponding parents. This can be due to a sequencing error from the parents samples, i.e. the allele
is incorrectly not detected in the parent samples, to a sequencing error from the progeny samples in
which the problematic allele was detected or to read mapping errors. In consequence, they were not
discarded from the analysis. Of these problematic variants, 47% (244,926 SNPs) were removed by
filtering. This is similar to the fraction of the total number of variants removed by the filtering, which
indicates that the filtering did not target specifically these problematic variants. This is not surprising,
given that a good-quality variant might be flagged as problematic due to an incorrect dosage calling
for one of the parent. Therefore, such variant should not be removed by the filtering. Lastly, it is to be
noted that I did not filter out SNPs based on their minor allele frequency, because of the population
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structure of the samples. As I am working with half-sibling families, some alleles could only be
present in one of the families, and therefore be considered as a rare allele, whilst carrying useful
information about the difference between the families. Similarly, I did not filter variants for Hardy
Weinberg equilibrium, as the individuals studied do not come from a natural population but from a
complex multi-family design in which different parents were crossed. Moreover these individuals
underwent selection for several traits of interests. Therefore I do not expect variants to follow Hardy
Weinberg equilibrium. In addition, the goal of such filtering for association studies is to correct
for bias arising from co-selection of alleles, which is done in this case by correcting for population
structure instead (see Section 4.3.5).

As expected, the variants density along the chromosomes correlates with baits density, and
decreases near the centromeres. This is illustrated in Supplementary Figure F.2, in which a higher
density of transposons reflects the location of the centromeres. This is because the baits were designed
to capture exons of annotated genes, therefore they preferentially target regions with high exons density,
and are thus less abundant near the centromeres where there are less protein-coding genes. The
average sample exonic heterozygosity, i.e the average percentage of heterozygous variants per sample,
is 32.5%. This means that on average, a sample carries only one of two possible alleles for ∼ 67% of
the variants; note that exons are less variables compared to introns or UTRs. This can be explained
by the fact that for some variants one of the two alleles is unique to a certain parent (that is, not
present in other parents) and is thus only carried by the progeny of crosses involving this parent.
This is illustrated in Figure 4.5, where we can see the variants that are polymorphic (i.e. for which
both alleles are present) in specific subsets of the half-sibling families’ progeny. In the plot, we can
see that only 118,121 (19.6%) variants are polymorphic in all half-sibling families. Other variants
are only polymorphic in one family, or in two families that share a common parent (e.g. families
2134 and 2172 that share SummitRusset as mother). In total, 594,122 (98.5%) variants have both
alleles present in at least one progeny sample, indicating that for the remaining 1.5% of variants one
of the alleles is not passed on from the parents to the progeny. The average variants heterozygosity
(i.e. average percentage of heterozygous samples per variant) across the genome is 32.41%.

The results of a PCA performed on the variant dosage information for the 182 samples are shown
in Figures 4.6 and 4.7. These plots illustrate the population structure of the samples, and allows us
to detect potential mislabelled samples. The first component of the PCA, which accounts for 8.2%
of the variance in the data, clearly separates the Tutaekuri samples from the other lines (see Figure
4.6). This makes sense as Tutaekuri (also called Urineka) is a Taewa, i.e. a variety of indigenous
purple potato, genetically quite different from the other varieties. A possible mislabelled sample can
be identified in this plot: a progeny sample from a cross between Crop52 and Crop9 (yellow point
at the center of the plot) is positioned close to the Tutaekuri progeny and far away from the other
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Figure 4.5: Upset plot representing the number of variants that are polymorphic (i.e. for which both alleles are observed) only in specfic subsets of the
progeny samples. Each half-sibling family is represented as a row, with the colour indicating whether it involves a cross with Crop52 (gold) or Crop20
(blue). For each column in the graph, the number of variants that are polymorphic only in the progeny of families marked with a dot and not in the
progeny of families with no dot is represented by a vertical bar. Only the first 30 intersection sets with the highest number of variants are displayed. We
can see that most variants are polymorphic in all families (first column of the plot). We can for example notice that 1,880 variants have both alleles
present only in the progeny samples of Crop20 crosses (penultimate column).
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progenies of this cross. The second and third principal components (Figure 4.7) separate Crop20 and
Crop52 progeny, positioned in the upper right triangle and lower left triangle of the plot, respectfully.
All replicates of a same parent are located very closely, which is to be expected as they are replicates
of the same variety, with the exception of the three Admiral replicates that are apart in the principal
components space. This is probably due to a mislabelling of the samples. Lastly, note that the progeny
samples of a cross between two genotyped parents are positioned half-way between the two parents
in the PCA plot, which is not surprising as they share half of the genetic material of each parent.

4.4.4 Transcriptomics data

RNA measurements were obtained for 100 samples, all progeny of Crop52. The library size of
the samples ranged from 6.8 × 106 to 4.2 × 107. For most samples, more than 80% of the reads
were uniquely mapped to the reference genome, with an average of 76.9% of mapped reads that
mapped to a gene in the reference genome. In total, read counts were obtained for 39,028 transcribed
genes. Raw read counts were converted to RPKM counts to correct for gene length and library size,
and to VST counts using the Variance Stabilizing Transformation (Anders & Huber, 2010), which
corrects the mean-variance bias in RNAseq data, for comparison. Transcribed genes were filtered out
based on the total raw read counts and RPKM counts across all samples, as well as according to the
number of samples with low read count. This led to retaining 25,163 transcribed genes (64.47%).
GO annotations were obtained for 17,387 (69.1%) retained transcribed genes.

4.4.5 Population structure and individual relatedness

The program STRUCTURE was used to uncover the population structure among the 182 genotyped
samples. Five subpopulations were identified as the optimal setting; and five runs of STRUCTURE
with K (the number of subpopulations) set to five led to very similar results. The main output of
STRUCTURE is the posterior membership probability profile of each sample, i.e. the probability
that the sample belongs to each of the K detected subpopulations. This informs about the possible
admixture of the samples, in the case where the membership probability of a sample is not zero for
more than one subpopulation. The subpopulations identified, that I thereafter denote as Ki, 1 ≤ i ≤ 5,
are consistent with the known pedigree of the samples. Figure 4.8 displays the estimated posterior
membership probabilities of the parent samples for the five subpopulations. Some of the parents are
assigned exclusively to one subpopulation: Tutaekuri to K1, V390 to K2, Crop20 to K3, Crop52
to K4 and Dolcevita to K5. This makes sense as these are the most different varieties in the group,
except for Crop52 which is a progeny of Crop20. The remaining parents are detected as an admixture
of these subpopulations; for example, Moonlight, Karaka and LoneRanger are assigned a posterior
membership probability of around 0.5 for subpopulation K2, which is in agreement with the fact that
they are the progeny of the V394 crop, which has the same breeding as V390. Note that one of the
Admiral replicates has a different membership probability profile than the other two replicates, which
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provides further evidence of sample mislabelling. Unsurprisingly, the membership probability profile
of each progeny sample is an equal mix of these of the corresponding parents (see Supplementary
Figure F.3 for two examples): for example the membership probabilities for the progeny of Crop52
and Dolcevita are around 0.5 for K4 (representing the Crop52 genotype) and 0.5 for K5 (representing
the Dolcevita genotype). This also permits the detection of outliers progeny samples, that can arise
from mislabelling or self of one of the parents, or the contamination by a stray pollen.

The population structure was also analysed using the DAPC algorithm. The analysis revealed four
sample clusters as the optimal setting, where the clusters inform us about different subpopulations
within the samples. One of the outputs of DAPC is a measure similar to the posterior membership
probability computed with STRUCTURE; however it mainly reflects the attribution of the samples
to the different clusters and is less informative about possible admixture. I show the membership
probabilities of the parent samples in Figure 4.8; the membership probabilities of the parent samples
for different numbers of clusters are shown in Supplementary Figure F.4. Similarly to STRUCTURE,
DAPC separates Crop20, V390, Tutaekuri and Crop52 into different clusters, but groups the latter
with Dolcevita. More generally, each DAPC cluster, that I will denote as Ci, 1 ≤ i ≤ 4, corresponds
to one of the STRUCTURE subpopulations (or two in the case of cluster C4), and gathers parents
whose membership probability for the corresponding STRUCTURE subpopulation is the highest;
e.g. samples that have a high posterior membership probability for STRUCTURE subpopulation K2
(blue) were all assigned to cluster C2 (yellow). Note that RedRascal is the only parent sample that
has a non-null posterior membership probability for two clusters. While it was originally assigned to
cluster C4, it also has a small but non-null posterior membership probability for cluster C1, which
is in accordance with the fact that cluster C1 gathers samples with a high STRUCTURE posterior
membership probability for subpopulation K3, and RedRascal is in this case. For comparison, the
DAPC analysis was also performed with five clusters to see whether the clusters would match the
STRUCTURE subpopulations. I found that instead Dolcevita and Crop52 were still grouped together,
while V390 and parents descending from V394 were split into two clusters. With DAPC, the progeny
samples of each cross are all grouped with one of the parents. Similarly to the results of STRUCTURE,
some progeny samples are not clustered with their siblings, which could be an indication that the
sample was mislabelled. These samples also have a different STRUCTURE membership probability
profile than their siblings. Interestingly, they are also the samples with the highest proportion of
problematic variants, i.e. variants for which they carry an allele that is not found in the parents.
Ultimately, there is a clear correlation between the samples coordinates in the DAPC space and the
membership probability for the STRUCTURE subpopulations corresponding to the clusters that each
discriminant function (i.e. axis in the DAPC space) separates. Indeed, the discriminant functions are
designed to maximise the variance between clusters, and thus the samples coordinates on each of
the DAPC space axis informs about their membership to one or more DAPC clusters. The latter are
similar to the STRUCTURE subpopulations and thus samples coordinates also provide information
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Figure 4.6: PCA plot of the first two components of a PCA applied to the variant dosage of 182
samples. The name of the parent samples (large points) is indicated next to the corresponding point,
while progeny samples are indicated with smaller points. For the progeny samples, the shape of
the points represent the first parent (i.e. Crop20 or Crop52), and the colour the other parent. For
the parent sample, the suffix indicates the batch in which the sample was processed. Samples with
suffixes 502 and 503 arise from the same biological sample, and samples with suffixes p01 and p02
arise from a second biological sample.
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Figure 4.7: PCA plot of the second and third components of a PCA applied to the variant dosage of
182 samples. The name of the parent samples (large points) is indicated next to the corresponding
point, while progeny samples are indicated with smaller points. For the progeny samples, the shape
of the points represent the first parent (i.e. Crop20 or Crop52), and the colour the other parent. For
the parent sample, the suffix indicates the batch in which the sample was processed. Samples with
suffixes 502 and 503 arise from the same biological sample, and samples with suffixes p01 and p02
arise from a second biological sample.
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about the samples membership probability for the concerned STRUCTURE subpopulations.

While the population structure was studied over all 182 genotyped samples, the kinship matrix,
which represents the relationship among samples, was computed over the 142 progeny samples for
which I also have phenotype data. This is because in the case of population structure, including the
parent samples can help decipher the structure amongst samples. On the contrary for the kinship
matrix the relationship between any pair of samples is independent from other samples, and only
samples with phenotype data will be considered in the GWAS analysis. The kinship matrix (Figure
4.9) clearly illustrates the half-sibling design of the experiment. Progeny from a same cross (full
siblings, along the diagonal) are highly related. They are also related to a lesser extent to progeny from
a cross sharing a common parent. On the contrary progeny from different crosses with no common
parents show little relatedness. When clustering samples based on the kinship matrix, progeny from
a same cross are clustered together, and two super-clusters separate Crop20 progeny from Crop52
progeny, with the exception of the V390 progeny (with both Crop20 and Crop52) that was grouped in
a same cluster.

STRUCTURE DAPC
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Figure 4.8: Population structure uncovered with STRUCTURE and DAPC for parent samples. The
posterior membership probabilities of the parent samples are displayed for the five subpopulations
identified with STRUCTURE (left panel) and for the four clusters identified with DAPC (right panel).
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Figure 4.9: Kinship matrix representing the relatedness between 142 progeny samples. Each row and
column corresponds to one sample, whose group (i.e. whether it comes from a cross with Crop20 –
in blue – or Crop52 – in gold –) and second parent are indicated on the left (for rows) or above (for
columns). The colour of each cell indicates the individual relatedness between a pair of samples,
with a high value (red) indicating that the two samples are highly related, while a low value (blue)
indicates that the samples are not related. Note that the matrix is scaled such that the mean of the
diagonal elements is one.
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4.4.6 Impact of GWAS settings on the marker scores

The GWAS analysis was performed for 142 progeny samples and each of the 13 measured phenotypes.
Six different genetic models (describing the effect of a marker’s dosage on the phenotype) and
six different population settings (correcting for individual relatedness and/or population structure)
were considered, which yielded for each phenotype 36 sets of marker scores, each describing the
relationship between each marker’s dosage and the phenotype according to the corresponding genetic
model and population setting. The ability of each GWAS setting (i.e genetic model and population
setting) to control for false positive and negative in the resulting scores was evaluated by computing
for each an inflation factor (Rosyara et al., 2016). The inflation factor describes the deviation of
observed markers scores from their expected values under the null hypothesis of no association with
the phenotype. As I anticipate that most markers are not associated with the phenotype, especially in
this experiment in which potatoes have undergone selection for some of these traits, I expect that for
most markers the observed and expected scores will be very close, which would give an inflation
factor close to one. An inflation factor higher than one indicates that many markers are detected
as significantly impacting the phenotype, which is not desirable, as it most likely would contain
many false positive. Such inflation of false positive may notably be due to a failure of the model
to account for relationships between samples (Bazakos et al., 2017). On the contrary, an inflation
factor smaller than one indicates that the model fails to detect the relationship between markers and
phenotype, which could be caused by over-compensating for population structure (Zhao et al., 2011).
The inflation factor is thus an important metric to help us choosing the optimal population setting,
which may differ between phenotypes.

Figure 4.10 compares the marker scores obtained with the different genetic models and population
settings for the bruising mean score phenotype. We can see that in general the marker scores are more
similar when computed with the same genetic model but different population settings than when
computed with the same population setting but different genetic models. This is an expected result, as
the genetic model defines the relationship between marker dosage and phenotype and thus critically
influences the estimated quantitative impact of a marker’s dosage on the trait. Note however that the
scores obtained with the additive model are positively correlated with those obtained with the duplex
dominant models, and more modestly with those obtained with the simplex dominant models. On the
contrary the two simplex dominant models return scores that are uncorrelated. For a similar genetic
model, the population setting only influences to a small extent the marker scores (high correlation
between scores obtained for a same genetic model with different population settings). The naive
model yields results that are the most different to other population settings, while settings that account
for individual relatedness (i.e. K and K+Q settings) return similar marker scores. Interestingly, it
seems that in general the KDAPC setting yields scores that are more similar to the K setting (correlation
of 0.99 for all genetic models) compared to the K+QSTRUCTURE setting (correlation between 0.94 and
0.96 across the genetic models). This tends to indicate that using the posterior membership probability
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Figure 4.10: Correlation coefficients between the marker scores obtained for the bruising mean score
phenotype for different GWAS settings, i.e. different genetic models and population settings.
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returned by DAPC is less informative about the structure of the population than the one returned by
STRUCTURE. This makes sense as the DAPC output doesn’t provide information about the possible
admixture of samples, while STRUCTURE does. The same holds when using the samples coordinates
in the DAPC space as covariates in the analysis to account for population structure (instead of the
posterior membership probability – results not shown). This is in contradiction with the results of
Rosyara et al. (2016), who found that the QDAPC model outperformed the QSTRUCTURE model in
correcting for population structure. This could be due to the fact that the samples used in this study
are more related than the samples used by Rosyara et al. (2016), and thus information about admixture
of the samples is more important in this case.

The inflation factors obtained for each phenotype and GWAS setting are presented in Figure
4.11. These results confirm that performing GWAS without accounting for population structure or
individual relatedness, i.e. using the naive model, leads to an inflation of high marker scores (inflation
factor above one). As observed by Rosyara et al. (2016) and Sharma et al. (2018), correcting only for
population structure without accounting for individual relatedness (i.e. Q models) still lead to inflated
false positive. Interestingly, the QSTRUCTURE model, that uses the population structure inferred with
STRUCTURE, yields inflation factors closer to one than the model using the population structure
inferred with DAPC. Models that account for individual relatedness by including the kinship matrix K
yield inflation factors closer to one than the settings that do not include K, indicating that accounting
for sample relatedness allows us to better control the false positive inflation. The distribution of
inflation factors for the K and K + Q models are very similar, and centred around one, indicating that
accounting for the individual relatedness (with K) is sufficient to control markers scores inflation.
However, as can be noted in Figure 4.11 a), the optimal population setting (i.e. yielding an inflation
factor closest to one) will differ depending on the considered phenotype. For example marker scores
obtained for the dry matter content trait are all quite high across all population settings, while those
estimated for the yield phenotypes are consistently low. One possible explanation for the latter is that
the crops investigated have been selected for this trait and thus the observed variations in phenotypic
values are not caused by genetic variations. In addition, yield is a complex trait with many expected
QTLs with small effect, and therefore a large population size would be required to be able to detect
them.

4.4.7 Markers-trait association

To account for multiple testing, the Bonferroni correction was used to set a significance threshold
for each GWAS setting and phenotype, with a type-I error (α) level of 0.05. As mentioned in the
previous section, inflation of marker scores leads to many false positive, so I discarded GWAS settings
yielding high inflation factors (above 1.1). GWAS settings yielding low inflation factors (below 0.95)
were also discarded, however in the latter case no marker would be considered significant. Indeed,
a low inflation factor means that the observed marker scores are lower than their expected values
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Figure 4.11: Inflation factors obtained for the different phenotypes and GWAS settings. a) Heatmap of
the inflation factors obtained for each GWAS setting (row) and phenotype (column). b) Distribution of
inflation factors obtained across phenotypes and genetic models for the different population settings.
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under the null hypothesis of no association with the phenotype. A low inflation factor can be caused
by an over-correction for population structure. Alternatively, as the studied population underwent
selection for some traits of interest, the association between markers and the considered phenotype
was consequently reduced. Markers were retained as significantly associated with a phenotype if
their score is above the significance threshold in one (or more) GWAS setting whose inflation factor
is between 0.95 and 1.1. The list of significant markers are presented in Supplementary Table F.1. I
observed eight significant markers for the dry matter phenotype (on chromosomes 1, 2, 4, 11 and
12), four for the general impression score (on chromosomes 6, 8, 11 and 12), one for the percentage
saleable phenotype (on chromosome 8), one for the sprouting phenotype (on chromosome 9) and
one for the vigour trait (on chromosome 7). No markers were detected as significant for the other
phenotypes. This small number is not surprising, as the samples used for this analysis have been
selected for many of these traits. Hence, I do not expect a clear and strong signal from the main
genomic regions controlling these traits. Instead, I am looking for the cause of more subtle variations
in the phenotypes. And indeed, none of the detected significant markers are close to previously
detected QTLs for these traits. It is interesting to note that most of these markers were detected as
significant with only one genetic model, but several population settings. In such cases, the marker
scores and estimated effects of the marker on the phenotype are consistent across the population
settings. On the contrary, very few of these markers were detected as significant with several genetic
models. This is not surprising as each genetic model searches for different patterns of association
between a marker’s dosage and the phenotype.

A common visualisation of GWAS results is in the form of a Manhattan plot, in which we
represent the markers score along the genome, each chromosome being drawn one after the other.
An example is depicted in Figure 4.12 a). With such plot, the genomic regions most associated
with the phenotype are easily visualised as peaks or “towers”. In this example, higher scores are
observed towards the telomeres. This is due to the fact that the baits used to obtain genomics
measurements targeted regions of high exonic densities, which occur away from the centromere of
the chromosome and thus closer to the ends of the chromosomes (see Supplementary Figure F.2).
Therefore, near the centromere, there are fewer genes with genomics measurements and so we can
expect that very few of them have a significant association with the phenotype. In the present case,
because I am interested in more subtle associations between markers and phenotypes, I also want
to observe genomic regions that were assigned high but non-significant scores, i.e. the peaks in the
Manhattan plots that are below the significance threshold. In order to compare the results obtained
with different genetic models, and because marker scores are highly correlated between different
population settings for a same genetic model, the population setting yielding the inflation factor
closest to one was selected for each trait and genetic model. The “peaks” from each Manhattan plot
were extracted as the markers with a score higher than the 99.99th quantile of the score distribution
(for the corresponding phenotype and GWAS setting). I represent the position of the peaks obtained
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Figure 4.12: GWAS marker scores for the bruising mean score phenotype. a) Manhattan plot for
the additive model and K setting. The marker scores (y-axis) are plotted for each marker along the
genome (x-axis). b) Genomic positions of the peaks in the Manhattan plots for the six genetic models
and corresponding optimal population setting. The colour of the points represents the marker score.
In both plots, the position of previously detected QTLs along with the name of the candidate gene are
represented with dotted lines.

with the six genetic models for the bruising mean score in Figure 4.12 b). It is interesting to see that
some marker peaks are detected in the same region with all six genetic models (e.g. at the beginning of
chromosome 7), while some peaks are only detected with one or a few genetic models (e.g. beginning
of chromosome 4). Also, it can be noted that some of the markers with high but non-significant
scores are located close to previously detected QTLs. For example, with all six genetic models we
observe a peak in the GWAS scores on chromosome 2 around 41 to 45Mb, which is close to the
StI024 SSR marker (PGSC0003DMG400010074 gene, encoding a hydroxyproline-rich glycoprotein
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Figure 4.13: (Previous page.) Association between a high-scoring marker dosage and neighbouring
transcribed genes’ expression. The marker ST4.03ch11_941448, found just after the coding region of
gene PGSC0003DMG400013259, was assigned a high score in the GWAS analysis for the bruising
mean score trait (top panel - one point per marker). The association of its dosage with neighbouring
transcribed genes is depicted in the middle panel, in which each square represents the Kruskal-
Wallis score between the high-scoring marker and the expression of a neighbour gene. The bottom
panel presents the position of the gene near which the considered marker is found (red rectangle)
and neighbouring genes (black rectangles), including a transcribed gene detected as differentially
expressed (in blue). The dosage of the observed variants in this region are plotted below, with lines
indicating were they are found within the genes.

family protein) that was detected as significantly associated with a bruising phenotype by Urbany et
al. (2011) in an association mapping study of tetraploid potatoes. The general and additive models
also detected a few markers with high scores on chromosome 8 around 45Mb, within and close to
genes encoding polyphenol oxidases or PPOs (PGSC0003DMG4000189{13, 14, 17, 19, 24, 25} and
PGSC0003DMG400029576), including the POT32 gene (PGSC0003DMG400018916), which is
expressed in potato tubers (Urbany et al., 2011). These enzymes catalyse the oxidation of phenolic
compounds, causing tissue discolouration and browning, and were detected as QTLs in several studies
(e.g. Werij et al., 2007; Hara-Skrzypiec et al., 2018). Similarly, a non-significant GWAS score peak
was found for the maturity trait very close to the StCDF1 gene, which is a major maturity locus
(Kloosterman et al., 2013). In general, across the phenotypes, some of the high-scoring variants
were found within genes previously detected as QTLs for the considered traits. This highlights the
importance of looking at genomic regions with high GWAS scores that are not significant, as these
can provide useful biological information.

4.4.8 Comparing GWAS results with a differential expression analysis

As transcripts measurements were taken after bruising the tubers, I expect the data to reflect the
expression of the genes in response to the bruising. Therefore, 41 samples with the lowest bruising
mean scores and 41 samples with the highest bruising mean scores were selected, to perform a
differential expression analysis. I obtained 158 significantly differentially expressed genes (DE genes)
with an adjusted p-value under 0.05. Amongst them, 92 transcribed genes were found upregulated,
and 62 downregulated. I did not use a threshold on the fold-change of the transcribed genes in order to
detect genes with small but consistent changes between the groups. Comparison between two different
multiple-testing correction methods, namely FDR and IHW, showed that both methods were in very
good agreement with respect to the transcribed genes detected as differentially expressed, with only
54 transcribed genes found as significant with one method but not the other. This is to be expected, as
with both methods genes with a very small p-value will still be considered significantly differentially
expressed after correction. A gene set enrichment analysis was performed to detect GO terms enriched
for differentially expressed genes. The GO terms ‘protein binding’ (GO:0005515), ‘ATP binding’
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(GO:0005524) and ‘protein kinase activity’ (GO:0004672), all three representing molecular function
terms, were significantly enriched for DE genes. Unfortunately, the lack of proper translation of gene
IDs into KEGG prevented an over-representation analysis of metabolic pathways. This highlights
the fact that proper gene annotation is essential to interpret the results of a differential expression
analysis.

From the set of transcribed genes detected as significantly DE, two transcribed genes were
also detected as containing a high-scoring marker from the GWAS analysis, for the bruising mean
score phenotype. The relationship between one of these high-scoring marker, corresponding gene
expression and bruising mean score is shown in Supplementary Figure F.5. The fact that there was
no overlap between the GWAS and differential expression results is not surprising. First, the causal
variants might control the phenotype without impacting gene expression, for example by affecting
post-transcriptional events, e.g. the conformation of a protein. Also, in the case that the causal variants
do influence the phenotype through changes in gene expression, I do not expect the GWAS analysis
to pinpoint true causal variants, but rather genomic regions of interest. The detected markers may be
located close to the true causal variant but on a different gene/regulatory region. Indeed, I observed
that for most high-scoring markers there is little to no relationship between their dosage and the
expression of the gene in which they are found. Only 19 of the 117 high-scoring markers detected for
the bruising mean phenotype were found to have a significant relationship between their dosage and
the expression of the genes in which they are found, and none of the corresponding transcribed genes
were differentially expressed. One possibility is that these high-scoring markers, via linkage with the
true causal variant, are associated with the expression of a neighbouring gene, which does play a role
in controlling the trait of interest. However no significant difference was found between the distance
to a GWAS high-scoring marker of differentially expressed genes and of non-differentially expressed
genes (p-value = 0.13).

I illustrate this for one marker in Figure 4.13. The dosage of the high-scoring marker depicted is
not associated with the expression of the gene closest to which it is found, however it is significantly
associated with the expression of a nearby gene which has been found to be differentially expressed.
This example emphasises the importance of considering the results of a GWAS analysis with caution,
and the usefulness of combining several omics layers in order to detect molecular features involved in
controlling a trait of interest, rather than relying on significant markers only. Yet another possibility
is that the variants affect genes encoding for transcription factors that have been found to occur in
small numbers in cells, and could thus be missed by the differential analysis. Lastly, the variants
could affect the expression of a gene whose impact on the phenotype would be missed due to the
timing of the sampling. Indeed, samples were obtained two hours after bruising, while the bruise was
scored after 24 hours.
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To summarise the information uncovered with the GWAS and differential expression analysis, I
visualised the genomic position of high-scoring GWAS markers for the bruising mean phenotype
(across the different valid GWAS settings) alongside the position of significantly differentially ex-
pressed genes, as well as candidate genes previously identified in the literature (Figure 4.14). We can
see that even though the genes highlighted by the GWAS and differential expression analysis are not
identical, there are nevertheless often found clustered in specific genomic regions, for example at
the end of chromosome 2, at the beginning and end of chromosome 7, end of chromosome 8 and
beginning of chromosome 11, with smaller clusters spread throughout the genome. Some of these
clusters coincide with previously reported QTLs, i.e. the Stl024 gene in chromosome 2 or PPO genes
in chromosome 8, but others are not located near previously reported QTLs, and could thus provide
new insights into the mechanisms of potato bruising, such as for example the end of chromosome 7
or beginning of chromosome 11.

4.4.9 Genes co-expression network

One question that arises is whether the genes of interest (genes with high-scoring markers, DE genes
or previously uncovered candidate genes) are involved in similar biological pathways. One way to
answer this question is to reconstruct the co-expression network among transcribed genes, based on
the correlation between their expression. The hypothesis is that transcribed genes that are close in the
co-expression network, i.e. with high correlation between their expression, are involved in a common
pathway. The VST transformed count data was used to reconstruct a co-expression network among
the 25,163 genes with transcriptomics measurements. Modules of highly connected transcribed genes
were detected based on the topological overlap between pairs of genes, i.e. the number of common
neighbours between two considered genes. I identified 196 modules of size ranging from 10 to 5,295.
In addition, 7,410 transcribed genes (29.4%) were not assigned to any module. For each module, its
eigengene was computed, that summarises the expression profile of the genes in the module across
the measured samples. The eigengenes of 32 modules were detected as significantly correlated with
the bruising mean phenotype (14 modules with a significant positive correlation and 18 modules with
a significant negative correlation). This suggests that multiple biological processes might be involved
in the response to bruising. The GO terms significantly enriched in these modules are presented in
Supplementary Table F.2.

I also tested whether the different uncovered modules were enriched for genes containing GWAS
high-scoring markers, DE genes, or previously identified candidate genes. The correlation p-value of
each module’s eigengene for the bruising mean score phenotype as well as the different enrichment
scores are depicted in Figure 4.15. The 301 genes of interest (i.e. either containing high-scoring
markers, differentially expressed or previously detected as candidate QTLs) for which we had tran-
scriptomics measurements were scattered across 56 modules, and 40 (13.3%) were not assigned
to any module. Six out of the 32 modules whose eigengene was significantly correlated with the
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phenotype were also found enriched for DE genes. This is to be expected as the eigengene represents
the expression of transcribed genes within the module, so a high correlation of the eigengene with the
trait implies that the expression of at least some genes within the module is also correlated with the
trait. Genes with high-scoring markers were found in modules that were not enriched for DE genes nor
associated with the trait, and previously detected candidate genes also found in modules not enriched
for DE genes nor for GWAS genes. Interestingly, when comparing the adjacency matrix restricted to
the genes of interest, I observed that a large fraction of the DE genes shared high adjacency values
between them, while most genes containing high-scoring markers had smaller adjacency values with
other interesting genes. This could be due to the fact that some genes containing high-scoring markers
are unrelated to the trait of interest but only physical neighbours of causal variants, as discussed in the
previous section. Taken together, this co-expression analysis provide further information about genes
possibly involved in controlling tuber bruising. Genes co-expressed with differentially genes can be
further investigated to detect biological pathways involved in tuber bruising. Another explanation
could be that the causal variants affect the phenotype through other means than via modification of
gene expression.

4.5 Concluding remarks

Genome wide association studies are an invaluable tool to understand the genomic component of
variation in traits of interest. In this study, I demonstrated how partial genomics measurements,
together with transcriptomics data, can be used to uncover interesting genomic regions and candidate
genes associated with a considered trait in a tetraploid organism with complex population structure. I
focused on tuber bruising as well as several agronomic traits of the autotetraploid potato. Despite
the plants used for the study being selected for some of these traits, several significant markers
associated with the phenotypes were uncovered. As I anticipate that the selection process removed
variants in major QTLs for the traits, these significant markers likely provide clues about genetic
components associated with more subtle variations in the phenotypes. This is an important result, as
it demonstrates that breeding populations that were not specifically designed for association analysis
can still be used to investigate relationships between genotype and phenotype.

Although the significant markers uncovered did no co-localise with previously reported QTLs, a
careful investigation of the high-scoring markers, i.e. markers with high GWAS scores but below
the significance threshold, revealed peaks close to or within genes previously found related to the
traits of interest. This highlights the importance of considering non-significant results in association
studies, as they can be biologically relevant. Also, the choice of a specific multiple testing correction
method influences greatly which markers are retained as significantly associated with the phenotype.
In this study, I chose to use the Bonferroni correction when selecting the significance threshold
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for markers’ scores. I considered the Bonferroni correction more appropriate than a FDR-based
approach in this case as, due to the individuals being subject to selection for some traits of interest,
I do not expect major causal QTLs to be detected. Therefore, a FDR-based correction would have
resulted in many false positives for a relatively small increase in statistical power. By performing a
differential expression analysis on samples with extreme phenotypes, I showed that markers with high
GWAS scores and significantly differentially expressed genes where located in clusters throughout
the genome, thus providing evidence that these regions are of interest for the investigated traits.
This comparison between differentially expressed genes and high-scoring markers provides a way
to complement capture sequencing as it allows to pin-point possible causal genes near which the
true causal variants might be located, even though no genomics data was recorded for these genes.
Moreover, it offers some intuition about possible mechanisms by which genetic variations affect the
trait of interest through the expression of important genes. Note that except for the GWAS analysis, the
FDR correction was used to correct for multiple testing, as it is less conservative than the Bonferroni
correction and thus allowed to detect more signal from the datasets. Using FDR-based corrections
that account for useful covariates has been shown to be useful in differential expression analyses
(Korthauer, Kimes, et al., 2019) and was done to detect significantly differentially expressed genes
from the transcriptomics dataset.

For crops such as potato, it is important to account for the fact that the cultivars used in the
association panel are probably related to some extent, and adjust accordingly the statistical model
used to perform the analysis. In this study, I demonstrated the importance of including information
about individual relatedness as well as samples admixture in the model in the case where the samples
are highly related. Even though STRUCTURE and DAPC detected a similar clustering of the samples
into subpopulations, the former was more effective in reducing the effect of population stratification,
as it informed about samples admixture. This result is likely to change for experiments with a different
population structure. I expect that for panels with more unrelated samples, the DAPC posterior
membership probabilities will be sufficient to account for population stratification, which has been
the case for Rosyara et al. (2016). As previously mentioned by Rosyara et al. (2016) and Sharma et
al. (2018), inflation factors provide a useful guide for assessing the effect of population structure on
the results of a GWAS analysis. Moreover, these results show the usefulness of investigating different
scenarios linking the markers’ dosage to the phenotypic value (i.e. different genetic models), a feature
offered by the package GWASpoly. Different genetic models highlight the contribution of different
markers and provide complementary outcomes.

The findings from this association study can be used to focus the search for interesting markers
for breeding selection in the genomic regions highlighted. In addition, I am planning to go one step
further and combine genomics, transcriptomics, metabolomics and phenotypic data to reconstruct the
causal flow of information from genotype to phenotype.
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Chapter 5

Uncovering causal relationships from
genotype to phenotype using multi-omics
data in autotetraploid potatoes

5.1 Introduction

Integrating measurements obtained at different cellular scales, i.e. different “omics” datasets, offers
the potential to reconstruct an unprecedented picture of the molecular mechanisms at play within
cells. The central dogma of molecular biology requires extensions: there is extensive interaction and
feedback between different molecule types, i.e. DNA, RNA, proteins and metabolites (Angelin-Bonnet
et al., 2019). Variations in the DNA can affect the expression of genes, or the activity of the encoded
proteins (Albert & Kruglyak, 2015). Non-coding RNAs can also control the different steps of gene
expression (see for example Geisler & Coller, 2013). Enzymes catalyse metabolic reactions, and
metabolites can effect a feedback on the expression or lifetime of target proteins (e.g. Serganov &
Patel, 2012). Thus, focusing on one of these omics layers only amounts to overlooking the complexity
of regulatory interactions at play and prevents us from reconstructing a complete overview of the
biological processes involved. As technology progresses, and the monitoring of different omics
becomes routine, including on the same set of samples, more datasets are generated that are ideally
suited to omics data integration. A number of statistical methods have been proposed to this end, with
different objectives. Methods based on correlation (Peng et al., 2018) or clustering (Acharjee et al.,
2016) aim at detecting from the different omics datasets groups of co-regulated features, potentially
involved in similar biological networks. Some algorithms seek instead to perform dimension reduction,
to summarise the information contained in the different datasets and identify groups of features driving
the variation amongst the observations or samples. Examples include multiple coinertia analysis
(MCIA – Meng et al., 2014), orthogonal projections to latent structure for n matrices (OnPLS –
Srivastava et al., 2013), Generalised Canonical Correlation Analysis (Tenenhaus et al., 2017) or block
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sparse PLS-DA, known as the DIABLO algorithm (Singh et al., 2016). Some of these tools make use
of regularisation – such as LASSO (Tibshirani, 1996), Elastic Net (Zou & Hastie, 2005) – to perform
feature selection, in order to retain features from the different datasets that are best associated with a
phenotypic outcome of interest (e.g. Lê Cao et al., 2008; Cai & Huo, 2020; Singh et al., 2016).

In the present work, I am interested in methods that focus on reconstructing the flow of information
from genotype to phenotype, specifically in the context of tuber bruising in autotetraploid potatoes. To
combine genomics, transcriptomics and phenotypic data, several studies have made use of uncovered
QTLs as causal anchors in order to reconstruct causal relationships between different molecular
features. For example, given an intermediate phenotype (e.g. gene, protein or metabolite) associated
with a genomic variant that coincides with a QTL region for a trait of interest, Millstein et al. (2009)
proposed a Causal Inference Test that assesses the causal status of the intermediate phenotype as a
mediator between the QTL and the phenotype. They show that this test can be used to reconstruct a
causal transcription regulatory network for yeast. Zhu et al. (2012) used Bayesian networks to model
causal regulatory relationships between causal variants, transcripts and metabolites. Recently, Qiu et
al. (2020) used a combination of differential analysis, QTL mapping and Mendelian randomisation
to detect biomarkers from genomics, methylomics, transcriptomics and metabolomics datasets with a
causal effect on bone mineral density. Mendelian randomisation uses SNPs as instrumental variables
to test for causal relationships between variables. Causal inference is indeed a desirable way to
integrate different omics datasets, as it allows us to move beyond mere co-regulation and to uncover
the biological mechanisms at play. However, causal inference is still a field under active research, and
its use in systems biology is not yet widespread. One of the reasons is that a number of assumptions
must be fulfilled in order to detect true causation, which are hard to check or even violated in biological
systems. Nevertheless, causal inference methods have been used on biological datasets and have
provided interesting insights, as they were able to detect previously reported associations as well as
detect new relationships between molecular actors and phenotypes (Neto et al., 2008; Peñagaricano et
al., 2015a). In Chapter 3, I have shown that, when applied to small simulated transcriptomics datasets,
causal inference methods are able to detect true relationships between the different gene products. In
this analysis, I aim at expanding their use in an effort to bring together genomics, transcriptomics and
metabolomics measurements.

I expand here the analysis undertaken in Chapter 4, in which I study the molecular mechanisms
of tuber bruising in tetraploid potatoes. In Chapter 4, I focused on the genetic component of tuber
bruising, by investigating the associations of genomic variants with the phenotype. In the present
study, I complement these results by turning my attention to biological mechanisms that mediate this
genotype-phenotype association, by analysing metabolomics measurements obtained from the same
half-sibling population. I perform the integration of the genomics, transcriptomics, metabolomics
and phenotypic datasets in two steps. The first step aims at reducing the dimension of the datasets by
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means of feature selection. I use the DIABLO algorithm, implemented in the mixomics R package,
to retain co-regulated features associated with the phenotype. For the second step, I explore the use
of a number of state-of-the-art causal inference methods on the selected features. This permits the
construction of a multi-omics causal network relating to potato tuber bruising. I contrast the results
obtained with those from single-omics analyses performed on each of the datasets. In addition, I
make use of a number of causal queries, that seek different types of causal relationships between the
molecular features (e.g. parental or ancestral relationships), to interpret the inferred graphs. These
causal queries provide an efficient and intuitive way to extract information from the reconstructed
graphs.

5.2 Contribution

The metabolomics data acquisition and pre-processing (step M1 in Figure 5.1) were performed by
the Plant and Food Research metabolomics team, Martin Shaw and Nigel Joyce.

5.3 Materials and methods

A schema of the analysis workflow used throughout this chapter is presented in Figure 5.1.

5.3.1 Plant materials and phenotyping

The potato material used for this analysis is presented in Section 4.3 of Chapter 4. Briefly, several
cultivars were crossed in a half-sibling design, and the resulting progeny lines underwent two rounds of
selection. Retained progeny lines were cultivated and subsequently subjected to a bruising experiment.
For each progeny line, three tubers were harvested for each of two biological replicate plants, and
each tuber was bruised on two sides by dropping a lead weight from controlled height. The site of
bruising was recorded by inking the weight before bruising. After 24 hours, tubers were sliced at
the site of bruising, and an image was taken of the bruising for the three tubers of each biological
replicate per genotype. A bruising score was attributed to each tuber upon visual inspection of the
images, from zero (no visible bruising) to five (extensive dark bruise), in accordance to a predefined
visual scale. For each biological replicate, the bruising mean score was obtained as the average of the
bruising score attributed to each of the three tubers. In addition, a bruising mean score was computed
for each genotype as the average bruising score of the six tubers (i.e from both biological replicates).

5.3.2 Metabolomics dataset

Data acquisition

Two hours after bruising, samples were taken from the bruising site on each tuber used for the bruising
experiment, and the samples obtained from the three tubers collected from a same biological replicate
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Figure 5.1: Schema of the analysis workflow used throughout the chapter. Input/output datasets and
endpoints are presented in black rounded boxes and analysis steps are shown in white rectangle boxes.
The coloured rectangles outline different themes in the analysis.

were pooled and snap-frozen. Samples were collected for each of the two biological replicates for 122
progeny lines, all arising from a cross involving Crop52. Untargeted metabolomics measurements
were then obtained for the 244 observations by liquid chromatography-mass spectrometry; a copy
of the protocol for samples processing and analysis can be found in Appendix G, Section G.1.
Measurements were taken under aqueous normal phase conditions (H column) as well as reverse
phase conditions (C column), and the eluent from each column was scanned with in both the negative
(n) and positive (p) ion mode. This resulted in four different analyses or modes per sample, denoted
as Hn, Hp, Cn and Cp to indicate both the column and ion mode used. As two biological replicates
were used for each progeny line, the samples labelled as “Replicate 1” across the genotype lines were
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processed first, and all samples labelled as “Replicate 2” were processed in a second time.

The resulting mass spectral scans were processed with the Compound Discoverer software (box
M1 in Figure 5.1). Following a first exploratory analysis of the data showing an effect of the samples
processing order on the compounds retention time, retention times were aligned to compensate
for drifts occurring throughout sample processing. Detected compounds with a molecular weight
different of less than five parts per million and a retention time difference of less than 0.4 minutes
were matched. Peak areas were extracted and normalised using the QC samples measured throughout
sample processing, to correct for batch effects. Several internal databases (including a snapshot
of the mzCloud database) were then consulted to extract the name, formula and structure of the
compounds. Alternatively, the chemical formula of unknown compounds was predicted from the
spectral data. Ultimately, normalised intensities were obtained for 953 compounds with the Cn mode,
2,570 compounds with the Cp mode, 229 compounds with the Hn mode and 853 compounds with
the Hp mode (4,604 compounds in total).

The normalised area intensities of the compounds for each of the four modes (Cp, Cn, Hp, Hn),
thereafter referred to as the Cp, Cn, Hp and Hn datasets, respectively, were extracted and further
processed with the R package MetaboDiff (Mock et al., 2018). In addition, the four datasets were
merged to obtain a combined dataset with all 4,604 identified compounds. Subsequent analyses were
performed on each of the four datasets separately as well as on the combined dataset, for comparison.
The area intensities were normalised using the Variance Stabilising Transformation (VST) (Huber et
al., 2002) in order to mitigate the mean-variance bias observed (box M2 in Figure 5.1). The following
exploratory analyses were performed on these normalised intensities (boxM3 in Figure 5.1). The tsne
R package (Donaldson, 2016) was used to apply the t-distributed Stochastic Neighbour Embedding
(tSNE) algorithm (Van Der Maaten & Hinton, 2008) on the samples, a non-linear dimension reduction
technique aiming at projecting samples onto a two-dimensional space. In this reduced space, similar
samples (as defined by a Euclidean distance metric) are positioned closely with high probability,
while dissimilar samples are placed far apart with high probability. A principal component analysis
(PCA) was performed to assess the impact of samples processing order on the resulting intensities.
In addition, the metaboDiff package was used to perform a differential analysis between the first
biological replicate of each sample (processed first in the experiment) and their second biological
replicate (processed last), via a two-sided two-sample t-test with equal variance. The p-values obtained
were corrected for multiple testing using the FDR correction (Benjamini & Hochberg, 1995) (see
Section 4.1 for a discussion on multiple testing correction methods). Compounds with an adjusted
p-value below 0.05 and a log2 fold-change above 1.5 were considered significantly differentially
abundant. The tSNE analysis was then repeated without the compounds detected as differentially
expressed, to test whether they were the only drivers of the difference between biological replicates.
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Differential analysis

All biological replicates with a bruising mean score of one or less were classified as the “low bruising”
metabolomics group. The same number of biological replicates with the highest mean bruising
scores were then selected for the “high bruising” metabolomics group. This yielded two groups of
97 observations each (where an observation is one biological replicate of a progeny sample), which
were used for the differential expression analysis. The low bruising group gathered 67 different
genotypes, 30 of them with both observations in the low bruising group. In the high bruising group,
70 different genotypes were gathered, 27 of them having both replicates in the high bruising group.
In addition, 23 genotypes had one replicate clustered in the low bruising group and the other in the
high bruising group. Observations that did not group in the low nor the high bruising group were
discarded from further analyses. The MetaboDiff package was used to perform the differential
analysis between the two phenotype groups. The compounds p-values obtained were automatically
corrected for multiple testing using the FDR procedure (cf Section 4.1). Compounds were considered
significantly differentially abundant if their adjusted p-value was below 0.01.

Network co-abundance reconstruction

The WGCNA package (Langfelder & Horvath, 2008) was used to reconstruct the co-abundance network
between the compounds, using the VST-transformed area intensity datasets (box MA2 in Figure 5.1).
The algorithm starts by computing a similarity matrix for all compounds, where the similarity between
any pair of compounds corresponds to the correlation between their normalised intensity across the
observations. The adjacency matrix is then elevated to a soft thresholding power β, in order to remove
noise from the correlations. For each dataset, the soft-thresholding power was set as follows: three for
the Hp and combined datasets, four for the Cn and Hn datasets, and 14 for the Cp dataset. These values
were selected by varying for each dataset the soft-thresholding power, and selecting the smallest
value yielding both a scale-free network and a small mean connectivity coefficient. The resulting
adjacency matrix is used to compute a topological overlap matrix (TOM) describing for any pair of
compounds the overlap between their neighbours in the adjacency graph. The opposite of the TOM
matrix (i.e. 1 - TOM) is used as input for performing a hierarchical clustering on the observations.
The resulting dendrogram is split using the dynamic tree cut method, in order to extract modules
of highly connected compounds from the adjacency graph. The deepSplit parameter was set to
two and the minimum cluster size to 10. Both values were chosen to detect small densely connected
modules rather than large and more loosely connected modules. The value for deepSplitwas kept to
two, contrary to the transcriptomics analysis in which it was set to three, as the number of compounds
in the dataset was smaller than the number of transcribed genes measured in the transcriptomics
dataset (4,604 compounds vs 25,163 transcribed genes). Modules with similar intensity profiles were
merged. For each resulting module, its eigencompound was computed, as the samples coordinates for
the first principal component resulting from a PCA applied to the observations based only on the
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compounds in the module (box MA3 in Figure 5.1). These eigencompounds provide a summary of
the intensity profile distribution of the module across the observations. A correlation test was used to
assess the association between each module eigencompound and the bruising mean score across the
observations. In addition, an enrichment test of each module for differentially abundant compounds
was performed using the R package gage (Luo et al., 2009), which compares the mean compounds’
differential score (-log10 of their differential abundance adjusted p-value) for compounds within the
module to a same number of random compounds outside of the module via a prototype two-sample
t-test. The resulting p-values were adjusted for multiple testing with the FDR correction (cf Section
4.1). Modules with an adjusted p-value below 0.05 were considered as significantly correlated with
the bruising mean score.

5.3.3 Genomics dataset

Data acquisition

Genomics data was obtained from young leaf tissue material for the progeny samples as well as
some of the parents by capture-bait sequencing. Details of the data collection and preprocessing
are presented in Section 4.3.2. Briefly, the reads obtained were used to call genomic variants. The
resulting variants were then filtered according to their quality and fraction of missing values. In
addition, samples were filtered according to the fraction of missing values, to the status of the cultivar
(parent or progeny) and to their inclusion in the bruising experiment. The resulting dataset provides
information about the dosage of 602,955 genomic variants across 13 chromosomes, for 182 samples
(including 20 samples corresponding to parent genotypes).

Genome-wide association study

The genotype data (biallelic SNP and dosage) was used to assess the population structure among the
genotyped lines (see Section 4.3.4). This information was subsequently used to perform a genome-
wide association study (GWAS - Section 4.3.5), in order to detect genomic regions whose variation is
associated with traits of interest, notably the bruising mean score. Even though statistical significance
was not reached when correcting for multiple testing, markers with high GWAS scores were labelled
as GWAS high-scoring markers and retained for further analysis.

5.3.4 Transcriptomics dataset

Data acquisition

Two hours after the bruising experiment, samples were taken from one bruised side of each tuber
in order to collect transcriptomics measurements. Details of the data collection, preprocessing and
filtering are presented in Section 4.3.3. Note that only one biological replicate for each progeny line
was used for the transcriptomics measurements, yielding RNA levels for 25,163 transcribed genes
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across 100 unique progeny samples.

Differential analysis

Samples with RNA measurements and with a bruising score of one or lower were grouped as the
“low bruising” transcriptomics group (as presented in Section 4.3.6). The same number of samples
(with RNA measurements) and with the highest bruising scores were then selected as the “high
bruising” transcriptomics group. This yielded two groups of 41 samples each. The difference in the
number of observations between the low and high bruising transcriptomics groups and the low and
high bruising metabolomics groups is due to the fact that (i) only one biological replicate of a given
progeny line was used for the transcriptomics measurements and (ii) some progeny lines were used for
the metabolomics measurements but not the transcriptomics measurements. A differential expression
analysis was performed to compare the expression of the transcribed genes between these two groups,
using the DESeq2 R package (Love et al., 2014). Two different methods were compared to correct the
p-values for multiple testing: the traditional FDR correction, and independent hypothesis weighting
(Ignatiadis et al., 2016) that accounts for the total read counts of the transcribed genes to improve
the power of detection. Transcribed genes with either corrected p-value below 0.05 were retained as
significantly differentially expressed.

Co-expression network reconstruction

Similarly to the metabolomics analysis, the WGCNA package was used to reconstruct a co-expression
network among the transcribed genes (see Section 4.3.7). Because of the large number of transcribed
genes in the dataset, the co-expression network detection could not be run on the entire dataset at once.
Instead, the transcribed genes were first clustered into four main groups (using projective k-means
clustering), and the module detection procedure presented in Section 5.3.2 was applied separately to
each group. The soft-thresholding power β was set to six, the deepSplit parameter to three and the
minimum cluster size to 10.

5.3.5 Multi-omics data integration

In order to integrate the multi-omics datasets, 98 observations (an observation is a biological replicate
of a progeny sample) for which genomics, transcriptomics and metabolomics measurements as well
as a bruising mean score were available were retained. From these, 41 observations with a bruising
mean score of one or less were selected, and were classified as the “low bruising” group, and 33
observations with a bruising mean score of two or more were selected, which constituted the “high
bruising” group. The remaining samples were removed from the datasets. For all subsequent analyses,
the combined metabolomics dataset (i.e. with compounds identified with any of the four modes) was
used.
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Because of the large size of the omics datasets (602,955 genomic variants, 25,163 transcribed
genes and 4,604 compounds), a feature pre-selection step was first performed separately on each
dataset using the sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) algorithm (Lê Cao et
al., 2011) implemented in the R package mixOmics (Rohart et al., 2017 – box FS1 in Figure 5.1). The
algorithm jointly performs feature selection and dimension reduction, by seeking linear combinations
of subsets of variables, termed latent components, that best discriminate the outcome groups among
the observations. In this case, the outcome groups correspond to the high and low bruising groups
constructed using the bruising mean score of the observations. The algorithm requires as input
the number of latent components to compute as well as the number of features to retain for each
latent component. It is recommended to use cross-validation in order to set optimal values for both
parameters; however this option is not available if the dataset contains missing values, which is the
case for the present genomics dataset. This does not have too much impact for this step of the analysis
as the goal is to reduce the size of the datasets by removing features (i.e. genomic variants, transcribed
genes or compounds) with no association with the phenotype, rather than selecting only relevant
features. To this end, for the genomics and transcriptomics dataset, two latent components were
constructed, each retaining 1,000 features from the corresponding dataset. For the metabolomics
dataset, three latent components were constructed, each retaining 200 compounds. These values were
chosen to reduce the size of each dataset while retaining enough features to ensure that no feature of
interest is discarded. Only the features retained for the latent components of each dataset were kept for
further analysis. In the genomics dataset, variants that were identified as high-scoring markers in the
GWAS analysis were also retained for further analysis; and in the transcriptomics and metabolomics
datasets, features detected as differentially expressed in the single-omics analysis were also retained.
This lead to retaining 2,106 genomic variants, 1,985 transcribed genes and 601 compounds.

Next, a Partial Least Squares regression (Wold, 1966) (PLS - implemented in the mixOmics
package) was used to assess the covariance between pairs of omics datasets (box FS3 in Figure 5.1).
The algorithm seeks linear combinations of features from each of the two datasets that maximise
the covariance between the datasets. The covariance between the datasets is then estimated as the
correlation between the first latent component computed for each dataset.

Finally, the DIABLO algorithm (Singh et al., 2016), also termed block sPLS-DA and implemented
in the mixOmics package, was used to integrate the three omics datasets together, with respect to
the phenotype groups (box FS3 in Figure 5.1). Similarly to sPLS-DA, DIABLO performs both
feature selection and dimension reduction on each dataset. The algorithm constructs for each dataset
successive latent components, which are linear combinations of subsets of the original features, such
that the latent components (i) best discriminate the outcome groups (here the bruising groups) and
(ii) maximise the covariance between datasets (i.e. retain features across the datasets that co-vary).
The relative importance of these two objectives is set with a design matrix. In the design matrix,
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each row and column represents one of the input datasets, and the value in a given cell (outside the
diagonal) indicates whether the emphasis should be put on maximising the correlation between the
two corresponding datasets (value close to one) or differentiating between the outcome groups (value
close to zero). For this analysis, the non-diagonal elements in the design matrix were set to 0.1, in
what is referred to as a weighted full design matrix. As only a subset of all features from each dataset
are retained to construct the latent components, DIABLO only select features that are associated with
the phenotype of interest and are correlated. The samples are then projected for each dataset onto the
reduced space generated by the latent components. In addition, a weighted consensus reduced space
was constructed from these latent components. The coordinate of a given sample in the ith dimension
of this weighted consensus reduced space corresponds to the weighted average of its coordinates
for the ith latent component of each dataset. The contribution of each dataset is weighted by the
correlation between the corresponding latent component and the outcome groups, in order to give
more weight to datasets that better discriminate the outcome groups. In this weighted consensus
reduced space, a silhouette score was calculated for each sample, which measures how close the
sample is located to samples from the same outcome group. A sample is attributed a silhouette score
close to one if it is located close to samples from the same group, close to zero if it is located between
samples from different groups, and close to -1 if it is located among samples from another group.
The average silhouette of a group of samples therefore informs about whether the samples from the
group are closely clustered together in the reduced space.

The DIABLO algorithm requires as input the number of latent components to construct for each
dataset, as well as the number of features from each dataset to retain for each of the latent components.
Again, it is advised to use a cross-validation scheme to tune these values, however it is not applicable
if the datasets contain missing values, which is the case for this genomics dataset. Therefore, the
number of latent components to be computed was set to two, which corresponds to the number of
outcome groups among the observations, and is the recommended value by the authors of the package.
In order to estimate the optimal number of features to retain for the first latent component of each
dataset, DIABLO was ran with several configurations. The selection of 1%, 3%, 5%, 10%, 15%,
20% or 100% of the features independently in each dataset for the first latent component was tested,
while retaining all features for the second latent component of each dataset. This yielded 343 (73)
different configurations. Then, the average silhouette of both bruising groups in the resulting weighted
consensus reduced space was computed for each configuration . An appropriate number of features to
retain for the first latent component of each dataset was retained based on the resulting group average
silhouettes, as well as considering the need to retain a small number of features for later analyses.
This implied selecting among the configurations retaining at most 60 features per dataset the one
yielding the highest average silhouette for both phenotype groups. In addition, features were ranked
in each configuration, independently for each dataset, according to the absolute value of their loading
for the first latent component. The loading of a given feature for a latent component, i.e. its coefficient
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in the linear combination, informs about the contribution of the feature to the latent component. The
rank one was attributed to the feature with the highest absolute loading. Features not selected in a
given configuration were assigned the rank p (p being the total number of features in the dataset).
A mean rank score was then computed for each feature as the average rank of the feature across all
configurations. With the number of features to retain for the first component of each dataset set,
DIABLO was ran with several percentages of features to retain for the second latent component (again
1%, 3%, 5%, 10%, 15%, 20% or 100% of the features in the dataset), and evaluated the different
configurations based on the resulting groups silhouette average. The mean rank score of each feature
was also computed for the second latent component, as described previously, but using the features
loading for the second latent component. Ultimately, this led to retaining for each latent component
21 variants, 59 transcribed genes and 60 compounds. This analysis will be referred to thereafter as the
full DIABLO analysis. In addition, the analysis was repeated while restricting the genomics dataset
to only the variants detected as high-scoring markers in the GWAS analysis (GWAS-only DIABLO
analysis). In this case, 23 variants, 59 transcribed genes and 30 compounds were retained for the first
latent component, and for the second latent component three variants, 59 transcribed genes and six
compounds (i.e. 180 features in total).

5.3.6 Causal inference

The next step of the analysis is to perform causal inference on the features selected with DIABLO.
The 74 samples constituting the low and high bruising groups were retained. Each individual omics
dataset restricted to the features selected with DIABLO was centred and scaled, before combining
them to obtain a multi-omics matrix with 180 features measured across 74 observations (box CI1 in
Figure 5.1). In addition, the centred and scaled bruising mean score of each observation was added
to the multi-omics matrix as an additional variable to account for in the causal inference. Twelve
missing values for genomic variants were replaced by zero (i.e. the mean across the dataset as the data
was centred). Seven different causal inference methods along with two network inference methods
were tested (box CI3 in Figure 5.1):

• PC-stable (Colombo & Maathuis, 2014) – constraint-based causal inference method (bnlearn
package – Nagarajan et al. (2013));

• FCI (Spirtes et al., 1999) – constraint-based causal inference method (pcalg package – (Kalisch
et al., 2012));

• FCI+ (Claassen et al., 2013) – constraint-based causal inference method (pcalg package);
• GES (Chickering, 2003) – score-based causal inference method (pcalg package);
• FGES (Ramsey et al., 2017) – score-based causal inference method (rcausal package –
(Wongchokprasitti, 2019));

• MMHC (Tsamardinos et al., 2006) – hybrid causal inference method (bnlearn package);
• ARGES (Nandy et al., 2018) – hybrid causal inference method (pcalg package);
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• ARACNE (Margolin et al., 2006) – network inference method (minet package – (Meyer et al.,
2008));

• GENIE3 (Huynh-Thu et al., 2010) – network inference method (GENIE3 package – (Huynh-Thu
et al., 2010)).

Each method is described in more detail in Section 3.2.3. Contrary to the analyses performed in
Chapter 3, the version of the PC algorithm implemented in the bnlearn package was used, and
this implementation is referred to thereafter as PC-stable. Simple comparisons highlighted that the
implementations from the pcalg package and the bnlearn package return inferred graphs with
identical skeletons, but differ in the orientation of problematic v-structures. This could be solved
with appropriate setting of the parameters for the pcalg implementation, but was not attempted for
this analysis. Each causal or network inference method depends on one or more tuning parameters,
whose value must be set by the user. Again, these tuning parameters and their meaning are presented
in Section 3.2.5. Briefly, I focus on the three following tuning parameters:

• α: the constraint-based causal inference methods rely on conditional independence tests to
reconstruct the causal graph. They consider two variables to be independent conditionally on a
set of other variables if the p-value of the corresponding conditional independence test is lower
than the threshold α. Consequently, smaller values of α yield sparser inferred graphs.

• Penalty: the score-based methods assess the fit of a candidate causal graph to the observed
data using some model selection criterion. The latter balances the fit of the model to the data
with the complexity of the model, i.e. the number of parameters. The penalty terms dictates
the impact of the model complexity in the resulting graph score. Higher penalty values highly
penalise model complexity, i.e. the number of edges in the candidate graph, and thus yield
sparser inferred graphs.

• Threshold quantile: the two investigated network inferencemethods return a weighted adjacency
matrix that indicates the confidence in the existence of an edge between any two features. In
order to obtain a non weighted inferred graph, a threshold is required, and any edge with a
weight below this threshold is removed from the final graph. In this experiment, the threshold
is selected as a quantile of the observed weight distribution in the inferred weighted adjacency
matrix. This way, a threshold quantile of 0.5 signifies that the top 50% of the edges (i.e. with
the highest weights) are retained in the final graph.

Each method was run for different values of the tuning parameters. For each method, the value of
the tuning parameter(s) yielding a number of inferred edges (regardless of their orientation) as close
to 150 as possible was selected, as across the range of parameter values tested, each method was
able to infer a graph with approximately 150 edges (see Figure 5.8). A bootstrapping scheme was
used to quantify the confidence in the inferred causal relationships. One hundred bootstrap datasets
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were generated from the original multi-omics matrix, each generated by sampling with replacement
74 observations (i.e. the number of observations in the original dataset) from the original matrix
(box CI2 in Figure 5.1). The different causal and network inference methods were applied to each of
the 100 bootstrap datasets, with the selected values of the tuning parameters. For each method, the
skeletons of the graphs inferred from the bootstrap datasets were extracted, and a confidence score
was computed for each (undirected) edge as the fraction of bootstrap datasets for which the edge was
also inferred (box CI4 in Figure 5.1).

The similarity between the skeletons of the graphs inferred by each method with the original
dataset was quantified as follows. Given an inferred graph GA with N nodes, I define its skeleton
adjacency matrix SA = {SAij}1≤i,j≤N with SAij = SAji = 1 if there is an edge between the nodes i
and j in GA, and 0 otherwise. Thus, for two graphs GA and GB , both with the same N nodes, the
similarity between their skeleton is computed as:

Sk = 1−

N∑
i=1

N∑
j=1
|SAij − SBij |

N∑
i=1

N∑
j=1

SAij +
N∑
i=1

N∑
j=1

SBij

Additionally, the orientation of inferred causal relationships was compared across methods by
answering, for each inferred graph, several causal queries (Heinze-Deml et al., 2018 – box CI4 in
Figure 5.1). The queries considered assess the ability of the methods to detect different types of
causal relationships between the features. In particular, each inferred graph was used to answer the
following queries for any pair of features (A,B):

• the parent query: is A a causal parent of B? The answer is “yes” if there is a direct causal link
from A to B. As the FCI and FCI+ algorithms only infer ancestral relationships, they cannot
answer this causal query. Moreover ARACNe, which returns undirected graphs, cannot answer
this query either.

• the potential parent query: is A a potential causal parent of B? The answer is “yes” if there
is a direct causal link from A to B or if the orientation of the causal edge between A and B
could not be determined. Parents of a given variable are also considered as potential parents of
the variable.

• the ancestor query: is A an ancestor of B? The answer is “yes” if there is a direct or indirect
causal path directed from A to B. ARACNe, returning undirected graphs, cannot answer this
query.

• The potential ancestor query: is A a potential ancestor of B? The answer is “yes” if there is
a direct or indirect causal path from A to B, possibly including causal edges for which the
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orientation could not be inferred.

For a given inferred graph G, the answer to a particular causal query comes in the form of a p× p
matrix QG , where p is the number of features in the dataset, with element QGi,j = 1 (1 ≤ i, j ≤ p) if
the answer is positive for the (ordered) pair of variables (i, j) and 0 if the answer is negative. Similarly
to the edges of the inferred graphs skeleton, a confidence score can be computed for each positive
answer for a given method as the fraction of bootstrap datasets for which the answer was also positive
with the corresponding method.

Lastly, the impact of removing edges directed towards genomic variants on the reconstructed
causal graphs was also evaluated (box CI4 in Figure 5.1). This can be done by providing to the causal
or network inference method a blacklist of directed edges to be excluded from the reconstruction
process. Only some implementations of the investigated methods can process such a blacklist, namely
PC-stable, FGES, MMHC and GENIE3. The causal inference task was therefore repeated with these
four methods (using for their tuning parameters the values selected before) on the original dataset as
well as on the bootstrap datasets, and providing as a blacklist the list of all possible edges pointing
towards any of the genomic variants. This prevents the method from inferring edges that are directed
towards a genomic variant.

5.4 Results and Discussion

5.4.1 Metabolomics

Exploratory analysis

Untargeted metabolomic profiling was performed on potato tubers previously subjected to mechanical
bruising. This yielded measurements of 4,604 compounds in total (2,570 from the Cp mode, 953
from the Cn mode, 853 from the Hp mode and 228 from the Hp mode), across two biological
replicates of 122 progeny samples (i.e. 244 observations). A strong positive correlation was observed
between the variance of the compounds’ area intensities and their mean. Therefore, the area intensities
were normalised using a Variance Stabilising Transformation, which is similar to the transformation
commonly used to correct the mean-variance bias in transcriptomics datasets. Samples correlation and
clustering revealed an influence of the samples processing order on the profile of some compounds,
especially for the Cn and Hp datasets. This is most likely due to shifts in retention time occurring
throughout the analysis. This bias was however minimised by a correction of retention time differences
between compounds during the data pre-processing, which corrected most of the variation due to
processing order. The t-distributed Stochastic Neighbouring Embedding (tSNE) algorithmwas applied
to each dataset separately as well as to the combined dataset, in order to observe the relationships
between samples. The result for the combined dataset is presented in Figure 5.2 (left panel). While
for some samples both biological replicates are closely located on the reduced space, in some cases
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Figure 5.2: Coordinates of the samples in the tSNE reduced space obtained on the combined
metabolomics dataset with all compounds (left panel) or with only compounds that were not found to
be differentially expressed between the two biological replicates (right panel). Each point represents
one observation, its shape describing whether it is labelled as the first or second biological replicate
of the sample, and its colour representing the parent (other than Crop52) of the sample.

they lie far apart. This could be caused by the order in which the samples were processed: the
first biological replicate of all samples was processed first, and the second biological replicates was
processed in a second batch. Alternately, this difference could have arisen from a difference in the
environment in which the two biological replicates were grown. A differential analysis was therefore
performed to compare the intensities of the compounds between the first and second biological
replicates of all samples. From the combined dataset, 557 compounds (12.1%) were found to be
differentially abundant, mainly compounds identified with the Hp (39%) and Cp (32.9%), and flagged
for later analyses. The identified differentially abundant compounds included a number of amino
acids, several steroidal alkaloids and glycoalkaloids found notably in potatoes, and ascorbic acid,
amongst others. In a number of cases, two different compounds found to be differentially abundant
were identified as the same metabolite, but their retention time was different. This confirmed that
differences between the biological replicates of a same samples arose in part from their processing
order. Consequently, the list of compounds found to be differentially expressed was recorded for
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comparison with subsequent results. The tSNE analysis was repeated without these differentially
abundant compounds for comparison, and the result for the combined dataset is presented in Figure
5.2 (right panel). As expected, most progeny samples arising from a same cross were located close,
even though some outliers can be observed, which might be due to a mislabelling of the samples, or
to differences in growing conditions.

Differential expression

A differential analysis was performed to compare the compounds intensities between two groups
of 97 observations each (where an observation corresponds to one biological replicate of a progeny
sample) with low and high bruising scores respectively. In order to detect compounds with small
but consistent shifts between the two phenotype groups, no threshold was used on the fold-change
of the compounds when assessing significance. From the combined dataset, 107 compounds were
found to be differentially abundant (63 downregulated, 44 upregulated). The results of the differential
analysis on the combined dataset were in good agreement with those from the analysis performed
on each dataset separately. Moreover, only 17 of these differentially abundant compounds were also
found to be differentially abundant when comparing the two groups of biological replicates. This is
reassuring, as it means that the differences observed between the two phenotype groups are not due to
the processing order of the samples or difference in growing conditions. Amongst the differentially
abundant compounds, identified compounds include derivatives of spermine and spermidine, two
polyamines involved in tuber stress response (Lulai et al., 2015) and notably mandarin bruising
(Lamikanra et al., 2005), the reduced form of L-glutathione, an important antioxidant with multiple
roles in stress response, citrulline (a precursor of arginine), nucleobases such as uracil and guanine,
as well as guanosine, fatty acids such as corchorifatty acid F (which plays an antioxidant role in
plants) or 10,12-9-hydroxy-10,12-octadecadienoic acid, both involved in linoleic acid metabolism.
These results are consistent with an activation of stress-response pathways in the tubers following
mechanical damage.

Co-abundance network

Next, the WGCNA package was used to reconstruct a co-abundance network between the compounds.
Among the reconstructed network obtained with the combined dataset, 47 modules of highly co-
abundant compounds were detected, ranging in size from 10 to 1,108 compounds. Interestingly,
all compounds were assigned to a module. This stands in contrast with the co-expression network
reconstructed from the transcriptomics dataset, for which 44.2% of the transcribed genes were not
assigned to a module. For each module, an eigencompound was computed, which provides a summary
of the intensity profile of the compounds within the module for each observation. For six of the 47
identified modules (12%), their eigencompound was found significantly correlated to the bruising
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Figure 5.3: Association of the WGCNA modules with the bruising mean score. Left panel: adjusted
correlation score (i.e. -log10(p-value)) between the modules’ eigencompound and the bruising mean
score. Middle panel: adjusted GSEA enrichment score of the modules for differentially abundant
compounds. Right panel: proportion of upregulated (red), downregulated (blue) and not differentially
abundant (grey) compounds in each module. For the left and middle panels, the dotted red lines
represent the 0.05 p-value significance threshold.
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mean score of the observations (see Figure 5.3). Among them, four were detected as significantly
enriched in differentially abundant compounds, including one module (WGCNA module “darkred” in
Figure 5.3) with no differentially expressed compounds. In the latter case, the significant enrichment
is due to the fact that a majority of the compounds in the module have differential abundance scores
close to the significance threshold. The differentially abundant compounds were clustered into nine
modules in total. Again, this differs from the results from the transcriptomics co-expression network
reconstruction, in which the differentially expressed genes were found scattered across many modules.
This could indicate that with metabolomics data, WGCNA is able to gather metabolites involved in a
common metabolic pathway in a same module, and the differential activation of the pathway between
the phenotype groups can be visualised as most compounds involved are found to be differentially
abundant.

As an example, two modules identified are presented in Figure 5.4. In this figure, the yellow-green
module includes compounds that are related to the linoleic acid metabolism, for example corchorifatty
acid F and 9,10,13-tihydroxy-11-octadecenoic acid. The grey-60 module clusters compounds involved
in glutathione biosynthesis, notably parent compounds of spermine and spermidine. It also includes
four distinct compounds all identified as L-glutathione. This again reflects the large shift in retention
time between samples, as all four compounds have the same molecular weight (307.08 g/mol) and
identified formula, but their retention time ranges from 1.0 to 1.16 minutes. These four compounds
are assigned a high adjacency score with WGCNA. Note however that two derivatives of putrescine
(feruloylputrescine and caffeoylputrescine), also involved in glutathione metabolism as precursors of
spermidine, are assigned to a different module. Seven additional modules were investigated to see if
they gathered compounds involved in common metabolic pathways. Over these seven modules, three
did not contain any identified compounds. In the remaining four, most of the identified compounds
could be linked to a common metabolic pathway.

5.4.2 Multi-omics data integration with DIABLO

The DIABLO algorithm

In order to gain a better understanding of the molecular mechanisms underlying potato tuber bruising,
I aimed at integrating measurements obtained at different omics levels (namely genomics, transcrip-
tomics and metabolomics). The first step involved extracting from these omics datasets features
(i.e. genomic variants, transcribed genes and metabolites) that (i) are involved in the biological pro-
cesses of tuber bruising and (ii) interact with one another. Ninety-eight samples with measurements
from all three omics datasets as well as with a measured bruising mean score were used for this
purpose (one biological replicate per sample). From them, 41 samples with a bruising mean score of
one or less were used to create the low bruising group, while 33 samples with a bruising mean score
of two or more were retained as the high bruising group. The remaining samples were removed from
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the analysis. Initially, a coarse feature pre-selection was performed independently for each dataset, in
order to reduce the datasets dimension by removing features with no association to the phenotype.
Using a l1-penalised Partial Least Square regression, 2,000 genomic variants, 2,000 transcribed genes
and 600 compounds were retained as potentially associated with the phenotype. In addition, features
detected as associated with the phenotype in the single-omics analyses (i.e. high-scoring markers
from the GWAS analysis, and significantly differentially expressed genes and differentially abundant
compounds) were also retained. yielding a total of 2,106 genomic variants, 1,985 transcribed genes
(as 38 transcribed genes were selected for both latent components) and 601 compounds.

Then, the DIABLO algorithm was used to select only features that best discriminated the two
phenotype groups, and that co-vary. DIABLO creates for each dataset a number of latent components
(here, two), which are linear combinations of the features that best separate the phenotype groups, and
such that the covariance between the ith latent component of each dataset is maximised. Note that
the different latent components are not explicitly constructed to be orthogonal. In order to perform
feature selection, only a subset of all features is used to create any given latent component, by setting
the loading of remaining features (i.e. their contribution to the latent component) to zero, using a
l1 penalisation. For this analysis, the feature selection was performed with the additional goal of
retaining a reasonable number of features for the causal inference step, as causal inference can become
computationally intensive when applied to a large set of variables. For this, it is possible to tune
the degree to which the covariance between the latent components is maximised, in the form of a
design matrix. The design matrix informs about the balance between the two goals of DIABLO:
discriminating the outcome groups (off-diagonal elements of the matrix close to 0) and maximising
the covariance between the datasets (off-diagonal elements of the matrix close to 1). This choice can
be guided by performing a pairwise comparison of the omics dataset. Using a partial least square
analysis on each pair of datasets, I found a moderate to high correlation between the three pairs
of datasets (from 0.61 between the transcriptomics and metabolomics dataset to 0.72 between the
genomics and metabolomics dataset). This justified the use of a weighted full design matrix (i.e. with
off-diagonal elements of the matrix set to 0.1), that strikes a balance between the two goals.

Features selection with DIABLO

It is recommended to use cross-validation to inform the choice of number of features to be selected
for each of the omics dataset. This was however not an option in this case due to the presence of
missing values in the genomics dataset. Instead, I compared how selecting different numbers of
features from each dataset for both latent components affected the clustering of samples from each
phenotype group in the resulting reduced space (see Materials and Methods). For the first latent
component, retaining a small number of variants and a large number of transcribed genes yielded
the best average silhouette (quantifying how closely the samples from a same group are located in
the reduced space) for both groups. The number of metabolites retained did not impact much the
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resulting average silhouettes. For the second latent component however, a large number of variants
and a smaller number of transcribed genes resulted in better clustering of the two groups. Again, the
number of metabolites included did not affect much the clustering of the groups.

For each latent component, the mean rank score of the features was also computed. It quantifies
the importance of each feature for the corresponding latent component. A small mean rank score
(close to one) indicates that the feature is consistently attributed a high absolute loading for the latent
component, while a high rank score indicates that the feature is consistently not selected for the latent
component. As presented in Figure 5.5, the mean rank score of transcribed genes and compounds for
the first latent component is correlated with the results of the differential analysis performed on each
dataset. Most of the features with small mean rank scores were found to be differentially expressed,
especially in the case of metabolic compounds. This is not surprising as we can expect features that
are differentially expressed between the two groups to be able to efficiently discriminate the two
sample groups. On the contrary, the second latent component selected mostly features that are not
differentially expressed. Again, this makes sense, as we expect the different latent components to
uncover uncorrelated trends in features levels that differentiate the phenotype groups. Thus, if the
first latent component retains differentially expressed features, the second latent component will seek
features less correlated with the bruising phenotype but that also play a role in differentiating the
groups. Contrary to what is observed with the transcriptomics and metabolomics datasets, there seems
to be little correlation between the mean rank score of the genomic variants, for either the first or the
second latent component, and the results of the GWAS analysis. Indeed, the high-scoring markers did
not obtain a smaller mean rank than variants that were not high-scoring in the GWAS analysis. On the
contrary, they were found in the middle of the list. This phenomenon is most likely due to the impact
of population structure, with markers associated with the phenotype only through population structure
rather than true causal effect obtaining lower mean rank. Indeed, the variants mean rank scores seem
to be correlated to some extent to the variants scores obtained when performing the GWAS analysis
without correcting for the effect of population structure. It comes as no surprise, since no information
about population structure was included in the DIABLO analysis. I therefore expect DIABLO to be
subject to the same biases as the GWAS analysis, including spurious associations between variants
and phenotype due to stratification amongst samples.

Ultimately, the number of features to be used for constructing each latent component was set to
21 variants, 59 transcribed genes and 60 compounds, a configuration that yielded good phenotype
groups clustering (Figure 5.6) while retaining a reasonable number of features in each dataset. This
result is thereafter referred to as the full DIABLO analysis. However, two potential problems were
noted regarding the selected variants. First, as mentioned above, the association between the selected
variants, and especially those retained for the first latent component, and the phenotype groups
likely arose from the population structure among the samples. The score of these variants was
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Figure 5.5: Features mean rank score for each dataset a) for the first latent component and b)
for the second latent component. High-scoring markers from the GWAS analysis are coloured in
orange, while upregulated transcribed genes and compounds are drawn in red and the downregulated
transcribed genes or compounds in blue. Horizontal lines highlight the position of these interesting
features.
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higher with a GWAS analysis that ignored samples stratification, than with an analysis in which
population structure effects were accounted for (Supplementary Figure G.1). The impact of this can
be visualised in the weighted consensus reduced space when featuring the crosses from which the
samples arose (Supplementary Figure G.2). In addition to separating the two phenotype groups,
the reduced space also clusters progeny from crosses involving LoneRanger and V390 away from
other samples, highlighting the population structure amongst the samples. Moreover, 13 (out of
21) variants that were selected for the first latent component, were located between 54.3Mb and
54.8Mb on chromosome 8, while 19 (out of 21) variants that were retained for the second latent
component were positioned between 84.2Mb and 86Mb on chromosome 1. The closely co-localised
variants were also highly correlated, most certainly due to linkage disequilibrium. This implies that
the importance of these genomic regions in discriminating the sample groups is exaggerated, as the
effect of the correlated variants are summed in the latent component. Thus, even though several
variants are retained from these regions, they likely reflect only one source of variation amongst
the samples. Therefore, in order to correct for this bias and the fact that the selected features seem
to arise from population structure, the DIABLO analysis was repeated by restricting the genomics
dataset to only those variants detected as high-scoring markers with the GWAS analysis (GWAS-only
DIABLO). This filtering should increase the power to detect features of interest, by limiting the effect
of population structure bias. This time, the final configuration involved the selection 23 variants, 59
transcribed genes and 30 metabolites for the first latent component, and three variants, 59 transcribed
genes and six compounds for the second latent component. The resulting consensus reduced space is
shown in Figure 5.6. The genomic position of the selected variants with both the full and GWAS-only
analyses are presented in Supplementary Figure G.3.

Retained features

Interestingly, restraining the genomics dataset to only the high-scoring markers did not influence
much the features retained from the transcriptomics and metabolomics datasets. Indeed, 88 out
of the 118 (74.6%) transcribed genes and all 36 compounds selected in the GWAS-only DIABLO
were also retained in the full DIABLO analysis. A number of Gene Ontology (GO) terms were
associated with the selected transcribed genes, including protein phosphorylation (eight transcribed
genes), regulation of transcription (six transcribed genes), oxidation-reduction process (six transcribed
genes), primary metabolic process (five transcribed genes) or response to stress (two transcribed
genes). From the metabolomics dataset, a large fraction of the selected compounds could not be
identified. However, several compounds involved in glutathione metabolism were found, including
the four compounds identified as L-glutathione in its reduced form, dihydrocaffeoyl spermine and
bis-dihydrocaffeoyl spermidine. Other identified compounds are linked to the linoleic or α linoleic
acid pathway: 10,12-9-hydroxy-10,12-octadecadienoic acid, 9-hydroxy-10,12,15-octadecatrienoic
acid (9-HOTrE) and 9,10,13-trihydroxy-11-octadecenoic acid (Kimuta & Yokota, 2004). Several
other compounds were recognised as breakdown products of metabolites, and could have been
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selected as the original metabolite is associated with the phenotype. Interestingly, a number of
transcribed genes and compounds that were either selected with DIABLO or found to be differentially
expressed/abundant are involved in common biological processes. For example, in addition to
retaining glutathione-related compounds, DIABLO also selected a transcribed gene encoding for the
glutathione-S-transferase protein (ID of the transcribed gene in the genome annotation PGSC-DM
v4.03: PGCS0003DMG400029626). This protein is involved in cell detoxification by catalysing
glutathione conjugation to protect cells from oxidative damage (Hernández Estévez & Rodríguez
Hernández, 2020). The glutathione-S-transferase protein concentration was found to be increased
by high concentrations of glutathione in Arabidopsis mutant lines (Kumar & Chattopadhyay, 2018).
Other common biological processes include notably the purine metabolism, pyrimidine metabolism,
cysteine and methionine metabolism and sulphur metabolism. Finally, it can be noted that most but
not all genomic variants selected are found close to the physical position of transcribed genes retained
by DIABLO. This points out to potential cis-mutations affecting these genes’ expression. Alternately,
it could be due to linkage disequilibrium.

The correlation between the selected features and the latent components of the corresponding
dataset is presented in Figure 5.7. This figure highlights sets of genomic variants, transcribed genes
and metabolites that co-vary and drive the difference between the two bruising groups. Selected
transcribed genes and compounds that were found to be differentially expressed/abundant heavily
influence latent component 1, with up- and down-regulated features sitting at opposite ends of the
correlation plots, as can be expected. A number of non-differentially expressed genes are clustered
with them, pointing out features potentially involved in similar biological processes but that would have
been missed by the differential analysis performed on the transcriptomics dataset. On the contrary, the
second latent component is mostly driven by non-differentially expressed/abundant features. When
assessing the correlation between features from different datasets, many of the highest absolute
correlations involve glutathione or related compounds. In particular, a high positive correlation (0.7)
was found between one of the compounds identified as L-glutathione and a transcribed gene encoding
a heat shock factor (PGCS0003DMG400028414). Heat shock proteins have been found involved in
response to stress in plants, and their expression was shown to be modulated by glutathione levels
(Kumar & Chattopadhyay, 2018).

5.4.3 Causal inference

The next step in multi-omics data integration is to uncover the causal relationships between the
features that were found linked to the phenotype of interest. This can be done by applying causal
inference methods to the omics dataset. They seek to detect causal relationships among a given
set of variables, using observations of the values taken by these variables. One straightforward
way to combine the omics datasets when performing causal inference is to treat each feature as a
variable in the causal inference task. This is achieved by first centering and scaling each omics dataset
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Figure 5.7: Correlation between the features selected with the GWAS-only DIABLO analysis and
the latent components of each corresponding dataset. The shape of the points indicates whether the
corresponding feature is a genomic variant (triangle), and transcribed gene (circle) or a compound
(square). The colour of the points represents the status of the features in the single omics analyses.

independently (restricted to the features selected with DIABLO), and then combining them to obtain
one multi-omics matrix describing the intensity of all features across the different observations. As I
seek to understand the impact of these features on the phenotype, the bruising mean score of each
observation was added to this multi-omics matrix as an additional variable for the causal inference
task. Rather that relying on a single statistical method to infer causal relationships between the
selected features, the causal graphs inferred by seven state-of-the-art causal methods as well as two
widely used network inference methods were compared (see Section 3.2.3). Although the latter do
not infer causality but association between molecular features, comparing their inference allows to
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assess the added benefit of seeking causal relationships rather than association in order to bridge the
gap between genotype and phenotype.

One of the first challenges when performing causal inference is to choose a suitable value for
the different tuning parameters of the methods. These tuning parameters dictate the sparsity of the
resulting inferred causal graph. In order to obtain inferred graphs that are comparable across the
investigated methods, a range of values for their tuning parameters were first tested for each method
(Table 5.1). The number of edges in the skeleton of the graphs inferred by each method as a function
of the values of tuning parameters is presented in Figure 5.8. It ranges from around 30 with a high
threshold for ARACNe, to more than 600 for GENIE3 with a low threshold value. For each method,
the value of the tuning parameter(s) yielding an inferred graph with a number of edges as close to
150 as possible was selected. This value was chosen as it corresponds to a level of sparsity that
can be achieved by all methods within the range of values tested for the different tuning parameters,
providing plausible and interpretable results. For the rest of the analysis, the selected values of tuning
parameters were used for each method (see Table 5.1). With these settings, the number of edges in
the inferred causal graphs ranges from 146 with ARACNe to 155 for PC-stable and FCI+.

Inferred causal relationships across the methods

As the different causal and network inference methods rely on different computational strategies
to extract relationships between features, I expect the inferred causal graphs to not be all identical.
I however expect the methods to detect significant true signal from the data. I focus in the first
instance in comparing the skeleton of the graphs inferred by the different methods, i.e. ignoring the
orientation of the causal relationships detected by the methods. The skeleton similarity score between

Table 5.1: For each causal or network inference method, range of values tested for each relevant
tuning parameter, selected value and number of edges obtained in the inferred causal graph with the
selected value(s) of the tuning parameter(s).

Method Tuning
parameter

Range of
values tested Selected value Number of edges

with the selected value

PC-stable α 0.01 - 0.15 0.047 155
FCI α 0.01 - 0.15 0.047 154
FCI+ α 0.01 - 0.15 0.047 155
GES Penalty 1 - 3 2.260 154
FGES Penalty 1 - 3 1.000 153
MMHC α 0.01 - 0.15 0.054 150
MMHC Penalty 1 - 3 1.000 150
ARGES Penalty 1 - 3 2.050 151
ARACNe Threshold quantile 0.01 - 0.9 0.570 146
GENIE3 Threshold quantile 0.97 - 0.995 0.992 154
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Figure 5.8: Number of edges in the graphs inferred with each causal or network inference method for
different values of the tuning parameters. The colour of the dots indicates the corresponding tuning
parameter value, with darker shades representing values yielding sparer graphs, while lighter shades
represent values yielding denser graphs. Values of the α parameter are shown in shades of red, the
penalty parameter in shades of blue, and the threshold quantile parameter in shades of grey.

the different methods is presented in Figure 5.9, with a score of one indicating identical skeletons
while a score of zero represents completely dissimilar skeletons (with no edges in common). Similar
to what was observed with single-omics simulated datasets in Chapter 3, it is to be noted that the
skeleton graphs inferred by the three constraint-based methods (namely PC-stable, FCI and FCI+)
are almost identical. MMHC also returns a skeleton similar to those of the constraint-based methods.
Likewise, the results of both score-based methods (GES and FGES) are in very good agreement.
However, contrary to the observations made with the simulated datasets, ARGES returns a causal
graph whose topology is markedly different from the GES result, and from any other inferred graph.
The highest skeleton similarity involving ARGES is with GENIE3, and even then it is quite low
(0.23). From the two network inference methods, ARACNe returns a graph whose skeleton is most
similar to those inferred by the causal inference methods. In particular, its topology is closest to the
one inferred with GES (similarity score of 0.63). In general, the similarity scores obtained between
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Figure 5.9: Skeleton similarity scores between all causal and network inference methods. A score
close to one indicates a high similarity between the skeleton of the inferred graphs. A score close to
zero indicates that the two inferred graphs have very different skeletons.

the methods were lower than what was observed in Chapter 3. This is mainly due to the difference in
sample size between the two settings. The larger sample size in Chapter 3 resulted in more signal
in the data, and as a consequence the different methods were able to detect the causal relationships
regardless of their differences in methodology. In the present case on the contrary, the smaller sample
size resulted in less signal in the data, and thus the differences in methodology used to detect the
causal relationships strongly impacted the resulting networks.

It is interesting to note that a large fraction of the edges inferred by each method link features from
a same omics dataset (Figure 5.10). Most inferred relationships are between two transcribed genes,
except for GENIE3 which infers mostly edges between metabolites. ARGES is the method that infers
the most edges between features from different datasets, while GENIE3 infers almost none. Among
the edges inferred across datasets, a large majority links transcribed genes and metabolites, and then
genomic variants and transcribed genes. On the contrary, there are very few edges inferred between
genomic variants and metabolites. Altogether, these proportions are not surprising, as we expect the
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omics datasets to reflect the activity of gene regulatory networks and metabolic pathways, with a few
molecules acting as bridges between the different molecular layers. We can notably expect genomic
variants to impact gene expression more than metabolic reactions directly, as mRNAs are direct
products of DNA transcription. In addition, relationships between the RNA levels of genes encoding
enzymes and corresponding compounds might be hindered by post-transcriptional regulations. The
effect of post-transcriptional regulations on the detection of gene-gene relationships by causal inference
methods has been demonstrated on simulated gene expression data in Chapter 3. Most methods
only infer one edge between the bruising mean score and a transcribed gene. Interestingly, for most
methods this edge involve either a transcribed gene encoding a LOB domain-containing protein
(PGSC0003DMG400020562), potentially involved in starch metabolism (Van Harsselaar et al., 2017)
or a transcribed gene coding for a F-box family protein (PGSC0003DMG400005853), with a potential
role in defence response (Van Den Burg et al., 2008). Unfortunately, these annotations did not allow
me to find a link between the genes’ function and tuber bruising in the literature. In addition, MMHC
identified an edge between a genomic variant and the bruising mean score, while ARGES inferred
three edges involving the bruising mean score and different transcribed genes. An in-depth study
of the function of these genes will be required to assess the biological relevance of these inferred
relationships.
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In order to assess the accuracy of the inferred relationships, a bootstrapping scheme was used
to compute for each inferred edge a confidence score. This is done by generating 100 bootstrap
datasets, each obtained by sampling with replacement the same number of samples as in the original
dataset. The causal inference process is repeated for each bootstrap dataset, and the fraction of
occurrence of a given edge over all bootstrap datasets is used as its confidence score. The consensus
graph skeleton, i.e. the undirected graph in which the weight of an edge between any two features
corresponds to the mean confidence score of the edge across all investigated methods, is presented
in Figure 5.11. As mentioned previously, we can see that most edges occur between features of
the same dataset. In particular, genomic variants arising from a same genomic region form tightly
connected clusters, due to their strong correlation because of physical proximity. Moreover, most
of the metabolites found upregulated and downregulated in the high bruising group (compared to
the low bruising group) form two distinct modules within the graph, while other non-differentially
abundant compounds are scattered in the graph (Supplementary Figure G.4 a)). These two modules
most probably correspond to distinct pathways involved in tuber bruising. Indeed, among the cluster
of upregulated compounds, several are identified as involved in the linoleic or α-linoleic metabolism,
while a number of transcribed genes in the downregulated modules are associated with the glutathione
pathway. Alternatively, they could correspond to pathways that are activated in response to tuber
bruising. More generally, it can be shown that all features selected for the first latent component
of DIABLO are found on one side of the graph, while the features retained for the second latent
component are found on the other side of the graph (Supplementary Figure G.4 b)). It is not surprising,
as DIABLO constructs each latent component with co-varying features, that we can thus expect to be
causally related. Interestingly, five transcribed genes were not found causally related to any other
features. One possibility to explain this result is that these transcribed genes are associated with the
phenotype through additional features not retained by DIABLO.

Amongst the edges with the highest mean confidence score across the methods (above 0.7 - see Ta-
ble 5.2), there is a link between the compounds 9-HOTrE and 10,12-9-hydroxy-10,12-octadecadienoic
acid, both involved in the linoleic acid metabolism; an edge between two transcribed genes encod-
ing for a peptide transporter, one located on chromosome 0 (PGSC0003DMG400022107) and the
other on chromosome 6 (PGSC0003DMG400006606); a link between two transcribed genes en-
coding proteins potentially involved in plant disease resistance (PGSC0003DMG400010887 and
PGSC0003DMG402011427); several edges between transcribed genes and a nearby genomic marker,
which probably informs about a cis-acting mutation near the corresponding genes; and a link between
the compounds bis-dihydrocaffeoyl spermidine and dihydrocaffeoyl spermine (the former being a
precursor of the latter). In general, we can observe that the edges with the highest confidence scores
are found between two features from a same dataset, or between a transcribed gene and a nearby
genomic variant.
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One interesting question is to assess the overlap between the causal relationships inferred between
features of a same dataset and the associations found between transcribed genes or between compounds
with WGCNA. AsWGCNA returns for each pair of features from a single omics dataset an association
score (the topological overlap score), the distribution of the association scores for pairs of features
found causally related in the causal graphs was compared to the scores of pairs of features with no
edges between them in the causal graphs (Supplementary Figures G.5 and G.6). Without surprise,
the topological overlap scores were higher for the pairs of features (either transcribed genes or
compounds) found related in the inferred causal graphs. The difference was clearer when looking at
the co-abundance network computed for the metabolomics dataset. In the case of the transcriptomics
dataset, GENIE3 obtained the highest mean topological overlap score for causally related pairs of
features. This implies that features found co-expressed will likely be also found to be causally related.

Causal queries answers

The interest of going beyond association and inferring causality is to extract information about the
directionality of the relationships between features. However, comparing directed causal graphs is not
straightforward, as the investigated causal inference methods return different types of causal graphs
that have different interpretations. Therefore, the comparison between inferred graphs was performed
by comparing their answers to a number of causal queries (see Material and Methods Section 5.3.6).
These causal queries search, for each variable in a causal graph, other variables that are related to it via
a certain type of causal relationship. The answers will depend on the orientation of the edges within
the causal graph as well as the nature of the graph. One can, for example, investigate all features
found to be a direct cause of an investigated feature, called parents of the variable. In addition to
providing a way to compare causal graphs, the causal queries allow to summarise biologically relevant
information from the causal graphs in a way that is intuitive to interpret. For example, obtaining a
list of ancestors of a transcribed gene (or compound) provides information about all molecules on
which exerting a change could impact the considered feature, i.e. located upstream in the regulatory
pathways.

The number of positive answers to the different causal queries with each method is presented
in Figure 5.12. Due to the nature of the returned causal graph, FCI, FCI+ and ARACNe cannot
answer the parent query. For the same query, FGES obtains only two positive answers, meaning that
amongst the 154 edges it inferred, only two were directed. On the contrary, GENIE3 inferred 261
positive answers for this parent query, which indicates that most of the edges it inferred are bidirected.
This raises the question of the nature of the graph returned by GENIE3. While GENIE3 returns
a list of regulators for each feature, implying a directionality in the relationship, bidirected edges
could instead be interpreted as an inability of the method to solve the direction of the regulatory
relationship. In such case, GENIE3 is also unable to infer the orientation of most edges, as out of the
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Table 5.2: Edges in the consensus skeleton of inferred graphs with a high average confidence score across the causal and network inference methods.
Genomic variants are represented as follows: chromosome, genomic position; transcribed genes as: description - chromosome, genomic position
(Ensembl ID); metabolic compounds as: description if identified - formula if identified, molecular weight. Note that most chemical formulas have been
automatically generated by the metabolomics analysis software.

Edge between And Edge mean
confidence

score

9-HOTrE (9-hydroxy-10E,12Z,15Z-octadecatrienoic acid) -
C18H30O3, 294.22 g/mol

(10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid - C18H32O3,
296.23 g/mol

0.90

C17H20N10O2S, 428.15 g/mol 431.15 g/mol 0.89
C18H26N4O3S, 378.17 g/mol C20H30O3P2, 380.17 g/mol 0.89
ST4.03ch07, 6,662,497bp ST4.03ch07, 6,662,506bp 0.89
C20H28O3P2, 378.15 g/mol C9H23N11O2P2, 379.15 g/mol 0.89

pigment from marker pen - 265.16 g/mol 265.66 g/mol 0.89
Leucine-rich repeat - ST4.03ch00, 23.1Mb

(PGSC0003DMG400010887)
Cc-nbs-lrr resistance protein - ST4.03ch10, 59Mb

(PGSC0003DMG402011427)
0.89

Peptide transporter - ST4.03ch06, 56.1Mb
(PGSC0003DMG400006606)

Peptide transporter - ST4.03ch00, 38Mb
(PGSC0003DMG400022107)

0.89

ST4.03ch05, 2,149,643bp ST4.03ch05, 2,261,796bp 0.88
Non-symbiotic hemoglobin - ST4.03ch01, 85.5Mb

(PGSC0003DMG400025176)
Enoyl-CoA-hydratase - ST4.03ch01, 85.1Mb

(PGSC0003DMG403025826)
0.88

Breakdown product of Glutathione - C13H6O, 178.04 g/mol C13H17N3O2P2, 309.08 g/mol 0.87
Multidrug resistance pump - ST4.03ch08, 2.9Mb

(PGSC0003DMG400004474)
ST4.03ch08, 3,137,398bp 0.87

ST4.03ch07, 54,289,955bp ST4.03ch07, 54,813,343bp 0.87
C9H8O2, 148.05 g/mol Possible breakdown product - C10H8O3, 176.05 g/mol 0.87

ST4.03ch08, 4,926,541bp ST4.03ch08, 4,926,550bp 0.86
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Table 5.2: Edges in the consensus skeleton of inferred graphs with a high average confidence score across the causal and network inference methods.
Genomic variants are represented as follows: chromosome, genomic position; transcribed genes as: description - chromosome, genomic position
(Ensembl ID); metabolic compounds as: description if identified - formula if identified, molecular weight. Note that most chemical formulas have been
automatically generated by the metabolomics analysis software. (continued)

Edge between And Edge mean
confidence

score

Possible breakdown product - C10H8O3, 176.05 g/mol C8H15N11, 265.15 g/mol 0.86
BHLH domain class transcription factor - ST4.03ch03, 58Mb

(PGSC0003DMG400014246)
DNA-directed RNA polymerase II 19 kD polypeptide rpb7 -

ST4.03ch03, 58Mb (PGSC0003DMG400014251)
0.86

Heat shock protein binding protein - ST4.03ch09, 3.8Mb
(PGSC0003DMG400002680)

TVLP1 - ST4.03ch07, 51.9Mb (PGSC0003DMG400027646) 0.85

L-Glutathione (reduced) - C10H17N3O6S, 307.08 g/mol L-Glutathione (reduced) - C10H17N3O6S, 307.08 g/mol 0.85
366.65 g/mol N1, N5, N14-(dihydrocaffeoyl)spermine - C37H50N4O9, 694.36

g/mol
0.83

N1,N10-Bis(dihydrocaffeoyl)spermidine - C25H35N3O6, 473.25
g/mol

N1, N5, N14-(dihydrocaffeoyl)spermine - C37H50N4O9, 694.36
g/mol

0.80

ST4.03ch11, 597,680bp ST4.03ch11, 703,484bp 0.75
ST4.03ch11, 597,680bp ST4.03ch11, 644,490bp 0.73

ST4.03ch07, 54,526,301bp ST4.03ch07, 54,526,505bp 0.72
ST4.03ch11, 644,490bp ST4.03ch11, 941,448bp 0.71

C8H21N18PS, 432.17 g/mol C5H13N5S, 175.09 g/mol 0.70
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154 inferred edges, only a third were not bidirected. On the contrary, PC-stable, GES and ARGES
were able to orient most of their edges. MMHC is not considered for this comparison as it returns
by default a fully directed graph. FGES obtains the highest number of positive answers for both the
potential parent and potential ancestor queries. This is due to the fact that it was not able to orient a
majority of its edges. Similarly to previous observations, most positive answers to the different causal
queries are found between features from a same dataset. This can be visualised in Figure 5.13, which
presents the number of positive answers obtained for each causal query between different types of
features (i.e. genomic variant, transcribed gene, metabolite or phenotype). It clearly shows that for
each causal query, more positive answers are found between two features from a same dataset than
between features from different datasets. In addition, most positive queries targeting the phenotype
arise from transcribed genes (no genomic variants or metabolites are found to be parents or potential
parents of the phenotype).

Similarly to the skeleton similarity metric, a score quantifying the similarity between the methods’
answers to a given query can be computed. While the topology (i.e. skeleton) of the inferred graphs
can be really similar across the investigated methods, the orientation of the edges, and consequently
the answer to the causal queries, are different between the methods. For example, the maximum
similarity obtained between the answers to the parent query is 0.35, obtained when comparing the
answers of GES and MMHC. For the potential parent query, which also accounts for edges with
uncertain orientation in the graph, the similarity between the answers of the constraint-based methods
(PC-stable, FCI and FCI+) does not exceed 0.54, and the similarity between the answers of GES
and FGES is found to be 0.61. The answers are even more different when considering the ancestor
and potential ancestor queries, which comes as no surprise as these take into account paths in the
causal graph. The only exception is the relatively high similarity between the answers of FGES and
ARACNe for the potential ancestor query (0.56). Taken together, these results indicate that while the
methods can detect similar interactions between the different features, they do not often agree on the
causal orientation of these interactions. Therefore, the presence of a directed edge inferred by all the
methods can be considered as a strong evidence in favour of the presence of this relationship in the
biological system.

Also, as can be seen in Supplementary Figure G.7, the confidence score of the answers to the
different queries can be consistently low for some methods. For example, PC-stable infers parental
relationships with confidence scores not exceeding 0.6, and for FCI+ the confidence scores of its
answers to the ancestor query are all below 0.2. This shows that some of the methods, in particular
PC-stable, FCI and FCI+, are not consistent when inferring the orientation of causal relationships.
On the contrary, ARACNe and GENIE3 return high confidence scores for their queries answers,
especially for the potential parent query, indicating that they consistently infer a similar topology and
orientation across the bootstrap datasets. Note however than because the ancestor query depends on
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Figure 5.12: Number of positive answers to each causal query for the graphs inferred with the different
causal and network inference methods.
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Figure 5.13: Number of positive answers to each causal query (row panels) depending on the type of
features involved, for the different causal and network inference methods.
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the paths in the inferred graphs, it is natural that the confidence scores obtained for this query are
lower than the ones obtained for the parent query. Consequently, the bootstrap confidence scores
obtained for parental queries and ancestral queries should be compared only with caution, as they
likely do not lie in the same scale.

Among the positive answers with high mean confidence score across all methods, I found the
compound 9-HOTrE to be a parent of 10,12-9-hydroxy-octadecadienoic acid, with a mean confidence
score of 0.41, and a potential parent of the latter with a mean confidence score of 0.74. It is interesting
as they are both octadecanoids, but they do not seem involved in the same metabolic reaction or
pathway. Also, a genomic variant at position 31.Mb on chromosome 8 is found to be a direct parent
of a multidrug resistant pump-encoding gene (PGSC0003DMG400004474), located at 2.9Mb on
the same chromosome (mean confidence score: 0.36, mean confidence score for the potential parent
query: 0.64). This probably points to a cis-mutation affecting the expression of the gene. Alternatively,
it could be due to linkage disequilibrium. It is encouraging that the methods detect this edge as
oriented from the genotype to the transcribed gene’s expression and not the opposite. Other high
confidence-answers involve unidentified compounds or genomic compounds in linkage disequilibrium.
Several parent-child pairs are found in both directions, but one with a higher confidence score than
the other. For example, a transcribed gene encoding a DNA-directed RNA polymerase II subunit
(PGSC0003DMG400014251) is found to be a parent of a BHLH domain class transcription factor
(PGSC0003DMG400014246) with mean confidence score across all methods, 0.3, while the opposite
relationship is found with a confidence score of 0.25.

The positive answers targeting the bruising mean score received in general low confidence score.
A transcribed gene coding for a LOB domain-containing protein (PGSC0003DMG400020562) was
found to be a parent and potential parent of the phenotype with mean confidence score of 0.07 and
0.11, respectively. Similarly, an F-bloc family protein-coding gene (PGSC0003DMG400005853) was
found to be a parent of the bruising mean score with mean confidence score of 0.04 and a potential
parent at 0.08. Two other parents of the bruising mean score are a conserved gene of unknown function
(PGSC0003DMG400017523 - mean confidence score of 0.04) and a transcribed gene encoding a
leucine-rich repeat protein (PGSC0003DMG400010887 - mean confidence score of 0.01). Amongst
the inferred ancestors of the bruising mean score, several genes encoding proteins can be found, such
as a big map kinase (PGSC0003DMG400002452), a heat shock factor (PGSC0003DMG400028414),
a N-acylneuraminate-9-phosphatase (PGSC0003DMG400029856 - involved in the metabolism of
amino and nucleotide sugars) or an RNA binding protein (PGSC0003DMG400027944). Compounds
such as the dyhydrocaffeoyl spermine and L-glutathione are also found, as well as other unidentified
compounds. The first two compounds confirm the implication of the glutathione pathway in the
bruising response, probably as a response to stress.
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Latent variables

An assumption commonly made by causal inference method is that of causal sufficiency. It assumes
that all variables involved in the causal system under investigation are observed, and that no unobserved
confounders affect the observed variables. It is however rarely satisfied in practice, and consequently
methods were developed that account for the presence of latent variables (i.e. unobserved confounders)
impacting the observed variables. Such methods include FCI and FCI+. In the resulting inferred
graph, a bidirected edge links two variables that are found affected by a latent variable. In the present
case, as the observed variables depended on a previous feature selection step, it is possible that a
number of features involved in the causal system have not been included. In order to assess the extent
to which the feature selection step excluded important features for this causal system, one can look
at the number of estimated latent variables in the system. This is done by counting the number of
bidirected edges in the graphs inferred by FCI and FCI+. It has been noted however by Ogarrio et
al. (2016) that FCI+, which is a variant of the FCI algorithm, tends to overestimate the presence
of latent variables, when the number of observations in the dataset is small. This is certainly the
case here, as there are only 74 observations. Consistently with this, FCI returns an inferred graph
with only three bidirected edges, while FCI+ finds 74. Over the three bidirected edges inferred by
FCI, two are between co-localised genomic variants. The third bidirected edge links two transcribed
genes encoding proteins involved in unrelated pathways, which could be an indication that a factor
not included in the analysis regulates both genes and acts as bridge between the two pathways. It is
only inferred in 14% of the bootstrap datasets. The small number of bidirected edges inferred by FCI
could be an indication that the feature selection step retained most of the important causal variables
for the investigated system. Amongst the bidirected edges inferred by FCI+, 51% are between two
transcribed genes, 23% between two metabolites and 15% between two genomic variants. They could
represent situations in which FCI+ was not able to infer the direction of the causal relationships
between the features, due to the small number of observations available.

Adding a blacklist

As mentioned in the previous section, a number of high-confidence relationships are found between
closely located genomic variants. This is due to the high correlation between the variants, arising from
linkage disequilibrium due to their close proximity on the genome. Therefore, I do not expect these
correlations to reflect a causal mechanism. More generally, we can expect the causal relationships
to flow from, rather than towards, genomic variants, as at the scale that we are interested in, gene
expression and metabolism cannot impact genomic variation. It would thus be desirable to prevent
the inclusion of causal edges directed towards genomic variants during the causal reconstruction
process. For some of the implementations tested here, it is possible to provide a list of directed edges
that will be ignored during the reconstruction. This is the case for the four methods PC-stable, FGES,
MMHC and GENIE3. Therefore, the causal inference task and bootstrapping scheme were repeated
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with this four methods by providing as a blacklist the list of all possible directed edges targeting a
genomic variant. The average confidence score of the edges and causal queries answers over the
four methods obtained without and with the blacklist were then compared. As other constraint-based
methods returned results somewhat similar to PC-stable, and the other score-based method was also
inferring a topology close to the one found with FGES, we can assume that adding the blacklist to
these other methods would have a similar result as well.

The consensus skeleton of the inferred graphs with and without blacklist are compared in Figure
5.14. Interestingly, from the groups of linked genomic variants, only one or a few are connected
to the rest of the network when adding the blacklist. The remaining variants are now disconnected
from the other variables. This highlights the bias of DIABLO in selecting highly correlated variants,
whereas the causal flow can be summarised with only one of them. This could be an interesting way
of fine-mapping potential causal variants from a list of highly correlated GWAS high-scoring markers.
Another consequence of adding the blacklist is the apparition or large increase in confidence score of
some edges, e.g. between a transcribed gene encoding a big map kinase (PGSC0003DMG400002452)
and one encoding a heat shock factor (PGSC0003DMG400028414), which was not detected without
the blacklist, and is detected with a mean confidence score of 0.3 with the blacklist. Interestingly, this
change in confidence score impacts mainly edges between metabolic compounds, while for the most
part the confidence score of edges between transcribed genes remains similar. The edges with the
highest mean confidence scores when adding the blacklist are presented in Supplementary Table G.1.

When comparing the queries answers of the methods with and without the blacklist, it appears that
the impact of the blacklist on the orientation of the edges is more pronounced for FGES.While without
the blacklist only two of the inferred edges were oriented, with the blacklist all edges are now oriented.
This is a very interesting result, as it implies that forcing the causal flow to stem from the genomic
variants helped the algorithm determine the direction of the other causal relationships. It showcases
the importance of including biological information to help the reconstruction process. Also, with the
addition of the blacklist, a number of queries answers targeting the phenotype disappear. With the
blacklist, only transcribed genes as well as a few genomic variants are related to the bruising mean
score, while the association of compounds to the bruising mean score disappear. With the blacklist,
ancestors of the bruising mean score include the big-map-kinase gene (PGSC0003DMG400002452),
F-box family protein-coding gene (PGSC0003DMG400005853), LOB domain-containing protein
(PGSC0003DMG400020562) and RNA binding protein (PGSC0003DMG400027944). In addition,
two genomic variants, one on chromosome 5 (4.8Mb) and the other on chromosome 7 (54.3Mb) are
found as ancestors of the phenotype, which was not the case without the blacklist.
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5.5 Conclusion

In this work, I aimed at bridging the gap between genotype and phenotype in the case of potato tuber
bruising following mechanical impact. In an effort to uncover the biological mechanisms underly-
ing this trait, measurements obtained at different omics scales were integrated, namely genomics,
transcriptomics and metabolomics, along with phenotypic data. This was done by selecting from
all three omics datasets features that were best suited to discriminate the phenotypic outcome and
which co-varied. Nine state-of-the-art causal and network inference methods were then applied to
the selected features in order to reconstruct causal relationships amongst them, and the results were
discussed and interpreted biologically. At each step of this integrative analysis, the results were
compared to typical single-omics analysis such as differential expression analysis or co-expression
network reconstruction. This allowed me to assess the added benefit of combining the omics datasets
rather than merely analysing them independently.

In Chapter 4, a genome-wide association study was performed to detect genomic regions as-
sociated with the bruising response. A differential expression analysis was also performed on the
transcriptomics dataset to uncover potential genes driving the bruising response, and reconstructed a
co-expression network amongst the measured transcribed genes. In this chapter, I extended this set of
single-omics analyses to a metabolomics dataset obtained on the same set of samples. Preliminary
analyses revealed the need to perform data normalisation and correct for biases arising from sample
processing order. A differential analysis uncovered 107 differentially abundant compounds, among
which a number that were found to be involved in the glutathione pathway, as well as the linoleic and
α-linoleic pathways. The involvement of such pathways in tuber bruising is not surprising as they
play important roles in plants response to stress. The reconstruction of a network of co-abundance
amongst the compounds confirmed the implication of compounds found to be differentially expressed
in common pathways. This could be an interesting approach to compound identification in untargeted
metabolomics: compounds clustered in a similar co-abundance module can be assumed to be involved
in similar pathways. Therefore identified metabolites in a same module can provide clues about the
possible identity of the non-identified compounds, via a guilt-by-association analysis.

In order to go beyond independent single-omics analysis, the DIABLO algorithm was used to
select features from the three omics datasets involved in tuber bruising. This feature selection step
aimed at reducing the dimension of the datasets for the subsequent causal inference analysis, by
focusing on molecular features relevant to the phenotype of interest, i.e. tuber bruising. Feature
selection for the transcriptomics and metabolomics datasets were in good agreement with the results
from the single-omics analyses, with a number of differentially expressed features being selected.
Interestingly, the construction by DIABLO of successive latent components in order to perform
features selection allowed the inclusion of non-differentially expressed features, which would have
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been missed by the single-omics analyses. These features could be retained by DIABLO because
of the synergy, i.e. co-variation, between the different omics datasets. This emphasises the need
to study omics datasets in combination rather than independently. For example, the gene encoding
for the glutathione S-transferase was not found to be differentially expressed, but was retained with
DIABLO alongside several metabolic compounds involved in the glutathione metabolism. As this
protein plays an important role in cell detoxification during response to stress, I hypothesise that it
also plays a role in the response to tuber bruising. Another observation that could be made is that
the selection of genomic variants by DIABLO is subject to the same biases as an association study.
Mainly, the presence of highly correlated genomic variants due to close proximity in the genome, as
well as population structure amongst the observations, hinders the selection of true causal variants. It
is therefore necessary to control for these aspects before using DIABLO on genomics datasets. In this
work, it was done by restricting the genomics dataset to only these variants found associated with the
phenotype with an association test that corrected for the effect of population structure. It would be
interesting to develop a way to automate this filtering when applying DIABLO to genomics datasets.

A number of causal inference methods were applied to the retained features, in order to reconstruct
the flow of information through the different omics layers. Overall, methods based on similar statistical
concepts returned inferred graphs with similar topology (skeleton), with the exception of ARGES,
whose results were markedly different from any other method. This stands in contrast to the results of
the comparisons performed on single-omics simulated data in Chapter 4, in which ARGES was found
to yield very similar results to GES. Inferred causal relationships mainly involved features from the
same omics layer, with some molecules acting as bridges between the layers. One possible reason
could be that even after scaling each dataset, variations across samples were more similar within an
omics dataset than across the different datasets. However, it is plausible that gene products interact
more together than with metabolites, with a few transcripts acting as bridges between the omics
layers. In particular, very few molecules were directly related to the phenotype (i.e. the bruising mean
score of the observations). This could have several explanations. First, it is possible that the small
sample size reduces the power of the analysis. Also, observing only a snapshot of the consequences
of bruising, rather than a time series of the response, might prevent us from observing molecules
with transient responses.

Interestingly, the different inferred graphs were in good agreement with the co-expression networks
constructed for the transcriptomics and metabolomics datasets. This is to be expected as two highly
co-expressed features are more likely to be causally related than features that are not co-expressed.
Conversely, it could also indicate that the causal inference methods did not have enough data to
distinguish between co-expression and true causality. This second possibility is reinforced by the fact
that the different methods were not in good agreement with regards to the directionality of inferred
causal relationships. More generally, using a bootstrapping scheme to assess the confidence in the
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reconstructed relationships highlighted that most methods were not consistent when inferring the
orientation of causal edges between features. This problem most likely arises from the small sample
size of the dataset considered. Indeed, the dataset contained measurements for 74 observations, a very
small number compared to the sample sizes used in typical causal inference studies, i.e. hundreds to
tens of thousands (see e.g. Constantinou et al., 2020; Heinze-Deml et al., 2018). Nevertheless, the
biological relevance of some interactions detected highlights the usefulness of the present analysis.
Also, the use of causal queries to summarise the information encoded in the causal graphs proved
very useful. Answers to these queries provide a straightforward interpretation of the results of causal
inference in a biological setting, particularly in the context of regulatory pathways. Rather than
relying on graph visualisation, which can be uninformative in the presence of many variables, they
allow scientists to quickly compare with known regulations or detect new relationships between
features. Lastly, the impact of using a blacklist during the causal graph reconstruction to prevent
the methods from adding edges directed towards genomic variants was assessed. This enforces the
fact that at the scale that we are interested in, causality flows from the genotype, i.e. the genomic
variants impact gene expression and metabolite levels, rather than the opposite. I found that using the
blacklist helped in the orientation of inferred edges, especially with FGES. Therefore, it could be an
interesting option to consider for reconstruction of causal graphs involving genomic variants, even if
it prevents the exploration of the full graph space during the graph reconstruction process.

A number of limitations can be identified in this analysis. Firstly, biological interpretation and
validation of the results were hindered by the lack of identification of a number of features, in particular
metabolic compounds. Compound identification in untargeted metabolomics studies is a crucial,
difficult and time-consuming step, that can provide important insights. In addition, the presence
of detected compounds that arise from the same molecule but with different retention time, due to
technical differences between the processing of samples, can lead to bias as they potentially increase
the number of features tested and thus the p-values correction. Linking the identified metabolites to
metabolic pathways is another difficulty, due to the difference in nomenclatures between databases
(Jamil et al., 2020). The same difficulties were encountered with the transcriptomics dataset, as linking
genes to regulatory pathways requires the translation of gene IDs between several databases. As a
result, very few genes could be mapped to the KEGG database, which also contains information about
metabolic pathways. One solution would be to develop or make use of plant- or even species-specific
databases, which might not be available for specific organisms of interest. Multi-omics integration
analyses should not overlook this step of features identification, as it can be key to interpret its results.
Another difficulty lies in setting the number of features to retain as involved in the bruising response.
Indeed, leaving out important molecules from the causal inference task violates the assumption of
causal sufficiency made by most inference methods, as unobserved variables have a causal impact
on the observed features. In the present case, I used the phenotype groups average silhouette as a
measure of the ability of the selected features to separate the phenotypic outcomes. It is however not
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guaranteed that this measure provides a reliable indicator of whether all relevant features have been
selected. Another option would be to replace missing values in the genomics dataset in order to use
cross-validation as recommended by the others of the mixOmics package. Again, benchmarks could
be used to validate the use of such an approach for feature selection. Lastly, as mentioned previously,
the small sample size of the datasets limits the performance of the causal inference methods. This
resulted in the lack of agreement and consistency between the oriented causal relationships inferred by
the different methods, and results should thus be interpreted with care. This study, however, provides
a proof of concept of the methodology used, and can be applied to larger datasets in the future.
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Chapter 6

General Discussion

6.1 Review of present omics data integration analyses for GRN recon-
struction

Precisely deciphering the molecular mechanisms linking genotype to phenotype across different
cellular layers is a crucial challenge in modern biology, with implications in numerous fields: from
agriculture, where it can inform animal or crop breeding, to medicine, to help in disease diagnostics
or developments of personalised treatments. Recent advances in technologies have enabled routine
measurements of genotypes, as well as levels of intermediate molecules such as transcripts, proteins
or metabolites. These omics datasets can then be leveraged to gain insight into biological mechanisms
driving phenotypes of interest, from disease resistance in plants or humans to yield of crops or dairy
cattle, for example. In response, statistical and computational tools have been developed to extract
relationships between genotype and phenotype, by assessing the association between variations at the
genomic level and changes in traits of interest. In addition, algorithms have been proposed to uncover
the regulatory mechanisms occurring in cells from observational measurements.

However, there is still a need for methodologies that can integrate measurements of different omics
layers and reconstruct regulatory relationships across these layers in the context of a specific trait of
interest. In particular, many tools rely on statistical associations between molecular features. On the
contrary, the detection of causal relationships between variables from observational data has rarely
been applied to biological systems, particularly to multi-omics settings. Moreover, while evaluating
the performance of statistical tools on synthetic datasets is a widespread practice, the models used to
generate the benchmark datasets are still overlooking important biological regulatory mechanisms,
resulting in optimistic performance estimates, far from what is observed with experimental datasets.
Designing simulation tools that emulate the complexity and multi-scale property of biological systems
is key to a realistic evaluation of existing analysis tools, and can pave the way to improvements of
these methods.
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In this thesis, I aimed to bring together the concepts of multi-omics analysis and causal inference,
in order to reconstruct causal molecular regulatory networks linking genotype and phenotype. In
particular, I focused on two different aspects of this problem: (i) benchmarking causal inference
methods in the context of GRN inference, and (ii) inference of a causal multi-omics network in the
tetraploid potato in the context of tuber bruising.

6.2 Benchmarking of statistical causal inference methods for GRN re-
construction

A number of statistical algorithms assessing causal relationships amongst a set of variables from
observational data have been proposed in the last two decades, and studies have assessed and compared
their performance in a general setting. However, these tools have rarely been applied to and evaluated
in the context of reconstructing biological regulatory networks. This is however a critical first step in
applying causal inference methods to biological datasets.

In this thesis, I developed a simulation tool, the R package sismonr, that generates synthetic
gene expression dataset for benchmarking of network and causal inference methods (Chapter 2).
Existing simulators – such as GeneNetWeaver (Schaffter et al., 2011), SysGenSIM (Pinna et al.,
2011) or GeNGe (Hache, Wierling, et al., 2009) – adopt a transcript-centric view of gene expression
regulation, which ignores alternative mechanisms of expression regulation mechanisms – such as
post-transcriptional regulation – pervasive in biological systems. This leads to simulations with
unrealistically high correlations between the transcript levels of regulators and those of target genes,
thus simplifying the problem of reconstructing regulatory interactions between genes from their
transcripts levels. sismonr improves upon these simulators in three important aspects. First, it
explicitly models different types of post-transcriptional regulation between genes: namely regulation
of translation, RNA and protein decay, as well as post-translational modification. This provides a more
realistic account of regulations occurring between genes. Second, sismonr includes protein-coding as
well as non-coding genes in the synthetic GRNs simulated. It is another key aspect of gene expression
regulation that has been uncovered in biological systems, but is largely ignored in existing simulators.
Including non-coding genes is important as (i) they entail a different dynamics of regulation, as the non-
coding RNAs directly affect the expression of their targets, rather than requiring to be translated, and (ii)
they can act as unobserved confounders in benchmarking studies, since they are not always measured
in experimental datasets. Third, sismonr allows the user to define the ploidy of the simulated systems,
beyond the traditional haploid or diploid situation traditionally considered. This has implications for
the genetic diversity of simulated individuals, and therefore the complexity of the resulting simulations.
sismonr makes use of a stochastic simulation algorithm, which means that it is able to simulate
the absolute discrete abundance of molecules (RNAs and proteins). This is of particular interest
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for simulating gene regulation as some regulatory molecules can be present in very low numbers in
cells. sismonr is available at CRAN (https://CRAN.R-project.org/package=sismonr) and on
GitHub (https://github.com/oliviaAB/sismonr). A detailed tutorial has been made available
online on the GitHub repository. One advantage of using R is that users have control over the different
aspects of the simulation, and they can modify the properties of the simulated system. A number
of plotting functionalities have been implemented, to provide an automated representation of the
simulated system or of the simulation results. Overall, sismonr provides computational biologists
with a complete toolkit for generating benchmark datasets – or even study the behaviour of existing
regulatory networks – including important biological mechanisms of gene expression regulation
previously left out of GRN simulators.

Next, I used sismonr to evaluate and compare the performance of seven popular causal inference
algorithms, along with two widely-used network inference methods (Chapter 3). I generated synthetic
gene expression datasets (i.e. transcripts and protein levels) for several simulation configurations. The
configurations differ in the type and quantity of post-transcriptional regulation between the simulated
genes. This sets the evaluation of these inference methods in the specific context of reconstruct-
ing molecular regulatory networks, which had not been done by previous benchmarking studies
(Constantinou et al., 2020; Heinze-Deml et al., 2018). Moreover, by including post-transcriptional
regulation, and restricting the causal inference task to only transcripts levels, I was able to assess
the impact of considering only transcriptomics data on the reconstruction performance. This is
an important aspect of benchmarking as many studies still rely on transcriptomics data only when
reconstructing GRNs, therefore potentially missing information available in other data types such as
proteomics. I found that the causal and network inference methods were not able to detect relation-
ships between genes driven by post-transcriptional regulation. I showed by example that including
additional information in the form of protein measurements could mitigate this loss of information.

Moreover, I compared the ability of the different methods to answer a number of causal queries,
i.e. infer specific types of causal relationships between the genes. I found that, in line with results
from previous benchmarking studies focusing on (undirected) GRN reconstruction (Marbach et al.,
2012; Vignes et al., 2011), not one method outperforms the others across all situations. Rather, each
method has its own strengths and weaknesses. Therefore, as has been recommended in the past, the
outcome of this comparison highlights the importance of combining the results of different methods
to obtain robust results. Note that as a consequence of this observation, the strategy of combining the
results from different causal inference methods has been used in subsequent chapters. Interestingly,
the methods that did not assume causal sufficiency, i.e. that did not make the assumption that all
variables involved in the causal system are observed, did not perform substantially better than the
others. This is surprising, as in the setting of gene expression regulation, limiting the observations
to only transcripts levels amounts to ignoring other molecular actors (i.e. regulatory proteins). One

https://CRAN.R-project.org/package=sismonr
https://github.com/oliviaAB/sismonr
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possible explanation is that proteins do not satisfy the assumptions made by the causal inference
methods about hidden confounders. Overall, the results of these performance analyses point towards
a need for causal inference methods that include different omics data, in particular proteomics data, in
order to reconstruct accurate regulatory networks. This comparison provides a first step towards the
application of causal inference methods to the problem of reconstructing gene regulatory networks.

6.3 Inference of causal multi-omics networks in tetraploid potato

A second aspect of this thesis regarded the investigation of genotype-phenotype relationships in
the context of tuber bruising in tetraploid potatoes. This involved for the first time assessing the
genetic component of tuber bruising. However, the analysis of data arising from a polyploid organism
poses an additional challenge, as specialised tools are required to analyse resulting genomics data.
In a second time, I focused development of a pipeline of analysis to reconstruct a causal network
of features across omics layers involved in tuber bruising. The goal was to combine multi-omics
data integration with the causal inference tools previously benchmarked. Such causal analysis at a
multi-omics scale is only starting to be considered (Montastier et al., 2015; Qiu et al., 2020), and
more work is required to develop appropriate analyses.

Firstly, I focused on the genetic aspect of tuber bruising (Chapter 4). This involved performing a
genome-wide association study to detect genomic variants associated with a number of phenotypes, in
particular the response of tubers to mechanical bruising. This is a challenging step as few algorithms
are available to perform GWAS for tetraploid organisms. In addition, the potato panel used presented
a complex population structure, comprising full- and half-siblings as well as unrelated individuals.
Moreover, the individuals of interest were selected for several traits of interest prior to the bruising
experiment, therefore biasing the distribution of observed phenotypes. In consequence, particular
care was taken to appropriately account for the impact of population structure during the analysis.
This was done by assessing population structure using two different tools, namely STRUCTURE and
DAPC. For each tool, an association model was fitted, in which the structure uncovered was included
as a covariate, and their effectiveness in reducing the impact of population structure was evaluated by
quantifying the inflation of resulting marker scores.

In addition, I assessed the impact of correcting for individual relatedness via the inclusion of
random effects in the model, through the use of a kinship matrix. The importance of accounting for
kinship in association studies for tetraploid potatoes has been previously demonstrated (e.g. Yu et al.,
2006; Rosyara et al., 2016), and the results of my analysis are in accordance with these findings: the
addition of the kinship matrix in the association model reduced the inflation of the resulting marker
scores. However, contrary to Rosyara et al. (2016), STRUCTURE was found to be more effective than
DAPC in controlling for the effect of population structure. This can be explained by the difference in
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the way the two populations were constructed. The individuals used in Rosyara et al. (2016) were
less related, therefore the overlapping clustering as performed by DAPC was sufficient to account
for the presence of sub-populations. In the present case however, STRUCTURE was more suited
as it was able to uncover the dual membership of individuals to subgroups, due to the half-sibling
setting. This result emphasises the need to carefully choose the tools used in accordance with the
data investigated. In addition, due to the combined effects of a small number of observations and the
individuals being selected for some traits of interest, very few variants reached statistical significance.
I however demonstrated that even when adjusted p-values did not reach the significance threshold,
variants with a high association score with the phenotype were of biological interest.

The GWAS results were then compared to a differential expression analysis performed on tran-
scriptomics data. This allowed me to investigate potential mechanisms through which genetic variants
impact the phenotype. Because the genomics data was obtained for specific regions in the genome
only (through capture-bait sequencing), it was not surprising that none of the variants found associated
with tuber bruising coincided precisely with genes found to be differentially expressed. However,
when comparing the position of these variants with those of the genes found to be differentially
expressed, it was possible to detect genomic regions in which variation at the genomic level impacted
the response of tubers to mechanical bruising through their effect on key genes. Some of the high-
lighted genomic regions were found to be associated with tuber bruising in previous studies, but other
were not, thus potentially pointing towards additional regions of interest and alternative mechanisms
involved in tuber bruising. The overlap of these results with previous studies also validate the use of
capture-bait sequencing in selected individuals for GWAS study. This is of particular interest to the
breeding community, as it showcases the usefulness of using data directly from breeding programs,
as an alternative to costly mapping populations typically used for QTL mapping studies. It also
illustrates the importance of considering additional data types, such as transcriptomics data, to enrich
and complement the results of an association study. Lastly, the results of these analyses show that
statistical significance in GWAS must be considered with care, and even non-significant results can
still provide information of interest to biologists.

Lastly, the results obtained from the association analysis were integrated with metabolomics data,
in order to reconstruct multi-omics biological mechanisms involved in tuber bruising (Chapter 5).
Typical single-omics analyses, e.g. differential expression and co-expression network reconstruction,
were performed on the metabolomics dataset, for comparison with subsequent multi-omics analyses.
Then, a multi-omics integration tool was applied to the genomics, transcriptomics, metabolomics and
phenotypic data to select features across the omics datasets associated with tuber bruising and with
common variations across the observations. Finding co-varying features across the omics datasets is
crucial in detecting molecules involved in common biological mechanisms; this is the very added
benefit of integrating different omics datasets. Indeed, when comparing selected features with results
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obtained from typical single-omics differential analysis, I found that the multi-omics integration tool
highlighted biologically relevant features that were not detected with the single-omics analyses. I
also demonstrated the importance of using the results of single-omics analyses, such as GWAS, to
inform feature selection. Uninformed multi-omics feature selection resulted in retaining genomic
variants because of the impact of population structure. This result provides a call to caution when
integrating different omics datasets, as integration tools might not be appropriately designed to deal
with biases specific to each omics dataset.

I then applied an array of causal inference methods to the selected features, in order to reconstruct
a causal network of features involved in tuber bruising. The resulting causal multi-omics network
consisted of many relationships between features from a same omics, with a few cross-omics relation-
ships bridging the different layers. Some relationships could be validated using previous knowledge,
as for example links found between metabolites known to be involved involved in a common pathway.
However, difficulties in interpreting the resulting causal graphs arose from a lack of annotations
for some of the genes (e.g. gene of unknown function) and for many metabolites. This is definitely
an important aspect of network reconstruction that must be addressed. Taken together, the pieces
of work of Chapters 4 and 5 provide an original approach to applying causal inference methods
to a multi-omics setting, specifically in the context of uncovering regulatory mechanisms involved
in a specific trait of interest. This permitted me to investigate the biological mechanisms linking
variations in the genotype to changes in tubers response to bruising. It combined the added benefit of
multi-omics data integration, which looks for signal across the different omics layers, and of causal
inference, which goes beyond association and searches for direct (rather than indirect) relationships
between molecular features. Development of such integrative analyses are urgently needed to make
the most of the different datasets gathered, and this work provides a framework for data integration
that makes use of statistical tools designed to detect causal inference.

6.4 Future work

The work presented in this thesis can be extended in several directions.

For example, in spite of the efficient Julia implementation of the Stochastic Simulation Algorithm
(in the BioSimulator package), the complexity of the simulation model used by sismonr comes at the
cost of a high computational burden. The stochastic modelling becomes computationally expensive
for systems in which molecular species are highly abundant, and the number of possible biochemical
reactions occurring in the simulated system is large. This can be mitigated in part by the use of
approximate stochastic simulators such as the tau-leaping algorithm (Gillespie, 2001), which has
been enabled in sismonr through the use of the Julia package Biosimulator (Landeros et al., 2018)
implementing these approximations. I have investigated the speed of different exact and approximate
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versions of the Stochastic Simulation Algorithm for a few toy networks, that differ in the number
of molecular species and reactions. It would be interesting to formally investigate the running time
of simulations as a function of different properties of the simulated system, and to assess the gain
induced by using an approximate simulator, and the resulting loss in precision of the simulations. In
addition, the use of high-performance computing clusters such as NeSI, as showcased in Chapter 3,
can render feasible more complex simulations, that would be unrealistic to run on personal computers.
Recent work on parallelisation of stochastic simulation (e.g. Goldberg et al., 2020) could also be
integrated with sismonr to enable the efficient simulation of large regulatory networks. Furthermore,
future versions of sismonr could model more complex relationships between the different allelic
versions of genes, such as dominance (the presence of a specific allele dominates the behaviour of the
regulation) for example. Another possible avenue of improvement would be to include metabolites
into the simulated networks.

The evaluation of causal inference methods presented in this work has been limited to the recon-
struction of small synthetic networks (with 20 genes). It would be interesting to test if the conclusions
obtained from this extensive evaluation hold for larger networks, or if the methods’ performance is
impacted by the size of the networks to reconstruct. For computational and time-constraints reasons,
I limited the evaluation to 20 datasets per simulation configuration. The conclusions of the evaluation
could be strengthened by increasing this number, for example by generating at least 100 simulated
datasets per configuration. Other potential areas of investigation would be to assess how different
network motifs are reconstructed by the causal inference methods, or to include different types of
post-transcriptional regulations in a same synthetic network. The evaluation performed in this work
provides nonetheless a pilot study that will hopefully pave the way for larger evaluation studies of
causal inference methods in the context of molecular regulatory networks.

The association study performed in Chapter 4 proved that useful information can be extracted
from a population issued from a breeding program. Nonetheless, the analysis could benefit from
replications with more individuals, in a setting where no selection was applied. This would allow to
observe a larger distribution of phenotypes, and potentially improve the detection of effects of true
causal genomic variants. In addition, more replicates of each genotype could be used in the bruising
experiment in order to obtain a better estimate of the tuber bruising response. Nevertheless, this
study pointed towards new genomic regions potentially involved in tuber bruising, and future work
could focus on investigating these regions. Also, this integration of transcriptomics data with the
GWAS results provided interesting information about potential mechanisms mediating the effect of
causal genomic variants on tuber bruising. Such an integrated analysis would benefit from additional
biological information, for example in the form of annotation about gene functions. I used GO terms
related to the genes to investigate the nature of the biological mechanisms involved. Using information
from the KEGG database would also have provided important complementary information, but this
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was hindered by the difficulty to map the genes’ Ensembl IDs to the KEGG IDs. Improvements of ID
conversion tools or databases could allow similar work to benefit from previous knowledge in order
to interpret their results.

Reconstructing a multi-omics causal network from genomics, transcriptomics and metabolomics
data required in a first step to select features of interest across the datasets. For this task, I used the
DIABLO algorithm (from the mixOmics package), which requires as an input the number of features
to be retained from each dataset. To assess the optimal values to choose, I optimised two contradicting
objectives: (i) retaining a number of features that allowed the best possible discrimination between
the two phenotypic groups, and (ii) retaining a number of features small enough to enable performing
causal inference on the resulting features. Future work could improve on this, by finding alternative
ways to set the number of features to retain. The mixOmics package uses X-fold cross validation
to offer an estimate of such value, however this is not available in the presence of missing data.
Investigation of a workaround for this problem could be useful to researchers wanting to apply
DIABLO on their own datasets that could contain missing data because of the technology used
for obtaining these molecular measurements. Analysing how the reconstructed multi-omics causal
graph changes with the number of features retained could also be a natural extension of this work.
Finally, additional work on the identification of metabolic compounds detected will prove invaluable
in improving the interpretation of the reconstructed causal network. Uncovering the identity of these
compounds and mapping them to existing databases such as KEGG would shed light on the biological
mechanisms at play.

6.5 Concluding remarks

The work undertaken in this thesis explores the integration of causal inference methods and multi-
omics datasets to investigate genotype-phenotype relationships in biological systems. A simulation
tool and evaluation framework have been developed in order to assess the performance of statistical
methods for causal inference to reconstruct regulatory networks from observational data. This has been
used to investigate the ability of causal inference methods to detect causal relationships amongst genes
from transcriptomics data, in the presence of post-transcriptional regulation. The results emphasise the
need to include proteomics datasets to help in the reconstruction of biological networks. In addition,
different single-omics analyses, including a genome-wide association study, differential analysis and
co-expression network reconstruction, were applied to genomics, transcriptomics, metabolomics and
phenotypic data obtained from tetraploid potatoes, in order to shed light on the biological mechanisms
of tuber bruising. These analyses were compared to a multi-omics data integration framework, which,
coupled with the application of causal inference tools, led to the reconstruction of a multi-omics
causal network linking molecules from the different omics datasets involved in tuber bruising.
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Abstract

Modelling gene regulatory networks not only requires a thorough understanding of the biological
system depicted but also the ability to accurately represent this system from amathematical perspective.
Throughout this chapter, we aim to familiarise the reader with the biological processes and molecular
factors at play in the process of gene expression regulation. We first describe the different interactions
controlling each step of the expression process, from transcription to mRNA and protein decay. In
the second section, we provide statistical tools to accurately represent this biological complexity
in the form of mathematical models. Amongst other considerations, we discuss the topological
properties of biological networks, the application of deterministic and stochastic frameworks and
the quantitative modelling of regulation. We particularly focus on the use of such models for the
simulation of expression data that can serve as a benchmark for the testing of network inference
algorithms.

Key words: Gene expression regulation, Regulatory network modelling, Systems biology data
simulation, Post-transcriptional regulation, Post-translational regulation, Deterministic and stochastic
models, Molecular regulatory interactions

A.1 Introduction

The different regulatory processes occurring within cells are often depicted as a network of interacting
entities. These entities can be mapped onto different layers that represent the different biological
molecules involved in expression regulation, for example transcripts and proteins (Figure A.1a).
High-throughput studies provide us with a measurement of the variable levels of a given layer. For
example microarrays or RNA sequencing technologies measure mRNA abundance, and are commonly
referred to as gene expression data. We refer the interested reader to Conesa et al. (2016) for such
modern data handling practices, to Auer & Doerge (2010) for associated statistical designs and to
Backman & Girke (2016) for a data processing and primary analysis workflow.

From a biological perspective, entities from different layers are found to interact. Indeed, in
addition to the well-known control of transcription by proteins termed transcription factors (TFs),
other steps of the gene expression process are targeted by regulatory molecules beyond proteins,
e.g. small molecules such as metabolites and noncoding RNAs. On top of this dynamic regulation,
the information encoded in the DNA itself exerts to some extent control over the expression profile of
genes. Here the term “gene” refers to a DNA sequence coding for a protein or other untranslated RNA.
However it is usually impossible to measure in the same experiment data about all these molecular
layers. We are therefore most of the time bound to making the most of one given data type from which
we seek to extract patterns giving insight into the regulatory interactions at play. Thus gene regulatory
networks (GRNs) successfully gather the detected relationships between transcripts, even if these
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relationships are mediated by other molecules such as proteins. GRNs represent these interactions in
a graph where nodes correspond to genes (and gene products) and edges represent the regulatory
relationships among them (Figure A.1b).

The modelling of such regulatory systems is an important aspect of the reverse engineering
problem. Accounting for existing biological interactions can be key to a more accurate analysis of
experimental data, e.g. in the analysis of differential gene expression (Dona et al., 2017). In addition,
such models can be used to simulate expression data in order to assess the performances of a given
network inference method, just like data can be simulated to assess gene expression differential
analysis method performance (Rigaill et al., 2016). Indeed, a detailed analysis of the strengths and
weaknesses of a given method can guide the choice of a practitioner to choose among the possible
different reverse engineering approaches and pave the way for needed method development. A
possibility is to use as a benchmark a previously studied experimental dataset, but this approach
is limited by our incomplete knowledge about true – if this truth is ever an achievable objective –
underlying pathways. On the contrary, the use of simulated expression data from in silico networks
renders possible the objective comparison of the results of network inference to the true underlying
interaction graph. More precisely, synthetic data allows the assessment of the impact of sample size,
noise or topological properties of the underlying network on the methods performance. To make valid
conclusions, one expects synthetic data to have features as close as possible to real data. Modelling
such complex systems seems like a insurmountable task. However, by carefully designing each
constituting element of the model it is possible to link the statistical representation of a regulatory
system to the underlying biological mechanisms in a meaningful way. This is the very topic of this
work.

This chapter aims at bringing together the biological and statistical representation of GRNs. In
Section A.2, we provide an overview of the different regulatory mechanisms that shape the gene
expression profiles. We focus on the different regulatory molecules that target each step of the
expression process. In Section A.3, we introduce the reader to the basic concepts necessary to the
construction of a GRN model, from the topological properties shaping biological networks to the
mathematical frameworks used for the dynamic simulation of expression data and the representation
of regulation from a quantitative point of view. Together, this chapter provides a first guide to GRN
modelling anchored in the biological reality of gene expression regulation.

A.2 Biological processes: from gene to protein

Proteins are the main actors in living organisms. They achieve a myriad of functions. Yet their
structure, their production mechanisms and their regulation to allow the cell or organism to adequately
adapt to the environment is dictated by the information contained in the genetic material of the
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Figure A.1: Biological versus statistical representation of a GRN. a) Biological regulatory systems
are complex: the different intermediary products of genes – transcripts and proteins – as well as
metabolites interact in a multi-layer network. Such networks are the best representation we can give
of a biological complex system. b) Statistical perspective: genes can be considered as nodes in a
directed graph, where the edges represent regulatory interactions. Each parent variable node directly
influences its children variables, therefore representing the regulation mechanism of a gene product
on the transcription of another gene.

organism. The expression of a gene, a “coding sequence” into an active protein is a complex process
involving numerous biological molecules transformed via varied reactions and interactions. The
information encoded in the coding sequence of the DNA is transcribed into a messenger RNA (mRNA),
which is processed and translated into a protein, according to the central dogma of biology. Once
synthesized, a protein may require additional “post-translational” modifications to acquire a functional
form. In this section, we aim at providing an overview of the different regulatory interactions targeting
each of these steps. This knowledge certainly helps data analysts designing more ad hoc models to
extract knowledge from modern high-throughput measurements. While it is out of the scope of this
chapter to provide a detailed and comprehensive description of the specific biological mechanisms,
we provide references to more biology-centred reviews of the subject. An overview of the different
molecular actors of this regulation can be found in Figure 1.1.

A.2.1 Regulation of transcription

The regulation of transcription is believed to be a key determinant of gene expression profile (Pai et
al., 2015; Zlatanova & Van Holde, 2016). It mainly leverages the action of TFs which act as activators
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or repressors for the transcription of target genes. Regulators act by binding to proximal or distant
sites on the promoter of the target genes. They impact transcription by facilitating or restraining the
recruitment of the transcriptional machinery to the target gene via protein-protein interactions with
its constituents. While TF binding only involves proximal promoters in bacteria, additional remote
regulatory elements such as enhancers, insulators or locus control regions play an important role in
the regulation of eukaryotic genes (Maston et al., 2006; Zlatanova & Van Holde, 2016). A given TF
can affect the expression of one or more target genes, and its impact on gene expression (i.e. activation,
repression or modulation) can change in response to a specific environmental or molecular stimulus.
Typically, a TF will only regulate a few targets, but some global TFs can control transcription of
large sets of genes (Balaji et al., 2006). Interestingly, while TFs play a crucial role in the control of
gene expression, they are often found in low concentration, possibly only a few molecules per cell
(Zlatanova & Van Holde, 2016).

Conversely, the transcription of a specific gene can be controlled by several TFs. This important
feature, termed “combinatorial regulation”, provides the cell with an increased complexity in tran-
scriptional regulation. Each gene can potentially process several inputs which dictate its resulting
expression profile (Balaji et al., 2006). The different regulator molecules can act independently,
if each of them affects a different aspect of the transcriptional machinery. Alternatively, TFs are
often found to form complexes, either homo-dimers or hetero-dimers, thereby exerting cooperative
regulation on the target (Balaji et al., 2006; Ravasi et al., 2010). Importantly, such cooperation implies
that the regulation only occurs when all the components of the regulatory complex are present. Yet
another mechanism of combinatorial regulation is a synergistic interaction, where the global effect of
the different TFs is greater than the sum of their individual effects (Maston et al., 2006; Schilstra &
Nehaniv, 2008). Finally, different TFs can compete for the same binding site on the target promoter.
The respective affinity of the different molecules for the binding sequence determines which of them
preferentially occupies the promoter. These affinities can be altered by environmental cues or changes
in the promoter context (occupancy of neighbouring sites, etc).

In addition to protein regulators, transcription can be controlled by noncoding RNAs, whose role
will be discussed later in this chapter. Furthermore, recent evidence tend to suggest that small RNAs
and in particular microRNAs also play a role in transcription silencing, in addition to their impact
on post-transcriptional functions detailed in the following sections (Castel & Martienssen, 2013;
Catalanotto et al., 2016). Lastly, other features can affect the transcription of genes. Specifically, the
methylation state of DNA, and in particular of gene promoters, has been linked to gene silencing
(Gonzalez-Zulueta et al., 1995; Herman & Baylin, 2003). A widespread example is the inactivation
of tumour-suppressor genes by hypermethylation as a hallmark of cancer (Jones & Baylin, 2007).
DNA methylation is controlled by an array of specialized enzymes. In eukaryotic cells, the chromatin
structure, that is the packaging of the DNA, affects all steps of the transcription process. This
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structure is dynamic and is regulated by ATP-dependent chromatin-remodelling complexes which
control DNA-histones interactions, and by histone-modification factors (Li et al., 2007). Histone
post-translational modifications (such as methylation, acetylation, phosphorylation and more) greatly
affect the chromatin structure, notably through the recruitment of chromatin-remodelling complexes,
or by directly influencing their interactions with DNA. These histone marks have been found to
correlate with transcription efficiency and in some case control the access of TFs to promoters (Li et
al., 2007).

A.2.2 Regulation of translation

Following gene transcription and transcript processing, mRNAs are translated into proteins by
ribosomes and associated molecules. This process is also targeted for regulation, both global and
specific. The initiation of translation, that is binding of the translational apparatus to mRNAs and
recognition of the translation starting site, is thought to be the step where most of the regulation occurs.
As the specific mechanisms of translation initiation differ between bacteria and eukaryotes (Kozak,
2005; Zlatanova & Van Holde, 2016), regulation processes are specific to each, but similarities can
be observed. Regulation of translation offers a faster modulation of the concentration of proteins
compared to transcription regulation, as the former silences already existing mRNAs, while with the
latter these mRNAs are still transcribed until their decay (Sonenberg & Hinnebusch, 2009).

As an example, during the response to a particular stress such as nutrient deprivation or temperature
shock, cells often undergo a global decrease of their translational activity (Gebauer & Hentze, 2004;
Halbeisen et al., 2008; Sonenberg & Hinnebusch, 2009). This global programming switch occurs
through the control of the availability or the activity of the translational apparatus, notably through
the phosphorylation state of eukaryotic initiation factors in eukaryotes. Such massive translation
reduction allows a decrease of the energy demand and a reallocation of cellular resources to stress
response. Specific mRNAs encoding stress-response proteins can escape this regulation via distinct
mechanisms.

Alternatively to global programming, translation of mRNAs can be specifically regulated for a
small set of genes via the involvement of RNA-binding proteins (RBPs) or microRNAs (miRNAs)
(Gebauer & Hentze, 2004; Merchante et al., 2017). These regulatory molecules recognise and
bind to specific sequences in the target transcript, mainly situated in the untranslated regions of
the mRNA. RBPs mainly act through interactions with the translational apparatus, leading to the
inhibition of translation (Gebauer & Hentze, 2004). miRNAs act through the RNA-induced silencing
complex (RISC) complex (Hutvágner & Zamore, 2002; Valencia-Sanchez et al., 2006). The level
of complementarity between a miRNA and its binding sequence on the target transcript specifies
the triggered mechanism of regulation (Zlatanova & Van Holde, 2016): the extensive base-pairing
between the miRNA and its target triggers the degradation of the latter, whilst partial base-pairing
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induces translation inhibition (Jackson & Standart, 2007). Interestingly, it has been shown that in the
case of miRNA-mediated translational repression, the promoter of the target gene determines the
precise mechanism of action of the miRNA (Kong et al., 2008). However the role of small RNAs are
still not perfectly clear and additional processes could be discovered by further experimental studies
(Wu & Belasco, 2008).

It is interesting to note that the direct impact of small RNAs on the translation of a gene can
also indirectly affect other processes such as transcription of non target genes. For example, Tu et
al. (2009) used miRNAs intervention experiments to detect their direct impact on TFs levels, but
also reported the indirect effect of these miRNAs on the expression of theses TFs’ targets. The
conservation of miRNA-mRNA sequence match, particularly in the 3’ untranslated regions of genes
enable the identification of the miRNA-target potential pairings (Friedman et al., 2009). Conversely,
evidence suggest that miRNA synthesis can also be controlled by other RNAs (Guil & Esteller, 2015).
We can here again raise the concept of regulation network to start organising this knowledge. Prior
interactions can be predicted to create such networks (Tu et al., 2009; Wright et al., 2014). Algorithms
for RNA-RNA interaction predictions (e.g. Salari et al., 2010) are compared in Lai & Meyer (2016).
Then molecular techniques can confirm the putative relationships (Engreitz et al., 2014).

The primary sequence of the transcripts also heavily influences their translation (Kozak, 2005).
In particular, the formation of secondary structures within the transcript (e.g. hairpin, stem-loop, etc.
which can be facilitated by the properties of the primary sequence such as GC content for example),
and specifically in regions involved in translation initiation can impair the translation process. Specific
structural features, such as upstream open reading frames or internal ribosome entry sites can also
impact translation. The detailed features of such mechanisms are beyond the scope of this chapter,
and we refer the reader to Kozak (2005). However, being aware of the existence of these mechanisms
can allow the modeller to include them or at least discuss their effect on the outcome of an analysis.
In this vein, Liang & Li (2007) postulate that protein-protein interactions are linked to the regulation
of the corresponding genes by miRNAs.

Lastly, an interesting mechanism of translation control is the regulation via “riboswitches” (Biggs
& Collins, 2011; Henkin, 2008; Serganov & Patel, 2012). A riboswitch is a regulatory sequence
within mRNAs which responds to specific cues, namely temperature or the presence of particular
metabolites. Thermo-sensors are a class riboswitches that respond to temperature by changing their
conformation, therefore modifying the translation rate of the transcript. Alternatively, riboswitches
can detect and link to specific metabolites. This provokes a modulated translational activity of the
transcript via the modification of the mRNA conformation.



218 Appendix A. Supplementary File for Chapter 1

A.2.3 Regulation of mRNA decay

In addition to the elimination of defective mRNAs arising for example from transcription or splicing
errors, fully functional mRNAs are subject to spontaneous or targeted degradation. Regulation
of mRNA decay plays an important role in the resulting transcript level. Specific degradation of
transcripts can be mediated by RBPs, or by small RNAs, namely miRNAs and small interfering RNAs
(siRNAs) (Halbeisen et al., 2008). Interestingly, mRNAs encoding functionally-related proteins were
shown to exhibit correlated half-lives. This phenomenon suggests a common regulation of mRNAs
involved in similar biological processes (Wang et al., 2002; Yang et al., 2003).

RBPs recognise and bind to specific sequences in mRNAs. It allows them to trigger the recruitment
of decay factors, ultimately leading to target degradation. Alternatively, some RBPs have been found
to stabilize their targets, protecting them from degradation (Kuwano et al., 2008). Just as factors
regulating other aspects of gene expression, RBPs can interact to exert combinatorial control over
mRNA decay rates.

Alternatively, miRNAs and siRNAs can promote the decay of target mRNAs, via interactions
with RISC and possibly with other RBPs. Such a phenomenon is coined RNA interference or
RNAi (Mattick & Makunin, 2006.; Valencia-Sanchez et al., 2006). As mentioned previously, such
degradation is promoted by the perfect pairing of the small RNAs with the target transcript. Several
mechanisms can be involved to trigger target degradation. Possibly, interactions with small RNAs
and RISCs promote the endonucleolytic cleavage of the transcript. Another explanatory mechanism
is that the target can be directed to P-bodies, which are small cytoplasmic granules containing RNA
degradation machinery (Valencia-Sanchez et al., 2006). Targeted mRNAs are locked in these P-bodies
and consequently degraded before they can be further processed, e.g. translated.

A.2.4 Regulation of protein activity

After translation, proteins are sometimes subjected to additional modifications to acquire their fully
functional state. These changes can be irreversible, i.e. proteolytic cleavage of the peptidic precursor
to obtain a functional protein (Cooper, 2000; Zlatanova & Van Holde, 2016). Alternatively, the cell
can modulate the activity of its protein pool via a number of reversible post-translational modifications.
A common mechanism is the modification by specialised enzymes of some amino acids on the protein,
such as phosphorylation, oxidation or acetylation (Walsh et al., 2005). In particular, phosphorylation
is a common mechanism for the activation of enzymes, TFs or other proteins. It is used in signalling
pathways to relay extracellular messages to the nucleus, via a cascade of phosphorylation which
activate kinase proteins (Hunter, 1995; Lizcano & Alessi, 2002). The endpoints of such pathways
are generally TFs, whose phosphorylation lead to their activation and relocalisation into the nucleus
where they can modulate the expression of appropriate response genes.
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Taking again the example of signal transduction in the cell, the cascade of phosphorylation is
initiated by the activation of membrane receptors, that detect a particular signal in the environment
– generally a vitamin, a hormone, or another metabolite. This specific ligand binds to the receptor
peptide, and triggers conformational changes to lead to the activation of the receptor. Such activation
prompted by the binding of a small molecule is also frequently found in metabolic pathways, as a
mean to regulate the production of a specific compound (Cooper, 2000). Metabolites can bind to
the enzymes responsible for their synthesis in a feedback loop that auto-regulates enzyme activity
according to the abundance of this specific product. Conformational changes resulting from ligand
binding can mask or reveal the catalytic site of the enzyme, thereby controlling its ability to bind
with its substrates.

Lastly, peptidic chains sometimes need to assemble into multimers, to form a functionally active
molecular complex (Cooper, 2000). Such protein complexes can be composed of several copies of
the same protein, or of different proteins. In the latter case, the abundance of the complex, and hence
its activity, is limited by the least abundant species. It is an interesting mechanism of regulation of
the complex activity. Information about interactions among subunits can be found in protein-protein
interaction databases (see for example Szklarczyk et al., 2017).

A.2.5 Regulation of protein decay

Cells possess several pathways for the degradation of proteins. A first mechanism is concerned with
the degradation within lysosomes, which is a non-specific process, notably solicited in response to
nutrient starvation as a rapid source of amino acids (Olson & Dice, 1989). In addition, proteins can
also be specifically tagged to degradation, via conjugation of a ubiquitin chain to the target peptide
(Lecker, 2006; Varshavsky, 2005; Zlatanova & Van Holde, 2016). Tagged proteins are recognised by
cellular machineries termed 26S proteasomes and subsequently degraded. This ubiquitin-proteasome
pathway provides the cell with a way to rapidly control a regulatory process by degrading its effectors.
It is notably involved in the regulation of transcription via degradation of specific TFs (Lecker, 2006).

The addition of ubiquitin on target proteins is mediated by the E1, E2 and E3 enzymes. The
different isoforms of the E2 and especially E3 family confer a great specificity to this process, as each
isoform can recognise different substrates. Additionally, some structural properties of proteins can
impact their affinity as substrate for the ubiquitin-proteasome pathway. For example, a member of the
E3 family recognises particular amino acids at the N-terminal position of proteins, in what is call the
N-end rule pathway (Lecker, 2006). The nature or accessibility of specific residues can also impact
the ability of ubiquitination enzymes to recognise and tag target proteins.

It is interesting to note that the ubiquitin-proteasome pathway is able to degrade only a subunit of
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a given protein, for example to produce a functionally active product or on the contrary inactivate the
protein. This is the case for the NF-κB TF, which is bound by its inhibitor, IκB (Varshavsky, 2005).
In response to a specific signal, the complex is ubiquitinated, and the proteasome cleaves the IκB,
thereby freeing the TF, which, in turn, is relocated into the nucleus to trigger the required cellular
response.

Quantitative measurements have highlighted the coupling between synthesis and decay rates of
proteins. As for transcripts, these parameters seem to be correlated among proteins intervening in
common complexes or functions. It appears that proteins involved in housekeeping functions are
relatively stable, with a high production rate, leading to high concentrations in cells. On the contrary,
regulatory proteins tend to be less synthesised and more rapidly degraded. This is consistent with the
observation that they are often found in a low concentration in the cell (Belle et al., 2006; Vogel &
Marcotte, 2012).

A.2.6 The role of genetic variation

In addition to diverse cellular molecules which perform a wide range of regulatory activities, the
DNA sequence itself plays a role in regulating gene expression. Regulatory sequences present in the
promoter region of genes or in the transcribed or translated sequences dictate the set of molecules
and complexes that control the expression of these genes. These sequences target transcripts or
corresponding proteins for particular regulatory mechanisms. Their affinity for regulators control
the strength of this regulation. The impact of genetic variation on gene expression has been studied,
notably via expression quantitative trait loci (eQTL) studies. eQTLs are genomic regions within
which genetic variability is associated with variation in the abundance of a particular transcript (Gilad
et al., 2008). More generally genetical genomics studies (also termed cellular genomics) (Gaffney,
2013; Jansen & Nap, 2001) analyse how polymorphisms lead to variation in molecular traits, such as
mRNA, protein or metabolite profiles.

Using additional genomics data such as DNA methylation state or chromatin accessibility, re-
searchers are now focusing on identifying the specific mechanisms which relate genetic variants to
response molecular traits. At the transcript level, evidence tends to show that eQTLs lead to transcript
abundance variability mainly via their impact on TF binding (Albert & Kruglyak, 2015; Gaffney,
2013; Veyrieras et al., 2008).
Polymorphisms at these loci also affect other aspects of transcription, but it is yet to be determined if
it is a direct consequence of genetic variation or merely an indirect effect of variation in TF binding
efficiency (Pai et al., 2015). Some polymorphisms have also been shown to affect mRNA degrada-
tion, notably through modification of miRNA binding sites, or other post-translational mechanisms
(Gaffney, 2013; Pai et al., 2015). In a groundbreaking effort, Bessière et al. (2018) discovered
instructions encoded in the sequence itself to regulate gene activity. The nucleotide composition can
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be directly read to accurately decipher biological mechanisms.

A.2.7 An example: long noncoding RNAs

After this review of the possible interactions regulating the different aspects of the gene expression
process, we now turn our attention to a specific class of regulators whose role in the different biological
processes mentioned earlier is just starting to be appreciated. Indeed, the functional importance of
long noncoding RNAs (lncRNAs) was only hinted at when experimental studies of genome-wide
transcription in cells revealed that a large fraction of the genome is transcribed, even if only a small
amount actually encodes proteins (Quinn & Chang, 2016; Rinn & Chang, 2012). This discovery shook
the traditional central dogma of biology stating that RNAs’ primary role is to serve as messengers to
produce functionally active proteins. On the contrary, as highlighted above, noncoding RNAs are now
known to play important regulatory roles. While we now have a fair understanding of small noncoding
RNAs (e.g. miRNAs, siRNAs, etc) and the associated biological processes, lncRNAs (exceeding 200
base-pairs, as an arbitrary defining threshold) remain for most of them terra incognita. In particular,
the extent of their functional role is yet to be determined, and there is still debate about whether the
RNA molecule itself has a functional role or if only the physical changes triggered by its transcription
(e.g. chromatin opening, helix unwinding, etc) impacts the transcription of neighbour genes while
the produced transcript is useless (Wang & Chang, 2011; Zlatanova & Van Holde, 2016). This is
notably due to the fact that their primary sequence is less conserved than those of protein-coding
genes (Mercer et al., 2009; Quinn & Chang, 2016). Nonetheless, experimental studies put us on
the track of lncRNA involvement in a great variety of biological processes, from regulation of gene
expression and chromatin state to genomic imprinting, in particular X chromosome silencing (Ponting
et al., 2009; Quinn & Chang, 2016; Rinn & Chang, 2012). In addition, characteristic features of
RNA make them well-suited for regulatory functions: their fast kinetics with no need for translation
and their rapid degradation is particularly convenient for a fast and transient response to external
stimuli. Moreover, their ability to bind DNA and RNA allows them to interact with both genes and
transcripts (Geisler & Coller, 2013; Wang & Chang, 2011). In this section, we briefly present the
diverse roles played by lncRNAs in the regulation of gene expression. For a more thorough review
about the biological roles of lncRNAs, we refer the reader to the review by Geisler & Coller (2013).

One of the primary focuses of early studies about lncRNAs was their involvement in chromatin
modelling (Rinn & Chang, 2012), ultimately resulting in the modulation of gene expression. lncRNAs
can act as scaffold which bring together different chromatin-remodelling proteins and to assemble
them into a functional complex (Rinn & Chang, 2012; Wang & Chang, 2011). Alternatively, they
can guide such proteins to a target location, triggering changes in chromatin structure (Mercer et
al., 2009). An interesting mechanism of action follows the transcription trail of the noncodingRNA
which influences the chromatin state. It consequently impacts the transcription of neighbouring genes
(Geisler & Coller, 2013).
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lncRNAs can also enhance or repress the initiation of transcription via interactions with the basal
transcriptional machinery. For example as a response to heat shock, the interaction of a specific
lncRNA with RNA polymerase II triggers the inhibition of target genes (Geisler & Coller, 2013;
Mercer et al., 2009). Additionally, lncRNAs can target TFs and modulate their activity, by directly
prompting conformational changes, by recruiting TFs onto the target promoter, or by withholding the
TFs away from their targets (Zlatanova & Van Holde, 2016).

lncRNAs are also involved in other steps of the gene expression process. In particular, they
can influence mRNA processing, in particular mRNA splicing and editing (Geisler & Coller, 2013;
Mercer et al., 2009). Some lncRNAs can impact translation efficiency of their target transcripts,
through mechanisms which are still not totally clear (Geisler & Coller, 2013). They also putatively
control RNA stability, either by recruiting specialised degradation machinery to the transcript, or
by competing with miRNAs for binding sites. In the latter case, lncRNAs play a protecting role
for mRNAs in preventing or delaying their degradation. For example, they can lure miRNAs to
competitively bind to the same targets (Geisler & Coller, 2013; Wang & Chang, 2011). Finally,
lncRNAs can assist in protein binding to modulate their activity. Target proteins can be TFs, chromatin
remodellers, or other regulatory molecules.

While a few well-studied lncRNAs provide evidence for a functional role of these transcripts, a lot
remains unknown about them. In particular, it is important to keep in mind that the functional roles
described above apply to a few number of characterized lncRNAs, and it is possible that a fraction of
these transcribed noncoding genes are the result of transcriptional noise or experimental artefacts
(Ponting et al., 2009). The modeller has the choice to include such information for a few annotated
lncRNAs only, or to include the different putative roles, e.g. in a Bayesian framework.

As demonstrated throughout this section, the expression of genes is subject to a tight regulation
from which arises great biological complexity. We now embrace the point of view of the statistical
modelling of such biological systems. In particular, we discuss the different aspects of the construction
of a model that must be carefully thought out in order to faithfully describe the biological processes
under study.

Figure A.2: The different steps of an algorithm for expression data simulation. Each of these steps
will be detailed in the referred sections.
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A.3 Modelling gene expression

Statistical models of GRNs aim at reproducing biological systems from a mathematical perspective to
permit, inter alia, the simulation of their dynamical behaviour. A number of models for the simulation
of expression data have been proposed in the last decades; an overview of the principal algorithms
and their key features is presented in Table A.1. However, the design of such simulation tools is far
from trivial. First and foremost, the model must be a faithful representation of the biological system,
from the general topology of the underlying regulatory network to the quantitative regulation exerted
on the genes and gene products. In addition, different mathematical frameworks can be used for the
dynamic simulation of expression profiles, each of them carrying its own set of assumptions and
limitations.

With all these considerations in mind, the next section provides a thorough reflection on the
different features to examine when building a simulation network as well as a contrast of existing
methods to simulate data from an in silico network. The general pipeline for the construction of a
simulation algorithm can be found in Figure A.2.

A.3.1 Topological properties of regulatory networks

A crucial step in simulating expression data from regulatory networks is the selection of a network
topology that defines the interactions among the molecules. In a graphical representation of a GRN,
nodes typically represent genes and their products, while edges correspond to regulatory interactions
between molecules. Edges carry the direction of the regulation, that is, which nodes are regulators
and which nodes are target molecules. The choice of the topology of a GRN is by no means an
easy task. A first and simple approach for network modelling is to represent regulatory networks
as random networks (Erdös & Rényi, 1959; Kauffman, 1969) (also termed Erdös-Rényi graphs) in
which each pair of nodes has the same probability of being connected. This model was and is still
used for expression data simulation. However topological analysis of pathways recovered from model
organisms highlighted the existence of specific structural properties among biological networks,
owing to the evolutionary constraints that shaped them. Algorithms for the generation of synthetic
networks with similar properties where developed to construct more realistic models of biological
systems. Interestingly, a number of these properties are shared with non biological systems such as
the Internet or social networks (Barabási & Oltvai, 2004):

• Small-world property: Networks are characterized as small-world if their average path length1

between any two nodes is small. It has been shown that most biological networks exhibit such a
property (see for example Jeong et al., 2000; Albert, 2007; Wagner & Fell, 2001). This implies
that components of biological networks are easily reachable from any other node, which allows

1The path length between a pair of nodes is defined as the length of the shortest path connecting the two nodes.
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a rapid response to stimuli or perturbations (Albert, 2007). Synthetic random small-world
networks are also referred to as Watts-Strogatz networks (Watts & Strogatz, 1998).

• Scale-free property: When studying the in- and out-degree distribution of (directed) biological
networks, i.e. the the number of incoming and outgoing edges respectively, it has been noted
that this distribution can often be modelled with a power-law distribution (Albert & Barabási,
2000; Barabási & Albert, 1999). More specifically, the probability of a node to exhibit k edges
is P (k) ∝ k−λ. An implication is that the majority of nodes interact only with a few partners,
while a small number of nodes, called hubs, are highly connected. Metabolic pathways were
shown to have this property (Jeong et al., 2000; Wagner & Fell, 2001), and so were GRNs
(Featherstone & Broadie, 2002). For both types of networks, the scale parameter λ usually
ranges between two and three (Barabási & Oltvai, 2004; Ravasz et al., 2002). However recent
findings suggest that for some organisms the in-degree distribution of transcriptional networks
is not scale-free, as detailed below. An algorithm for generating random scale-free networks
has been proposed by Albert & Barabási (2000). Bollobás et al. (2003) presented a directed
version of scale-free networks, where both the in- and out-degree distributions are power laws,
with possibly different λ coefficients.

• Exponential distribution of the in-degree distribution (for transcriptional networks): al-
ternatively to the scale-free property, studies (e.g. Guelzim et al., 2002; Balaji et al., 2006)
suggested that the in-degree distribution of GRNs for some organisms is better fitted by an
exponential distribution, i.e. P (k) ∝ 1

λe
− k
λ . This implies that genes are regulated only by a

few (generally up to three) TFs (Barabási & Oltvai, 2004), a more plausible configuration in
biological networks.

• Modularity: real networks have a tendency to form groups of highly interconnected nodes,
referred to as modules. This modular organization is characterized by a high average clustering
coefficient (Wagner & Fell, 2001; Watts & Strogatz, 1998). The clustering coefficient C of a
node is a measure of the degree of connectivity among the direct neighbourhood of this gene.
This property is important for biological systems, as it implies that biological networks are
organised into relatively independent modules that each perform a distinct biological function.
While inside a module the components are tightly linked, modules are only weakly connected
with each other. This last property ensures to some degree robustness to the network, as
disruption in one module is less likely to severely impair the rest of the network (Barabási &
Oltvai, 2004). Methods to identify modules within pathways (e.g. Sanguinetti et al., 2008)
could clearly inform gene network inference and this information should not be ignored when
exploitable.

• Hierarchical organization: contrary to random or scale-free networks for which the average
clustering coefficient decreases with the number of nodes in the network, biological networks
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are characterized by a system-independent average clustering coefficient (Ravasz et al., 2002).
Moreover, the clustering coefficient of a node is a function of its degree, since: C(k) ∝ k−1

(Ravasz et al., 2002). This last property is a characteristic of a hierarchical organization of the
network. This important mathematical concept allows us to reconcile the scale-free property
and modular nature of biological systems. Indeed, it stresses that nodes of low connectivity
tend to be found in clusters, while hub nodes constitute the junction between modules. It is to
note that hub nodes will less likely be connected to each other.

• Over-representation of network motifs: another important feature of biological networks is
the abundance of small regulatory motifs (Milo et al., 2002; Shen-Orr et al., 2002), that are
recurring and non-random building blocks of the global topology (Zhu & Qin, 2005). They
confer specific advantages to the system by encoding well-defined local dynamic behaviours
in response to perturbations, for example buffering intrinsic stochasticity or on the contrary
amplifying an external signal to trigger a cellular response (Alon, 2007). One well-known
example is the negative feedback loop, in which the product of a gene regulates its own
transcription (Rosenfeld et al., 2002). This auto-regulation feature allows the control of the
natural fluctuation in the concentration of the gene product, as its synthesis is directly coupled
to its abundance (Alon, 2007). Another famous example is the feed-forward loop, who can
simultaneously process two different stimuli and whose output depends on the nature (activation
or repression) of the regulatory interactions composing the motif (Mangan & Alon, 2003). A
detailed quantitative analysis of such motifs and the advantages they provide to the system can
be found in the book Alon (2006).

As pointed out by Pržulj et al. (2004)], such studies are based on our current and incomplete
knowledge of biological networks. Despite this limitation, algorithms for the generation of graphs
mimicking these structural properties have been proposed, for a more accurate representation of
biological networks. In addition to the three most commonly used Erdös-Rényi, Albert-Barabási and
Watts-Strogatz networks, Haynes & Brent (2009) implemented a method for simulating topologies
with scale-free out-degree distribution and any desired in-degree distribution. Di Camillo et al. (2009)
proposed a hierarchical modular topology model that generates networks displaying scale-free degree
distribution, high clustering coefficient independent of the network size, and low average path length.
However, to offer flexibility in the simulation, most simulators offer as an option for the user to choose
among the different network topologies cited above. It becomes therefore possible to assess the
impact of the underlying topological properties on the performances of a given network inference
algorithm.

The main drawback of in silico networks is that none of the aforementioned network simulation
methods are able to simultaneously reproduce all characteristic features of real networks (Bulcke et
al., 2006). Another approach for graph generation has hence been proposed. It relies on the use of
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real biological networks determined experimentally. They are used as seeds from which sub-networks
are sampled. Bulcke et al. (2006) proposed two sampling approaches: the cluster addition method
and the neighbour addition method. Building up on this idea, Marbach et al. (2009) further refined
the approach by forcing the preferential inclusion of modules in the sampled sub-networks. This
module extraction method ensures a fair representation of network motifs in the generated topology,
as observed in biological networks. Such an approach of sampling from real networks ensures a
more faithful picture of biological pathways. Again, this is contrasted by Bulcke et al. (2006), as
the real network sampling strategy relies on our current knowledge of regulatory networks, which
is still incomplete, and probably biased towards well studied pathways. Lastly, Haynes & Brent
(2009) pointed out that networks generated from the same source network may not be “statistically
independent” as they may overlap and thus provide redundant information. It is particularly true when
sampling a large number of subnetworks from a single source, as most of them will share common
nodes and interactions.

A.3.2 Mathematical frameworks and regulation functions

Once the network topology is set, the next step for data simulation is to decide on the mathematical
framework to be used to compute the profiles of gene expression, which will impact the choice of
regulation rules for the system. It is important to carefully consider the different options, as each
formalism carries a number of underlying assumptions about the represented system. Moreover,
different levels of precision about the system can be integrated. Choices depend on many factors to
achieve a balance between the level of required details to make the simulations more realistic, and the
computational efficiency desired. While it is not our goal to offer an extensive comparison of all the
possible formalisms, we emphasize here the difference between the two mainstream formalisms in
existing simulators of expression data: the continuous-and-deterministic and discrete-and-stochastic
frameworks. We present the basic concepts of these approaches, and highlight the different hypotheses
about the biological system underlying each model. For a more detailed and mathematically-centred
review of these and other formalisms we refer the reader to de Jong (2002) and Higham (2008).

The continuous and deterministic approach

The continuous and deterministic approach is particularly suited to simulate data that resemble those
resulting from a transcriptomics (or other ’omics) experiment. The output is a series of continuous
variables, as opposed to cruder logical models that predict the activation state of each gene as a binary
outcome. In such deterministic models, biological molecules are represented as time-dependent
continuous variables. Typically xi(t) represents the concentration of entity (or species) i at time
t. Variation in the concentration of a species over time is assumed to occur in a continuous and
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deterministic way. Such changes are modelled as differential equations, in the form of:

dxi
dt

= fi(X), (A.1)

where X refers to the state of the system (that is the concentration of all the species present in the
system), and fi represents the change in the concentration of species i as a function, often non-linear,
of the global state of the system. More specifically, in the case of a chemical species and associated
reactions, fi(X) can be written as:

fi(X) = vi(X)− di(X), (A.2)

where the vector vi(X) represents the synthesis rate for species i, while di(X) models its decay rate
(due to degradation, dilution, use as a reactant, etc.). Both rates are themselves expressed as a function
of the system state. The ensemble of reactions occurring in the network provides a set of coupled
differential equations that describe the evolution of the state of the system through time. Except for
simple networks, with only a few molecules and/or linear interactions, an analytical solution is often
intractable. It is however possible to integrate the model in order to compute a numerical solution. A
plethora of differential equation system solvers are available in different programming languages (for
example the deSolve package for R, the dsolve function of the Symbolic Math toolbox for Matlab
or Berkeley Madonna).

Regulatory molecules for species i appear on the right-hand side of Equations (A.1) and (A.2).
They impact the abundance of their target species i via regulation of the different expression steps, as
we discussed them in Section A.2. The regulation of a particular reaction is hence modelled via a
reaction rate law, which dictates how the rate of the regulated reaction (e.g. vi or di) evolves with
the concentration of the different regulatory molecules. The vast majority of proposed simulation
algorithms focus on the representation of transcription regulation, but similar consideration can
be applied to any type of regulation (translation, degradation. . . ). Two important features must be
considered in order to fully characterize a reaction rate law: (i) the quantitative relation between a
regulator abundance and the resulting reaction rate, and (ii) the combination scheme of the individual
effects of different regulators on a common target. In the following we will discuss these two aspects,
using the example of the regulation of gene transcription.

We first consider gene i whose transcription is regulated by a single molecule j. Several choices
are possible with regard to the resulting effect of the regulator abundance on the transcription rate.
A simple approach is to consider that the regulation effect increases linearly with the regulator
concentration (D’haeseleer et al., 1999; Yeung et al., 2002) (Figure 1.6 a), as follows:

fi(xj) = β · xj (A.3)
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where fi represents the transcription rate law of gene i, which depends on the concentration of
the regulatory molecule xj . In addition to the fact that this representation ignores any saturation
effect arising from the limited amount of cellular resources and the maximum possible number of
simultaneous transcription events, such a linear relationship can produce concentration values out of
the plausible range of abundance encountered in vivo, possibly leading to infinitely large populations,
which is biologically irrelevant. It is hence important to construct biologically credible reaction rate
laws that result in realistic regulation strength and concentration values.

Alternatively, a Hill function (Figure 1.6 b) can be used to model the impact of an activator on
the gene transcription:

fi(xj) =
x
nij
j

x
nij
j +K

nij
ij

, (A.4)

or, for a repressor:

fi(xj) =
K
nij
ij

x
nij
j +K

nij
ij

, (A.5)

whereKij represents the concentration of regulator j required to obtain a half-maximum effect on
the transcription rate of gene i, and nij controls the steepness of the regulation. It must be noted
thatKij must be non negative as it accounts for a concentration, and nij ≥ 1. Indeed, when nij = 0

the resulting reaction rate law is constant. This sigmoid function accounts for the saturation of the
regulatory effect: after the regulator concentration has reached a certain level, any further increase in
this concentration will only result in a minimal change in the transcription rate. Additionally, tuning
the parameter nij enables to represent a variety of regulation behaviours, from a quasi-linear (nij
small) to a step-like (nij high) function. Furthermore the use of a Hill function law can be justified
by a thermodynamic model of the binding of TFs on the target promoter (Ackers et al., 1982; Bintu,
Buchler, Garcia, Gerland, Hwa, Kondev, et al., 2005b). Considering that the mean transcription rate
of a gene is proportional to the saturation of its promoter by TFs, the effect of the regulator can be
further refined as:

fi(xj) = α0

[
1 + (FCij − 1)
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nij
j

x
nij
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ij

]
, (A.6)

where α0 represents the basal transcription rate of the target gene in absence of the regulator, and FCij
the maximum fold-change2 of gene expression induced by the regulator. Details of this computation
can be found in the Supporting Information of Marbach et al. (2010). It is straightforward to deduce

2The fold-change of a gene is defined as the ratio of its transcription rate in the presence of a high concentration of
regulatory molecules over its transcription rate in absence of regulator. From equation (A.6) it is easy to see that the
transcription rate of gene i tends towardsα0·FCij whenxj becomes large, hence the fold-change tends to α0·FCij

α0
= FCij .
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the transcription rate law for a gene whose expression is controlled by an inhibitor, as the resulting
maximum fold-change is FCi = 0:

fi(xj) = α0

[
1−
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nij
j

x
nij
j +K

nij
ij

]
(A.7)

Such representation is massively used in simulator algorithms, although with some variations (Bulcke
et al., 2006; Hache, Lehrach, et al., 2009; Haynes & Brent, 2009; Mendes et al., 2003; Pinna et al.,
2011; Roy et al., 2008; Schaffter et al., 2011). For example, the transcription rate law represented
in Equation (A.6) can be adapted to account for a gene that is not expressed in the absence of its
activator.

Taking the approximation that nij →∞, it is possible to simplify this Hill function, and model
the transcription rate law as an on-off switch, where the maximum effect of the regulator on the
transcription rate occurs as soon as the regulator molecule level exceeds a certain threshold. Below
this threshold, no regulation is observed. Such representation is described by a step function (Figure
1.6 c):

fi(xj) =

α0 xj < Kij ,

α1 xj ≥ Kij .

α0 can be set to zero, to model the case of a gene that is not expressed in absence of its regulator.
This simplification provides the basis for piecewise differential equations (de Jong, 2002). It allows
us to model a non-linear interaction even if the kinetics of the regulation are not known in detail.

Once the quantitative effect of a regulator has been chosen, one must consider the overall effect
of several regulators targeting a common gene. Indeed, different combinatorial regulations can be
modelled. A simple example is to assume that different regulators impact the expression of the target
gene independently of each other. This approach has been used by Mendes et al. (2003). For an
independent combinatorial effect model, the resulting regulation effect of all regulators is equal to
the product3 of the individual effects of each regulator on the transcription rate.

Alternatively, the different TFs can assemble into a complex that will bind to the target promoter
to regulate transcription. In this case, the resulting regulation effect will be limited by the least
abundant regulator species. An example can be found in Roy et al. (2008), in which different TFs can

3The use of the product, rather than the sum, ensures that if the concentration of a repressor is high enough to silence
the gene (resulting in an individual effect close to zero) the overall transcription rate will also tend to zero regardless of
the quantity of activators present. It also implies that the overall fold-change obtained for large quantities of the different
activators is the product of the fold-changes individually induced by each activator, which is justified thermodynamically in
Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, et al. (2005a) and Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, et al.
(2005b).



230 Appendix A. Supplementary File for Chapter 1

assemble into cliques which in turn can form TF complexes regulating the target gene. The resulting
translation rate law is therefore equal to zero as soon as the concentration of one of the TFs reaches
zero, as it is then not possible to form a functional complex.

An interesting approach has been proposed by Di Camillo et al. (2009). It uses fuzzy logic to
represent the possible combinatorial interactions between different regulators. The advantage of such
an approach is that it combines the Boolean logic functions (AND, OR, NOT, etc.) well suited to
describe combinatorial behaviour with continuous regulation, as the output of fuzzy logic functions
is a continuous value. Given a continuous input, that is the concentration of each regulator, the
fuzzy logic applies a set of functions such as min, max, or

∑
(sum) to output the level of regulation

commonly achieved by the different regulators. Di Camillo et al. hence represents “cooperation” (for
which the regulation is only achieved in the presence of all the required regulators) as a min function
applied to the set of regulator concentrations. Similarly, synergistic behaviour, direct inhibition or
competition are modelled with fuzzy logic functions.

Deterministic models are traditionally used for the simulation of expression data(Bulcke et al.,
2006; Di Camillo et al., 2009; Hache, Wierling, et al., 2009; Haynes & Brent, 2009; Marbach et
al., 2010; Mendes et al., 2003; Roy et al., 2008) (see Table A.1). However, despite its broad use,
the deterministic formalism presents several limitations, which relates to the underlying hypotheses
about the biological system depicted. In particular, the assumption of continuous change in species
concentration is only valid for a macroscopic description of biological systems (de Jong, 2002),
i.e. when the number of molecules in the cell is large enough so that species concentrations can be
considered to vary continuously when a discrete number of molecules is actually added/withdrawn
from the system. When the abundance of a species reaches low values (defined as a thousand or
less by Cao & Samuels, 2009), this assumption does not hold anymore, and it is more correct to
represent this abundance by a discrete molecule count. Moreover, the deterministic assumption can be
questioned, particularly for small systems, given the fluctuation in the timing of biochemical reaction
events (de Jong, 2002). Indeed two identical genes with the same transcription rate will not produce
exactly the same number of transcripts during the same time period, due to the apparent stochasticity
of biological events. While this fluctuation can be averaged out for highly abundant species, it is
more difficult to ignore it for species with only a few molecules per cell. As numerous studies have
underlined the importance of stochasticity in biochemical systems (McAdams & Arkin, 1999; Ross
et al., 1994; Wilkinson, 2009, 2012), it can be preferable to explicitly model stochasticity in the
simulation.

The discrete and stochastic approach

To overcome the limitation of continuous and deterministic models, in particular for modelling
small systems, a discrete and stochastic representation of biological systems has been proposed. It
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must be noted that even if the continuous and deterministic approach and the discrete and stochastic
framework are commonly referred to as respectively deterministic and stochastic models, there exists
representations of biological systems that are either discrete and deterministic (e.g. Boolean networks)
or continuous and stochastic (e.g. Chemical Langevin Equation, discussed later). One must hence keep
in mind that continuous (resp. discrete) does not necessarily imply deterministic (resp. stochastic) as
the first terms refer to the representation of species abundance while the latter corresponds to the
variation of the system state.

In the discrete and stochastic framework, the state of the system corresponds to discrete values
accounting for the number of molecules of each species present in the system. While the vast majority
of deterministic approaches are species-centred, i.e. one differential equation represents the evolution
of one species abundance through time, stochastic models often rely directly on the biochemical
reaction formalism. These reactions can be schematically represented in the form:

Substract 1 + Substract 2 Reaction rate−−−−−−−→ Product 1

Or, in the context of gene expression:

Promoter + TF c1−→ Active_promoter

Active_promoter c2−→ Active_promoter + mRNA

Each reaction is characterized by:

• A stoichiometry vector vj which represents the change in abundance of the different species
resulting from one firing (i.e. one occurence) of the reaction. Negative and positives indices
correspond respectively to reactants and products of the reaction.

• A propensity function aj(X), with aj(X)τ representing the probability that the reaction will
occur in the next time step [t, t+ τ ] given the system state at this time t. The rate aj depends
on the current state of the system. If cj is the constant probability that one molecule of each
of the r reactant species Si, 1 ≤ i ≤ r collide and undergo the reaction in the next time unit,
then aj = cj .

∏
r
xr. Generally the number of reactants per reaction is limited to one or two,

as a reaction involving more substrates can be decomposed into a set of elementary reactions
(Gillespie, 2007). Taking the example reactions above, the propensity function of the binding
reaction of one TF molecule on the promoter will be: c2 ·xPromoterxTF . It is therefore possible
to link deterministic and stochastic rate constants, as shown in Gillespie (2007).
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The system state change is then computed in terms of probability by the Chemical Master Equation
(CME), which computes the evolution of the probability that the system is in state X through time.
For details about its computation, we refer the reader to the review by El Samad et al. (2005). An
analytical solution of the CME provides the probability density function of the system state X(t).
However, as for deterministic models, the computation of an analytical solution is impossible except
for quite simple systems. Therefore, one way to study the behaviour of the system is to construct
numerical realizations of the CME. One of the most used method is Gillespie’s Stochastic Simulation
Algorithm (SSA) (Gillespie, 1977). SSA increments the system state at discrete time points, by
randomly selecting the next reaction to fire, according to the propensity function of every possible
reaction, as well as simulating the event (reaction occurring) time (El Samad et al., 2005; Gillespie,
1977). Several exact (i.e. simulating every single reaction) alternatives to the original algorithm (the
so-called direct method) have been proposed, such as the next-reaction method (Gibson & Bruck,
2000), the sorting direct method (McCollum et al., 2006), and others (see Gillespie, 2007; Pahle,
2009 for a review). However exact algorithms are limited by their computational cost which renders
the simulation of large systems intractable. Several approximation methods have been proposed, and
have been thoroughly discussed (El Samad et al., 2005; Karlebach & Shamir, 2008; Turner et al.,
2004; Wilkinson, 2009). Approximation simulations such as the very popular tau-leaping method
considerably reduce the simulation time, but at the expense of a hardly estimable loss of accuracy
(Wilkinson, 2009).

Stochastic discrete simulations offer a different perspective on the modelling of regulation com-
pared to the deterministic continuous approach, as they explicitly model the binding of regulator
molecules on the target promoter. Taking the example of TFs regulating the expression of a given
gene, a stochastic model can represent the binding of regulatory molecules on the promoter of the
target gene as follows:

Promoter + TF→ Active_promoter

Active_promoter→ Promoter + TF

Active_promoter→ Active_promoter + mRNA

In this model, a TF must be bound to the promoter for a transcription event to occur. Using this
representation, it is easy to represent the different combinations of TFs bound to the promoter, and
the transcription rate associated with each state. The possible combinatorial regulation effects can
also be explicitly stated. For example, reactions can be added to encode the formation of a regulatory
complex from the different TFs and to encode the binding of the complex on the target promoter.

The advantage of a stochastic model as opposed to its deterministic counterpart is its ability to fit
more precisely to the natural variation inherent to biological systems. This biological fluctuation can
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be crucial for understanding certain systems, as illustrated by El Samad et al. (2005) that present
several examples where a deterministic model fails to correctly predict the system behaviour. As
for its deterministic counterpart, the stochastic framework implies a number of hypotheses on the
represented system. In particular, it relies on the essential assumption that the system is well-stirred,
that is, the molecules are homogeneously spread in the volume. Moreover the simulation of temporal
trajectories is computationally heavier as each reaction (in the case of exact simulation algorithms) or
group of reactions (for approximate methods) is simulated. This is especially true for a system with a
high number of molecules or reactions with large value propensity functions, as both factors imply
high firing rates.

Bridging the gap

Starting from a stochastic model and in particular the CME representation of a given system, it is
possible by means of simplifying assumptions to obtain the corresponding continous deterministic
model. As stated in the tau-leaping approximation of the SSA, under the assumption that the time
step τ in the simulation is small enough so that the propensity functions of the different reactions stay
approximately constant during the interval [t, t+ τ ], the number of reactions occurring during that
time step can be modelled as a Poisson process (El Samad et al., 2005; Higham, 2008). Consequently,
it is possible to sample the number of occurrences of each reaction with propensity function aj from
a Poisson law with parameter aj · τ . Moreover, if the time step τ is at the same time large enough so
that each reaction fires more than once during the interval [t, t+ τ ] (usually feasible in systems where
the concentration of species is large enough (El Samad et al., 2005)), the system can be represented by
a set of stochastic differential equations, termed the Chemical Langevin Equation (CLE) (El Samad
et al., 2005; Gillespie, 2000). In the CLE, the population of each species evolves in a continuous
but stochastic manner, with the stochastic variation due to each reaction being proportional to the
propensity of the reaction. As a consequence, the number of occurrences of a reaction with a high
rate will have a higher variance than that of a reaction with a small reaction rate.

By further assuming that the abundance of each species is high enough, the stochasticity can be
neglected, and the system is reduced to the Reaction Rate Equation (RRE) (El Samad et al., 2005;
Higham, 2008), that is a set of differential equations:

dX(t)

dt
=

M∑
j=1

vj · aj(X(t)) (A.8)

In this equation, the change per time unit in the concentration of a given species amounts to the
sum over all reactions of the change in the species abundance triggered by one firing of the reaction
(i.e. vj), weighted by the rate of the reaction (i.e. the probability that the reaction will fire in one
time unit, aj). As highlighted by Higham (2008), it is important to keep in mind that the solution
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of a deterministic model or RRE obtained by simplifying a stochastic model is not equivalent to an
average of many numerical realisations of the corresponding stochastic model. It is rather a limit
towards which these realisations tend when the different simplifying assumptions are fulfilled.

This connection between the stochastic and deterministic frameworks has been leveraged in the
case of multi-scale systems, which are systems in which both slow and fast reactions and/or both low-
and high-abundance species are present (El Samad et al., 2005). This situation can be encountered for
example when simulating gene expression and metabolic reactions in a single model. On one hand,
gene expression is a slow process involving genes that are present in only one or two copies per cell,
and TFs whose abundance can be as low as a dozen of molecules only. On the other hand, metabolic
reactions are fast enzyme-catalysed processes and involve highly abundant metabolic species. The
issue with such systems is that some but not all reactions could be represented by a deterministic
process, while the rest requires a stochastic modelling. In such cases, the SSA performs poorly
because of fast reactions and highly abundant species which monopolise most of the computational
time. On the opposite, deterministic models provide a poor approximation of slow reactions and
low abundant species. Several hybrid methods have hence been proposed. Their strategy is to split
reactions and/or species in two sets of slow and fast reactions/species, and to use the most appropriate
representation to model each set (see Pahle, 2009 for an overview of existing methods). This principle
notably underlies the slow-scale SSA algorithm (Cao et al., 2005). The interested reader is referred
to El Samad et al. (2005) and Pahle (2009) for more details.

A.3.3 Model simplifications

In addition to the mathematical framework they employ, existing simulators of expression data differ
by a number of assumptions they make. Indeed, while it is crucial to accurately represent biological
processes, our incomplete knowledge about the detailed mechanisms dictates the use of assumptions
and simplifications in the models. These simplifications also arise from the desired level of complexity
and the need for computational efficiency. An important aspect to consider when designing a model
is the type of molecules one wishes to represent. Early models were restricted to the simulation of the
transcript levels only (see Table A.1), and used the concentration of mRNAs as a proxy for the activity
of their protein product. Such an assumption was justified by the inability to experimentally measure
protein concentration (Di Camillo et al., 2009). However, as shown earlier in this chapter, a number
of regulations occur post-transcriptionally. This certainly impacts protein abundance and/or activity
without being reflected at the level of corresponding transcripts, except when the expression of a
coding gene is linked to the activity of its corresponding protein via a feedback circuit. In particular,
many studies revealed a generally weak not to say poor correlation between transcript and protein
profiles (Halbeisen et al., 2008; Vogel & Marcotte, 2012). Such results suggest the need for more
realistic models in which proteins are also included as the direct actors of transcription regulation.
Some models already include the protein level (see Table A.1). The inclusion of other regulatory
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Table A.1: Overview of existing methods of expression data simulation and their characteristics

Simulation
method

Network
topology

Mathematical
formalism

Simulated
molecules

Simulated
reactions

Mendes et al.,
2003

• Random
• Small-world
• Scale-free
• Regular grid

ODEs mRNAs
• Transcription (regulated, Hill
function)
• mRNA decay (1st order process)

Van den Bulcke
et al., 2006
- SynTReN

• Sampling from
source network

ODEs
(steady-state) mRNAs

• Transcription (regulated, Hill
and Michaelis-Menten functions)
• mRNA decay (1st order process)

Ribeiro et al.,
2007

- SGNSim
• User-defined

Time-delay
stochastic
model

Gene promoters,
mRNAs,
proteins,
RNA

polymerase,
ribosomes

• Transcription (different transcri-
ption rate for each promoter state)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes)

Roy et al., 2008
- RENCO

• Scale-free
(protein-protein
interaction)
• Exponential
degree distribution
(transcription
network)

ODEs mRNAs,
proteins

• Transcription (regulated, Hill
function)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes)

Di Camillo et al.,
2009

- NETSim

• Hierarchical
modular topo-
logy model

ODEs mRNAs
• Transcription (regulated, fuzzy
logic)
• mRNA decay (1st order process)

Haynes et al.,
2009

- GRENDEL

• Distinct in-
and out-degree
distribution

ODEs

mRNAs,
proteins,
environ-
ment

• Transcription (regulated, Hill
function)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes)

Hache et al.,
2009

- GeNGe

• Random
• Scale-free
• Regulatory motifs
• User-defined

ODEs

mRNAs,
proteins,

RNA polymerase,
ribosomes

• Transcription (regulated, Hill
function)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes or Michaelis-
Menten decays)

Schaffter et al.,
2011

- GeneNetWeaver

• Module extraction
from source network

Chemical
Langevin
Equation

mRNAs,
proteins

• Transcription (regulated, Hill
function)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes)

Pinna et al.,
2011

- SysGenSIM

• Random
• Scale-free
• Random modular
• Modular with
exponential in-degree
and power law out-
degree

ODEs
mRNAs,
cis- and

trans-eQTLs

• Transcription (regulated, Hill
function)
• mRNA decay (1st order process)

Tripathi et al.,
2017

- sgnesR
• User-defined

Time-delay
stochastic
model

Gene promoters,
mRNAs,
proteins

• Transcription (different transcri-
ption rate for each promoter state)
• Translation (1st order process)
• mRNA and protein decay (1st
order processes)
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molecules, and in particular the noncoding yet very likely regulatory (Holoch & Moazed, 2015;
Morris & Mattick, 2014; Wery et al., 2011) fraction of the transcriptome could also be an interesting
development. In addition, post-transcriptional regulations are traditionally overseen in expression
simulation methods. Accounting for them would result in an increased complexity of the underlying
mathematical models, but would pave the way for enhanced realism of simulated data.

Biological processes are not instantaneous. Time delays exists between for example transcription
initiation and the release of a fully functional mRNA ready to be translated. Such delays have been
mostly ignored, to the exception of SGNSim (Ribeiro & Lloyd-Price, 2007) (implemented in the R
package sgnesR (Tripathi et al., 2017)). These stochastic models use a version of the SSA that is
suited for the occurrence of delay in biochemical reactions. This can account for the time required
for the transcription of a gene as well as the diffusion of molecules across cellular compartments.
Additionally, spatial inhomogeneities can be considered. For example, one might want to include
in the model the different cellular compartments, to account for the fact that in eukaryotic cells the
synthesis of mRNA occurs in the nucleus, while their translation happens in the cytoplasm. This can
be done in a deterministic framework by using partial differential equations (de Jong, 2002).

A.3.4 Assigning values for model parameters

When simulating in silico expression data, it is important to carefully choose the values of the different
parameters in the model to obtain more plausible data. The initial abundance of each molecular
species and the different reaction rates determine the resulting level of expression for each gene.
It is crucial to use reasonable values in the range of those estimated from experimental datasets.
The same attention must be paid to the kinetic parameters that define the strength and amplitude
of regulation. This includes, for example, the Hill coefficients for a deterministic model, or the
binding and unbinding rates of the different TFs on the promoter for a stochastic model. This choice
is impeded by our limited knowledge about the precise kinetics of gene expression regulation (Bulcke
et al., 2006). However a number of experimental results provide insights into the dynamics of
the different molecular reactions, at least for some model organisms (Belle et al., 2006; Vogel &
Marcotte, 2012). The global distribution of the lifetime of transcripts and proteins, for example, is
starting to be well-characterized across the different domains of life. The order of magnitude of
transcription and translation rates are also available. In Milo & Phillips (2016), Milo and Phillips
gather relevant quantitative pieces of information about different biological processes, from cell
component typical size estimates to the rates of transcription, translation or metabolic reactions. The
associated database, BioNumbers (Milo et al., 2009), allows to search the literature for quantitative
properties of biological systems. This is a valuable tool for modellers who seek realistic values
for model parameters. Additionally, during the model construction it can be useful to conduct a
sensitivity analysis to ensure that slight variations in parameter values do not produce completely
different and/or surrealistic system behaviours.
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Despite the increasing availability of quantitative knowledge regarding gene expression, to the
best of our knowledge, none of the existing simulation tools presently offer a rigorous justification of
the values used in their model. The parameters are usually sampled from large distributions to allow a
wide variety of possible dynamical behaviour (e.g. from quasi-linear to step-like regulatory functions)
(Bulcke et al., 2006; Di Camillo et al., 2009). Alternatively, parameter values can be required as input
from the user, as it is the case in Ribeiro & Lloyd-Price (2007), Hache, Wierling, et al. (2009) or
Tripathi et al. (2017). However the choice of values in the model often seem arbitrary (Mendes et al.,
2003; Pinna et al., 2011; Roy et al., 2008; Schaffter et al., 2011). An interesting approach has been
proposed by Haynes & Brent (2009). In their model, the transcription, translation, transcript and
protein decay rates are sampled from values experimentally measured for real genes in S. cerevisiae.
It should be noted however that this limits the validity of the simulations to this organism. Moreover,
this approach is only possible for well-characterized model organisms for which abundant and reliable
quantitative information is available.

In conclusion, it is important to anchor the mathematical RNA models in the biological reality
not only via the represented molecules and interactions, but also through the quantitative information
which is used to simulate the different reactions involved in gene expression.

A.3.5 Experimental noise in in silico data

Even though the results of transcriptomics and other omics experiments provide an estimation of
transcripts or other molecules level, they do not exactly reflect their precise in vivo abundance. Each
step of the sample preparation process introduces to some extent bias in the quantitative estimation of
the molecular concentrations. Such bias in turn impedes our ability to detect correlation between
molecular profiles, or introduces spurious correlations, and needs to be accounted for when developing
a reverse engineering approach. Consequently, when assessing the performance of such methods, it
is important to test their robustness against increasing level of noise in the data.

Accordingly, several pipelines of data simulation include a step to add experimental noise in the
resulting simulated expression profiles to mimic errors and bias introduced by the used measurement
technology (Bulcke et al., 2006; Hache, Wierling, et al., 2009; Haynes & Brent, 2009; Mendes et al.,
2003; Pinna et al., 2011; Schaffter et al., 2011). This step is particularly relevant for deterministic
models, which produce data deprived of both biological and experimental noise. On the opposite,
stochastic models already introduce some kind of variability in the dynamic profiles. The generation
of in silico experimental noise is often based on models linking the measured intensity obtained
with a particular technology (e.g. microarray or RNASeq; Lowe et al., 2017) to the true underlying
concentration (Irizarry et al., 2005; Rocke & Durbin, 2001; Stolovitzky et al., 2007). Alternatively,
a simple Gaussian noise can be added to the simulated data to introduce variation in order to blur
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existing correlations among molecular profiles (Hache, Wierling, et al., 2009; Mendes et al., 2003;
Pinna et al., 2011; Schaffter et al., 2011). Mendes et al. proposed to use a Gamma distribution for
experimental noise, as microarray data are often found to display a non-Gaussian noise and as the
Gamma distribution is not centred around its mean.

A.4 Concluding remarks

Biological systems are characterized by great complexity. From a systems perspective, regulatory
networks are shaped according to specific properties that can be described mathematically. From a
mechanistic perspective, gene expression is regulated at each step of the lifetime of the different gene
products, that are transcripts and proteins. Their synthesis, activity and decay is tightly controlled by a
vast array of factors ranging from proteins to noncoding transcripts and small molecules. Additionally,
these processes are affected by an inherent stochasticity which induces variability in the molecular
profiles. Statistical models provide a rich framework to represent this complexity, and it is now
possible to generate in silico graphs resembling real networks, or to simulate biologically plausible
noisy dynamic expression data. A statistical model must be carefully designed to accurately reflect
the underlying processes, as for example determining the list of regulators of a molecule, quantifying
the effect of regulatory factors, or assigning a value to the different reaction rates or other parameters.

In this chapter, we particularly focused on the use of GRN models for the simulation of expression
data that can serve as benchmark for the testing of network inference algorithms. Indeed it is important
that these simulations provide realistic data to allow researchers to draw meaningful conclusions
about the performances of reverse engineering methods. However, beyond the problem of simulating
expression data, all the identified regulatory relationships allow the modeller to account for a fine
description of the underlying biological mechanisms, when such a level of detail is required.

We know that all models presume to a greater or lesser extent a simplification of the underlying
biology. As we have shown in this chapter, most simulation models currently consider transcription
regulation only, and exclude noncoding RNAs and possibly even proteins. While these simplifications
can be justified by our insufficient knowledge about the processes at play or by computational
limitations, it results in inadequate models as they overlook the complexity of gene regulation. We
would however like to moderate this desire for increasingly detailed models that could be more
indicative of the underlying biological and technical influences in the data. Indeed, they allow a great
flexibility in the inferred interactions, but this can become problematic and result in overfitting and
in the detection of spurious regulations. The need for a trade-off calls for the use of additional data
for the reverse engineering problem as well as advanced statistical tools accounting for the missing
information.
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Figure B.1: RNA and protein abundance of the genes (one colour per gene) over time generated by sismonr, for 100 runs of the simulation. Each line
corresponds to one simulation run.
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Figure B.2: RNA and protein abundance of the genes (one colour per gene) over time generated by sismonr, for one simulation run.
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Table B.1: Values used for the transcription, translation, RNA decay and protein decay rates for the different genes in the simulation performed to
compare sismonr and sgnesR.

Gene Transcription rate Translation rate RNA decay rate Protein decay rate RNA initial abundance Protein initial abundance

Gene 1 0.0015407 0.0247583 0.0003701 0.0005110 3 199
Gene 2 0.0014541 0.0152301 0.0008441 0.0002479 2 110
Gene 3 0.0028237 0.0602271 0.0007811 0.0002235 7 1012
Gene 4 0.0003567 0.0612851 0.0002420 0.0011264 2 79
Gene 5 0.0068384 0.0218403 0.0005804 0.0002033 12 1265
Gene 6 0.0014414 0.1178600 0.0014721 0.0002441 2 451
Gene 7 0.0012738 0.3539754 0.0009573 0.0003174 0 1477
Gene 8 0.0017283 0.0057417 0.0005600 0.0002848 4 80
Gene 9 0.0007242 0.1481256 0.0006750 0.0012476 3 124
Gene 10 0.0041457 0.1001083 0.0007304 0.0004520 4 1326
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Abstract

Summary: We present sismonr, an R package for an integral generation and simulation of in silico
biological systems. The package generates gene regulatory networks, which include protein-coding
and non-coding genes along different transcriptional and post-transcriptional regulations. The effect
of genetic mutations on the system behaviour is accounted for via the simulation of genetically
different in silico individuals. The ploidy of the system is not restricted to the usual haploid or
diploid situations, but can be defined by the user to higher ploidies. A choice of stochastic simulation
algorithms allows us to simulate the expression profiles of the genes in the in silico system. We
illustrate the use of sismonr by simulating the anthocyanin biosynthesis regulation pathway for three
genetically distinct in silico plants.

Availability: The sismonr package is implemented in R and Julia, and is publicly available on
the CRAN repository (https://CRAN.R-project.org/package=sismonr). A detailed tutorial
is available from GitHub at https://oliviaab.github.io/sismonr/.

Contact: m.vignes@massey.ac.nz

Introduction

In the past three decades, our approach to biological systems has shifted from a molecule-centric to a
holistic point of view. Consequently, statistical and computational tools were developed to extract
knowledge about biological networks and gene interactions from experimental gene expression data
(Markowetz & Spang, 2007). Such inference tools require careful evaluation of their performance.
This can be done by analysing reference experimental datasets and comparing the results to existing
biological knowledge e.g. (e.g. Simoes et al., 2013), with the downside that such knowledge is often
incomplete and/or biased. On the other hand, the use of simulated datasets as benchmarks ensure that
the inferred networks can be compared to the indisputable network used to generate the data. Such
approach has notably been used for the DREAM challenges (Marbach et al., 2010).

A number of simulation algorithms to generate in silico regulatory networks and simulate the
expression profile of their genes have been proposed (e.g. Ribeiro & Lloyd-Price (2007), Pinna et
al. (2011) - for a recent review see Angelin-Bonnet et al. (2019)). However, such simulators rely
on simplified models of gene regulation that overlook most of the complexity inherent to biological
systems. Here, we propose sismonr, an R package that generates and simulates holistic in silico
systems. sismonr offers a significant improvement over existing simulators by including in one
tool the ability to model non-coding genes (i.e. encoding regulatory RNAs), regulatory complexes,
genetic mutations, unrestricted ploidy beyond the commonly considered haploid or diploid situation
and different types of regulatory interactions ranging from transcriptional regulation to protein post-

https://CRAN.R-project.org/package=sismonr
https://oliviaab.github.io/sismonr/
mailto:m.vignes@massey.ac.nz
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translational modification. We use a stochastic framework for the simulation of gene expression
to account for intrinsic biological noise. In Supplementary Material 1, we provide an overview of
existing methods for generating and simulating synthetic regulatory networks, and compare their
performance to those of our package. With this more complete model of the gene expression regulation
process, we come one step closer to simulating realistic in silico biological systems.

C.1 Methods: biological system data simulation

The sismonr workflow consists of three main steps. First, the function createInSilicoSystem()
generates an in silico system. A list of genes is constructed, and each of them is assigned a biological
function, which dictates the type of regulation that they exert on their targets. Source-target regulatory
relationships are defined via a gene regulatory network (GRN). This GRN comprises five different
types of interactions or edges: regulation of transcription, translation and RNA decay, protein decay
and protein post-translational modification. The out-degree of each regulator is sampled from either
a power-law or an exponential distribution (see for example Guelzim et al., 2002) whose parameters
can be controlled by the user. Edges are then added following a preferential attachment scheme to
shape the in-degree distribution of the genes as a power-law. In addition, genes controlling a similar
target can exert their regulatory role through the formation of a regulatory complex. The different
kinetic parameters in the system are sampled from distributions set by the user or default distributions
providing biologically realistic sets of values.

Second, to model the impact of genetic variation on gene expression profiles, the function
createInSilicoPopulation() generates a population of genetically diverse in silico individuals. Rather
than modelling directly the genome sequence of each individual, we represent the genetic mutations
by their quantitative impact on the genes’ properties. We consider cis-mutations, which directly affect
the expression of a gene (e.g. its basal transcription or translation rate) as well as trans-mutations,
which do not impact the expression of a gene but only the function or activity of its products (Pinna
et al., 2011). To generate the in silico individuals, we first create a list of the variable gene alleles in
the population. We then sample for each individual, according to the ploidy of the system, one or
more homologs of each gene in this list of alleles.

Third, the user can choose between several versions of the Stochastic Simulation Algorithm
(Gillespie, 2007; Wilkinson, 2012) to simulate the abundance of different molecules (RNAs, be they
coding or non-coding, and proteins) over time for each individual, with the simulateInSilicoSystem()
function. In order to simulate the expression of the genes in the system, we transform the GRN into a
stochastic model, i.e. a list of species and a list of biochemical reactions with associated rates (see
Figure C.1). We simulate transcription and translation regulation events by modelling the binding and
unbinding of the regulators to and from their binding site on the target DNA or RNA, respectively.
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Each regulator has the capacity to bind to a specific binding site on the target. The transcription or
translation of the target then occurs with a rate depending on whether or not the binding sites are
bound to their regulators. If bound, a regulator imposes a multiplicative fold change on the basal
transcription or translation rate of the genes. For RNA and protein decay regulation, as well as
for post-translational modification, the encounter of a regulator molecule and its target triggers the
reaction at a certain rate. The natural and regulated decay of the different molecules occur even if
they are bound by regulators, to targets or in complexes. As genes can be present in more than one
copy in the system, the homolog of origin of the different molecules is tracked. This allows the user
to compare the expression of the different homologs of a same gene. Note that these homologs can
be identical, or can be different alleles of the genes, i.e. different versions of the gene with distinct
properties. Details on the implementation of each step of the sismonr algorithm are presented in
Supplementary Material 2.

C.2 Implementation

The sismonr package is implemented in R and Julia. The main R functions call efficient Julia code
via the R package XRJulia (Chambers, 2016). For stochastic simulations, sismonr uses the Julia
module BioSimulator (Landeros et al., 2018), which implements different exact and approximate
versions of the Stochastic Simulation Algorithm. A tutorial describing all functionalities of the
package, including advanced visualisation tools, is available at https://oliviaab.github.io/
sismonr/%7D%7Bhttps://oliviaab.github.io/sismonr/.

C.3 Examples

In SupplementaryMaterial 3, we detail several examples of the use of sismonr. This file also presents
the code necessary to reproduce the examples. We start by showing how to create a simple regulatory
network that exemplifies the different types of possible regulatory interactions. We then provide a
small signal transduction cascade network to show the importance of modelling post-translational
modifications. In order to demonstrate the ability of sismonr to model regulatory complexes and
genetic mutations, we reproduce an in silico implementation of the experiments on the modelling the
anthocyanin biosynthesis regulation (colour) pathway of different mutant plants (Albert et al., 2014).
Lastly, we present the simulation of a system of 50 genes comprising protein-coding and non-coding
genes, and transcription as well as post-transcriptional regulation. We also show that we can compare
the expression of different homologs of a same gene.

https://oliviaab.github.io/sismonr/%7D%7Bhttps://oliviaab.github.io/sismonr/
https://oliviaab.github.io/sismonr/%7D%7Bhttps://oliviaab.github.io/sismonr/
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Figure C.1: Stochastic model of the different types of expression regulation. For transcription and
translation regulation, the regulator j binds and unbinds to and from its binding site on its target
i (DNA for transcription regulation and RNA for translation regulation) with rates brji and urji
respectively. Without a bound regulator, the transcription or translation of the gene i occurs at its
basal rate (TCri for transcription, TLri for translation). When the regulator is bound, the rate of
transcription or translation of its target is multiplied by the induced expression fold-change FCji. For
RNA decay, protein decay and protein post-translational modification, the encounter of a regulator
and its target triggers the decay or transformation of its target with rate rji. Each rate is uniquely
sampled for each regulation in the network.

Conclusion

We present sismonr, an R package for the generation and the simulation of in silico biological
systems. sismonr simulates the expression profiles of the genes linked via a regulatory network.
Importantly, our model allows (i) to model five different types of expression regulation common in
biological systems, expending the simulation of GRNs beyond the commonly considered transcription
regulatory networks, (ii) to consider multiple ploidies, and (iii) to include regulation via non-coding
RNAs. The package can be used to generate benchmark datasets for the evaluation of network
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inference methods. As the algorithm provides the abundance of both RNAs (coding and non-coding)
and proteins, and models the impact of genetic variations, the benchmark datasets can also be used to
validate multi-omic integration methods.
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library(sismonr)

library(tidyverse)

Introduction

This document presents some examples of the use of sismonr. We start with simple examples
illustrating important features of sismonr. We note that unless values are provided for the different
kinetic parameters, these are sampled from distributions, and hence will differ when reproducing
these examples. An extensive tutorial detailing the use and parameters of each sismonr function is
available at https://oliviaab.github.io/sismonr/.

D.1 Example 1: Post-transcriptional regulation in a 10-gene system

One of the major improvements of sismonr over existing simulators is the ability to generate and
simulate regulatory networks including post-transcriptional regulation. This is important especially
when using the generated datasets as benchmarks for network reconstruction methods, as post-
transcriptional regulation alters the pattern of correlation between the RNA and protein profiles of the
genes. Here we illustrate with a very simple example how the different types of regulation modelled
by sismonr affect the expression profiles of target genes.

In this first example, we generate a system of 10 protein-coding genes. Genes 1 to 5 are each
targeted by a different type of expression regulation. Genes 6 to 10 each regulate the expression of
one of the target genes. This example illustrates how easily the user can create a personalised network,
notably with the functions addGene() and addEdge() to add genes and regulatory interactions,
respectively, to an existing network.

https://oliviaab.github.io/sismonr/
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## create a system of 5 protein-coding genes, no regulation

## PC.p is the probability of each gene to be protein-coding

system_regs = createInSilicoSystem(G = 5, PC.p = 1, empty = T)

## Each possible type of regulation:

## TC: transcription regulation

## TL: translation regulation

## RD: RNA decay regulation

## PD: Protein decay regulation

## PTM: Protein post-translational modification

regs = c("TC", "TL", "RD", "PD", "PTM")

for(i in 1:length(regs)){

## Add a new protein-coding gene with a specific biological

##function as defined in the vector regs

system_regs = addGene(system_regs,

coding = "PC",

TargetReaction = regs[i])

## Add an activating edge from this new gene to a target gene

system_regs = addEdge(system_regs,

5 + i,

i,

regsign = "1")

}

The generated network can easily be visualised with the plotGRN() function of sismonr:

## Plot the regulatory network

plotGRN(system_regs, edge.arrow.size = 0.8)
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We simulate the expression profiles of the genes for one in silico individual. The system is
simulated for 1000s.

## We'll run only one simulation of one individual

pop_regs = createInSilicoPopulation(1,

system_regs,

initialNoise = F)

## Simulate the system for this individual

sim_regs = simulateInSilicoSystem(system_regs,

pop_regs,

simtime = 1000)

By default, sismonr generates diploid systems, i.e. there are two copies or homologs of each
gene in the system. Since the two homologs can be two different alleles (i.e. carrying different genetic
mutations), sismonr tracks the homolog of origin of each molecule. This is represented in the output
of the simulation by the GCN identifier:

head(sim_regs$Simulation[, 1:10])

For example, the column R5GCN2 corresponds to gene 5’s RNAs, arising from the second homolog
of the gene. However in this example we are not interested in the homolog of origin of the RNAs or
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time trial R5GCN2 P5GCN2 Pm5GCN2 R7GCN2 P7GCN2 R3GCN1 P3GCN1 R1GCN2

0 1 3 620 0 5 256 2 88 3
1 1 3 620 0 5 256 2 88 3
2 1 3 619 0 5 256 2 88 3
3 1 3 618 1 5 256 2 88 3
4 1 3 617 3 5 256 2 88 3

5 1 3 617 3 5 256 2 88 3

proteins, so we can merge the abundance of molecules coming from two homologs of a same gene:

## Merge the abundance of molecules coming from

## the two homologs of each gene

simres = mergeAlleleAbundance(sim_regs$Simulation)

head(simres[, 1:10])

time trial Ind R5 P5 Pm5 R7 P7 R3 P3

0 1 Ind1 4 1137 0 9 493 5 148
1 1 Ind1 4 1137 0 9 495 5 148
2 1 Ind1 4 1136 0 9 495 5 148
3 1 Ind1 4 1135 1 9 495 5 148
4 1 Ind1 4 1133 4 9 495 5 148

5 1 Ind1 4 1133 4 9 496 5 148

Now the column R5 corresponds to gene 5’s RNAs arising from either homolog of the genes.

We can see the impact of each type of regulation on the expression profile of the target genes.
Note that sismonr provides a function for visualising the results of the simulation, but the following
plot is used instead here for better emphasis of the difference between each type of regulation. The
sismonr simulation visualisation feature will be demonstrated later.
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In the plot above, for each type of regulation, the RNA and protein abundance of the regulator
gene are represented by the darker line, while those of the target are represented by a lighter line. As
we can see clearly, each type of regulation affects a different step of the target expression. As gene
6 activates the transcription of gene 1, the RNA abundance of the latter increases over time. In the
case of translation regulation, the RNA abundance of the target gene 2 remains constant while its
protein abundance increases over time. Interestingly, the regulation of RNA decay of gene 3 also
triggers the decrease of its protein levels, as there are no RNAs left to translate. On the contrary,
regulation of protein decay does not impact the RNAs of the target gene 4. Lastly, gene 10 targets
the proteins of gene 5 for post-translational modification. We can hence see the modified version of
the protein (represented by a dotted line) appearing in the system. The ability of sismonr to model
post-translational modification of proteins allows the user to simulate signal transduction within a
regulatory network, as we illustrate below.
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D.2 Example 2: A small transduction network

In this example we model a small transduction network, similar to phosphorylation cascades found
in eukaryotes. Upon activation (beginning of the simulation), gene 5 is expressed, and produce
proteins that target gene 4’s proteins for post-translational modification. Once modified, gene 4’s
proteins in turn modify the proteins produced by gene 3. Similarly, modified versions of gene
3’s proteins target gene 2’s proteins for post-translational modification. The latter can then form
homodimers termed CTC1 that activate the expression of the target gene 1. Again, we use the
functions createInSilicoSystem(), addGene() and addEdge() to create and modify an in silico
system.

## Start with a system with only 1 gene (the target gene)

## empty = TRUE ensures that the returned system contains

## no regulatory interaction

system_cas = createInSilicoSystem(G = 1,

PC.p = 1,

empty = TRUE)

## Add a transcription factor activating the expression

## of the first gene as a homodimer:

## creating gene 2

system_cas = addGene(system_cas,

coding = "PC",

TargetReaction = "TC")

## creating homodimer of gene 2's proteins

system_cas = addComplex(system_cas, c(2, 2))

system_cas = addEdge(system_cas, "CTC1", 1,

regsign = "1",

kinetics = list("TCfoldchange" = 20))

## Add the post-translational modification cascade

for(i in 3:5){

system_cas = addGene(system_cas,

coding = "PC",

TargetReaction = "PTM")

system_cas = addEdge(system_cas,

i,

i-1,
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regsign = "1")

}

plotGRN(system_cas)
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Again, we simulate the pathway for one in silico individual, over 10,000 seconds. We repeat the
simulation 10 times (ntrials = 10).

pop_cas = createInSilicoPopulation(1, system_cas, ngenevariants = 1)

## nepochs = number of measurements returned

sim_cas = simulateInSilicoSystem(system_cas, pop_cas,

simtime = 10000,

nepochs = 100000,

ntrials = 10)

We use the simulation visualisation feature of sismonr to plot the expression profile of the genes
over time, as curves with the function plotSimulation() and heatmaps with plotHeatMap(). In
the fist case, the legend indicates which colour is associated to each gene and under which form the
gene products can be found (here all genes are protein-coding so there exists a RNA and protein
form for each of them). The modified versions of the different proteins are termed PTM. The solid
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lines represent the mean molecule abundance over the 10 simulations at each time-point, while the
coloured areas denote the minimum and maximum values observed over the 10 simulations.

plotSimulation(sim_cas$Simulation, mergePTM = F)

plotHeatMap(sim_cas$Simulation, mergePTM = F, VirPalOption = "viridis")
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From the graphs, we can see that as soon as the pathway is activated (begining of the simulation),
modified proteins of gene 4 are created (PTM4 - pink line). They in turn trigger the modification
of gene 3’s proteins (PTM3 - purple line), that target gene 2’s proteins for modification (PTM2 -
dark blue line). The latter can then form homodimers CTC1 (CTC1_Pm2_Pm2 – cyan line). The
complexes activate the transcription of target gene 1 (red line), whose RNA levels start increasing
arount t = 5000s.

D.3 Example 3: The anthocyanin biosynthesis regulation pathway

We next illustrate the modelling of genetic mutations and regulatory complexes by simulating the
anthocyanin biosynthesis regulation pathway of Eudicots (Albert et al., 2014). Anthocyanin are
pigments providing coloration to plants, flowers and fruits. (Albert et al., 2014) present the regulatory
pathway controlling the expression of genes encoding enzymes responsible for the biosynthesis of
anthocyanin in Eudicot plants (Figure D.1). Upon inductive conditions, the MYB gene is expressed,
and the encoded proteins bind the proteins of the constitutively expressed genes WDR and bHLH1 to
form a regulatory complex denoted MBW1. This complex activates the expression of the bHLH2
gene, whose protein also associates with the MYB and WDR proteins to form a second regulatory
complex MBW2. This second regulatory complex reinforces the transcription of the bHLH2 gene,
and activates the expression of the genes encoding enzymes involved in anthocyanin biosynthesis,
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here illustrated by the DFR gene. In addition, the MBW2 complex activates the expression of two
repressor genes, R3-MYB and MYBrep. The former passively represses the production of MBW1
and MBW2 complexes by competitively binding the bHLH1 and bHLH2 proteins, while the later
binds the MBW2 complex to form a repressive complex MBWr. This repressive complex silences the
expression of the MBW2 targets, i.e. the bHLH2, DFR, MYBrep and R3-MYB genes. (Albert et al.,
2014) compared the expression of the genes in the pathway for wild-type petunias, mutant petunias
in which the MYBrep gene was overexpressed, and mutants in which the MYBrep gene was silenced.
Here we reproduce their experiment in silico by simulating this regulation pathway with sismonr.
We note that in absence of information about the values of the different kinetic parameters, we set the
different parameters to reasonable values, that are justified in the section D.5.

## Gene ID - name correspondence

genes.name2id = data.frame("ID" = as.character(1:7),

"name" = c("MYB", ## 1

"bHLH1", ## 2

"WDR", ## 3

"bHLH2", ## 4

"MYBrep", ## 5

"R3-MYB", ## 6

"DFR"), ## 7

Figure D.1: Schema of the anthocyanin biosynthesis regulation pathway as presented in Albert et al.,
2014
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stringsAsFactors = F)

## Complex ID - name correspondence

complexes.name2id = data.frame("ID" = paste0("CTC", 1:5),

"name" = c("MBW1", ## CTC1

"MBW2", ## CTC2

"MBWr", ## CTC3

"R3-bHLH1", ## CTC4

"R3-bHLH2"), ## CTC5

stringsAsFactors = F)

id2names = c(genes.name2id$name, complexes.name2id$name)

names(id2names) = c(genes.name2id$ID, complexes.name2id$ID)

## ----------------------------- ##

## Creating the in silico system ##

## ----------------------------- ##

## We create a system with 7 genes, and no regulatory

## interactions (they will be added manually)

colsystem = createInSilicoSystem(empty = T,

G = 7,

PC.p = 1,

## all genes are regulators of transcription:

PC.TC.p = 1,

PC.TL.p = 0,

PC.RD.p = 0,

PC.PD.p = 0,

PC.PTM.p = 0,

PC.MR.p = 0,

ploidy = 2)

## Changing the kinetic parameters of the genes

colsystem$genes$TCrate = c(5, 0.1, 0.5, 0.01, 0.01, 0.1, 0.5)

colsystem$genes$TLrate = c(0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.001),

colsystem$genes$RDrate = c(0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01),

colsystem$genes$PDrate = c(0.01, 0.001, 0.001, 0.001,

0.001, 0.001, 0.001)
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## Adding regulatory complexes in the system

compo = list(list("compo" = c(1, 2, 2, 3),

"formationrate" = 1, "dissociationrate" = 0.1),

list("compo" = c(1, 3, 4,4),

"formationrate" = 2, "dissociationrate" = 0.1),

list("compo" = c("CTC2", 5),

"formationrate" = 2.5, "dissociationrate" = 0.1),

list("compo" = c(2, 6),

"formationrate" = 1.5, "dissociationrate" = 0.1),

list("compo" = c(4, 6),

"formationrate" = 1.5, "dissociationrate" = 0.1))

for(comp in compo){

colsystem = addComplex(colsystem,

comp$compo,

formationrate = comp$formationrate,

dissociationrate = comp$dissociationrate)

}

## Adding regulatory interactions in the system

interactions = list(list("edge" = c("CTC1", 4),

"regsign" = "1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2,

"TCfoldchange" = 25)),

list("edge" = c("CTC2", 4),

"regsign" = "1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2,

"TCfoldchange" = 25)),

list("edge" = c("CTC2", 5),

"regsign" = "1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2,

"TCfoldchange" = 50)),

list("edge" = c("CTC2", 6),

"regsign" = "1",
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"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2,

"TCfoldchange" = 50)),

list("edge" = c("CTC2", 7),

"regsign" = "1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2,

"TCfoldchange" = 15)),

list("edge" = c("CTC3", 4),

"regsign" = "-1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2)),

list("edge" = c("CTC3", 5),

"regsign" = "-1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2)),

list("edge" = c("CTC3", 6),

"regsign" = "-1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2)),

list("edge" = c("CTC3", 7),

"regsign" = "-1",

"kinetics" = list("TCbindingrate" = 0.1,

"TCunbindingrate" = 2)))

for(inter in interactions){

colsystem = addEdge(colsystem,

inter$edge[1],

inter$edge[2],

regsign = inter$regsign,

kinetics = inter$kinetics)

}

## ---------------------------------- ##

## Creating the in silico individuals ##

## ---------------------------------- ##
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## We are going to simulate three different individuals/plants

## One is a wild-type plant (no mutation in any of its genes).

## The second is a mutant, in which gene 5 (the MYBrep gene)

## is overexpressed (here we increase its transcription rate by 50 +

## the gene becomes insensitive to transcription factors).

## The third is a mutant in which gene 5 (the MYBrep gene) is

## silenced (in the experiments the gene is silenced via RNA

## silencing, which increases the decay of the RNAs of the gene,

## which is what we are reproducing here).

plants = createInSilicoPopulation(3,

colsystem,

initialNoise = F,

ngenevariants = 1)

## We add the QTL effect coefficients for the second individual

## such that the transcription rate of gene 5 is increased +

## the gene becomes insensitive to transcription factors

## (qtlTCregbind set to 0.)

## We have to change it for both homologs of the gene (GCN1 and GCN2)

## as the plants are diploid.

plants$individualsList$Ind2$QTLeffects$GCN1$qtlTCrate[5] = 50

plants$individualsList$Ind2$QTLeffects$GCN2$qtlTCrate[5] = 50

plants$individualsList$Ind2$QTLeffects$GCN1$qtlTCregbind[5] = 0

plants$individualsList$Ind2$QTLeffects$GCN2$qtlTCregbind[5] = 0

## We add the QTL effect coefficient for the second individual

## such that the RNA decay rate of gene 5 is increased

plants$individualsList$Ind3$QTLeffects$GCN1$qtlRDrate[5] = 12

plants$individualsList$Ind3$QTLeffects$GCN2$qtlRDrate[5] = 12

## Changing the initial conditions:

## As specified in Albert et al., 2014, only genes 2 and 3

## (bHLH1 and WDR) are constitutively expressed.

for(g in names(plants$individualsList$Ind1$InitAbundance)){

for(i in names(plants$individualsList)){

plants$individualsList[[i]]$InitAbundance[[g]]$R =
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plants$individualsList[[i]]$InitAbundance[[g]]$R *

c(0, 1, 1, 0, 0, 0, 0)

plants$individualsList[[i]]$InitAbundance[[g]]$P =

plants$individualsList[[i]]$InitAbundance[[g]]$P *

c(0, 1, 1, 0, 0, 0, 0)

}

}

## --------------------------------------------------------------- ##

## Simulating the expression profiles of the genes for both plants ##

## --------------------------------------------------------------- ##

sim = simulateParallelInSilicoSystem(colsystem,

plants, 2000,

nepochs = 2000,

ntrials = 100)

The running time for 100 repetitions of the simulation (stochastic system: 534 species, 3688
reactions) for the three individuals is around 90 minutes on a Virtual Machine Ubuntu 18.04 LTS
64-bit, 9.8 GiB RAM, 4 Intel Core i7-7700 CPU 3.60GHz cores (using parallelisation on three
cores). The results of the simulation are shown in Figure D.2, and clearly illustrate the differences in
expression profiles of the three types of in silico plants. In the wild-type plant, the rapid transcription
and translation of the MYB gene (green) leads to the rapid formation of MBW1 complexes (orange),
that in turn activate the transcription of the BHLH2 gene (dark blue). This allows the creation of
MBW2 complexes (purple) that activate the transcription of the DFR gene (red). The MYBrep gene
(in cyan) is also transcribed, but the synthesised proteins immediately bind the MBW2 complexes to
form the MBWr complexes (lime).

The MYBrep-overexpressed mutant, as expected, shows increased expression of the MYBrep
gene. In response, the expression of bHLH2 is more strongly repressed compared to the wild type
plant. This lead to decreased levels of MBW2 complexes as all available complexes are immediatly
bound by MYBrep proteins. The result is a lower expression of the DFR gene, leading to decreased
levels of DFR enzymes. As these enzymes are responsible for the biosynthesis of anthocyanin, we
can assume that a decrease in their abundance leads to a lower amount of anthocyanin and hence a
reduced pigmentation, as observed in the experiment.

On the contrary in the MYBrep-silenced mutant, levels of MYBrep are lower than in the wild-type
plant (as expected). Hence there is less feedback regulation for the expression of the bHLH2, DFR and
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Figure D.2: Simulation of the anthocyanin biosynthesis regulation pathway. Note that this plot is
similar to the plot automatically created with the sismonr function plotSimulation(). In this plot
the name of each gene was used in the legend for better visualisation and the colour used for each
gene and complex was matched to the pathway schema in Figure D.1.

R3-MYB genes, leading to an increased accumulation of DFR proteins and thus more pigmentation
in the plants, as observed in the experiment.

In addition to observing colouration phenotypes, the authors also measured the RNA concentration
of the different genes in the pathway for wild-type and mutant plants. In Table D.1 we present for each
gene the experimental (i.e. as presented in (Albert et al., 2014)) and simulated mutant vs wild-type
RNA concentration ratios for the different genes. Simulated ratios were computed at t = 2000s
of the simulation to ensure that all RNA abundances reached a steady-state. It must be noted that
the different kinetic parameters used in the simulation have not been optimised to reproduce the
experimental results. Thus, we cannot expect to reproduce these ratios faithfully. However we can see
that with reasonable values for the different parameters, we can obtain in silico values approaching
the experimental observations. As expected, the RNA abundance of MYBrep gene is higher in the
MYBrep-overexpressed mutant plant than in the wild-type plant (OE/WT ratio > 1), and lower in
the MYBrepsilenced mutant plant (Si/WT ratio < 1). For the MYBrep-overexpressed mutant, the
simulated ratio for MYBrep abundance is lower than what was measured experimentally. This arises
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Table D.1: Experimental and simulated RNA ratios of the different genes in the anthocyanin biosyn-
thesis pathway between each mutant plant and the wild-type plant.

Gene Gene name in
petunia

Experimental
OE/WT ratio

Simulated
OE/WT ratio

Experimental
Si/WT ratio

Simulated
Si/WT ratio

WDR AN11 1.56 1.01 3.12 1.00
MYB PHZ 1.17 1.01 1.00 1.00
bHLH1 JAF13 0.90 1.01 0.70 0.99
bHLH2 AN1 0.11 0.10 2.17 1.59
MYBrep MYB27 40.00 7.23 0.33 0.28

R3-MYB MYBx 0.05 0.04 33.33 3.00
DFR DFR 0.10 0.13 3.30 2.98

from our choice to limit the increase in MYBrep transcription for the mutant plant, for visualisation
purposes. However, any further increase in MYBrep transcription will lead to similar results for
downstream genes as the repressor is already in excess in the system. For the MYBrep-silenced
mutant individual, we chose values for the kinetic parameters related to the MYBrep mutation such
that the simulated Si/WT ratio for MYBrep is close to the experimental ratio, in order to observe the
effects of a similar reduction in MYBrep concentration.

In the simulation, we observe OE/WT and Si/WT ratios of one for the WDR, MYB and bHLH1
genes. This is because in the system the MYBrep repressor does not impact (directly or indirectly) the
expression of these genes. These ratios are found experimentally to be different from one, suggesting
that a change in MYBrep transcription does impact the expression of these genes. This finding hints
at a possible direct or indirect regulation of the WDR, MYB and bHLH1 genes by MYBrep, as
suggested in (Chen et al., 2019).

As was observed experimentally, the simulations demonstrate that an increase in MYBrep ex-
pression leads to a decrease in bHLH2 expression, and conversely a decrease in MYBrep expression
results in an increase in bHLH2 expression. This is in accordance with the fact that MYBrep represses
the expression of bHLH2 via MBWr complexes. An effect of similar magnitude is observed both
experimentally and in silico for the expression of the DFR gene.

While the simulation is able to correctly reproduce a decrease in R3-MYB transcription when
increasing the MYBrep expression with an amplitude similar to what is observed experimentally, it
appears that a reduction in MYBrep levels lead to a drastic augmentation of R3-MYB RNA levels,
beyond what the simulation was able to predict. This can be due to an incorrect parametrisation of
the system or an additional regulation affecting R3-MYB that was not described in the pathway.
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D.4 Example 4: A system of 50 genes

Previous examples showed how sismonr can be used to model and simulate custom networks.
However, sismonr can also generate random synthetic networks, whose properties can be controlled
by the user. In particular, it is possible to control the probability of each gene to be protein-coding
or non-coding, and their probability to control a specific step of the expression of their target. As
an example, we generate here a network of 50 genes. We show here that it is possible to specify the
probability of each gene to perform a specific regulatory function; moreover these probabilities can
be defined separately for protein-coding and non-coding genes. If no value is provided by the user,
default values are used, as it is the case here for the biological function probabilities for non-coding
genes.

system_g50 = createInSilicoSystem(G = 50, ## 50 genes

## When created, each gene as a probability of 0.7 of

## being protein-coding:

PC.p = 0.7,

## probability of protein-coding genes to be regulators

## of transcription:

PC.TC.p = 0.4,

## probability of protein-coding genes to be regulators

## of translation:

PC.TL.p = 0.3,

## probability of protein-coding genes to be regulators

## of RNA decay:

PC.RD.p = 0.1,

## probability of protein-coding genes to be regulators

## of protein post-translational modification:

PC.PD.p = 0.1,

## probability of protein-coding genes to be regulators

## of protein decay:

PC.PTM.p = 0.05,

## probability of protein-coding genes to not be regulators:

PC.MR.p = 0.05,

## number of copies of each gene present in the system:

ploidy = 2)

plotGRN(system_g50,

vertex.size = 6,

vertex.label.cex = 0.7,
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edge.arrow.size = 0.3)
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Also, when generating an in silico population, it is possible to define the number of alleles existing
for each gene. We set this value here to five.

pop_g50 = createInSilicoPopulation(500,

system_g50,

ngenevariants = 5)

sim_g50 = simulateParallelInSilicoSystem(system_g50,

pop_g50,

simtime = 1000)

The quantitative impact of the genetic mutations carried by the different alleles of the genes on
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the genes’ properties are stored in the GeneVariants element of the in silico population list. We
show here the different alleles of genes 2 and 3.

pop_g50$GenesVariants[2:3]

$`2`

1 2 3 4 5

qtlTCrate 1 0.8740067 1.1029492 1.0458018 1.0246933

qtlRDrate 1 1.0528457 0.9682368 1.0000000 0.9966078

qtlTCregbind 1 1.0000000 1.0000000 0.9139486 1.0000000

qtlRDregrate 1 0.9674559 0.9672182 1.0000000 1.0000000

qtlactivity 1 0.8787309 1.0587700 1.0000000 1.0000000

qtlTLrate 0 0.0000000 0.0000000 0.0000000 0.0000000

qtlPDrate 0 0.0000000 0.0000000 0.0000000 0.0000000

qtlTLregbind 0 0.0000000 0.0000000 0.0000000 0.0000000

qtlPDregrate 0 0.0000000 0.0000000 0.0000000 0.0000000

qtlPTMregrate 0 0.0000000 0.0000000 0.0000000 0.0000000

$`3`

1 2 3 4 5

qtlTCrate 1 0.9945262 1.0971478 1.0055041 1.000000

qtlRDrate 1 1.0000000 1.1031950 1.0011387 1.063594

qtlTCregbind 1 1.0000000 1.0566075 1.0659187 1.000000

qtlRDregrate 1 1.0066827 0.9685712 1.0370861 1.000000

qtlactivity 1 1.0000000 0.9347300 1.2316077 1.000000

qtlTLrate 1 1.0000000 1.0037716 1.0000000 1.000000

qtlPDrate 1 1.0347019 0.8256616 1.2414675 1.000000

qtlTLregbind 1 1.0045350 0.8630083 1.0324867 1.000000

qtlPDregrate 1 1.1545935 0.9376130 0.8610631 1.159777

qtlPTMregrate 1 1.0138285 0.9195750 0.9868096 1.000000

The different alleles of each gene carried by an in silico individual can also be retrieved. Here we
show which alleles of genes 1 to 5 the individual Ind1 carries.
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pop_g50$individualsList$Ind1$haplotype[1:5, ]

GCN1 GCN2

3 3
4 2
1 1
4 4
4 3

As the individuals are diploid, they carry two homologs of each gene (GCN1 and GCN2). This
table shows for each gene (row) which allele individual Ind1 carries as its first (GCN1) and second
homolog (GCN2) of the gene. This allows us to compare the expression of the different homologs of a
gene for a given individual.

Because sismonr tracks the homolog of origin of each molecule, we can compare the expression
of two homologs of a same gene for different individuals. For example here, we compare the expression
of gene 25 for individuals Ind1 and Ind2. Ind1 carries two copies of allele 2 of the gene, while
Ind2 carries the alleles 3 and 4 of the gene:

pop_g50$individualsList$Ind1$haplotype[25,]

GCN1 GCN2

25 2 2

pop_g50$individualsList$Ind2$haplotype[25,]

GCN1 GCN2

25 4 3

plotSimulation(sim_g50$Simulation,

molecules = c(25),

inds = c("Ind1", "Ind2"),

mergeAllele = F, ## plot separately the molecules

## coming from each homolog of

## the gene

yLogScale = F)

Warning: It is deprecated to specify `guide = FALSE` to remove a guide. Please

use `guide = "none"` instead.
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We can see that for Ind1 both homologs of the gene (termed GCN1 and GCN2) produce a similar
amount of RNAs and proteins. On the contrary for Ind2 the two homologs produce different amounts
of RNA and especially proteins. This is to be expected as the two homologs are identical for Ind1
but for Ind2 are two different alleles or versions of the gene, with different kinetic properties.

D.5 Anthocyanin biosynthesis regulation pathway simulation settings

This section details the choice of parameters for the anthocyanin biosynthesis pathway simulation.
Please note that these parameters have been chosen to obtain reasonable expression profiles, but have
not been optimised to reproduce the RNA ratios of the genes between the different mutants as is
presented in (Albert et al., 2014).

D.5.1 Basal expression rates

The different kinetic rates associated with the expression of the genes in the pathway have been set as
described in Table D.2:
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Table D.2: Genes kinetic parameters for the anthocyanin biosynthesis regulation pathway

Gene
Transcription rate

(RNA/s)
Translation rate
(protein/RNA/s)

RNA decay
rate (/s)

Protein
decay rate

(/s)

MYB 5 0.1 0.1 0.01
bHLH1 0.1 0.01 0.01 0.001
WDR 0.5 0.01 0.01 0.001
bHLH2 0.01 0.01 0.01 0.001
MYBrep 0.01 0.01 0.01 0.001
R3-MYB 0.1 0.01 0.01 0.001
DFR 0.5 0.001 0.01 0.001

In absence of information regarding the individual transcription, translation and decay rates of
the genes, we assumed in the simulation that the genes in the pathway had similar kinetic properties.
We initially reduced by a factor 10 the transcription rate of the bHLH2, MYBrep, R3-MYBrep and
DFR genes as they are only expressed upon activation by their transcription factors. The fold-changes
associated to the different activating transcription regulations were chosen to be in the order of
magnitude of 10, such that once activated the transcription of the abovementioned genes occurs at a
rate similar to these of the non-activated genes (WDR, bHLH1 and MYB). However the transcription
rate of DFR and R3-MYB were increased by a factor 10 to be able to observe a non-null abundance
of their respective RNAs in the MYBrep-overexpressed mutant individual. The MYB and WDR
genes was then further increased by five as their proteins are the components of both MBW1 and
MBW2 complexes. The translation rate of the DFR gene was reduced by a factor 10 compared to the
other genes simply for visualisation purpose, which did not have any impact on the system behaviour
as the DFR proteins are the end-product of the pathway and do not play any regulatory role. For all
genes but WDR and bHLH1, we set their initial abundance to zero, as WDR and bHLH1 are the only
constitutively expressed genes.

D.5.2 Regulation rates

The parameters associated with the different transcription regulations are presented in Table D.3.
Again, in absence of information about the binding and unbinding rates of the different transcription
factors, we assigned the same values for all regulations.
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Table D.3: Regulation kinetic parameters for the anthocyanin biosynthesis regulation pathway

Regulatory edge
Binding rate
(/molecule/s) Unbinding rate (/s)

Transcription fold
change (1)

MBW1→ bHLH2 0.1 2 25
MBW2→ bHLH2 0.1 2 25
MBW2→MYBrep 0.1 2 50
MBW2→ R3-MYB 0.1 2 50
MBW2→ DFR 0.1 2 15

MBWr bHLH2 0.1 2 0
MBWr MYBrep 0.1 2 0
MBWr R3-MYB 0.1 2 0
MBWr DFR 0.1 2 0

D.5.3 Complexes rates

The association rates of the different regulatory complexes are presented in Table D.4. were chosen
according to the following rationale analysis in that we assumed:

• the formation of MBW2 complexes is slightly more efficient than the formation of the MBW1
complexes, as the latter is only starting the regulation pathway but not regulating the expression
of the genes at the end of the pathway;

• the formation of MBWr complexes is slightly more efficient than the formation of the MBW2
complexes, to enforce the negative feedback mechanism;

• the formation of R3-bHLH1 and R3-bHLH2 complexes is slightly more efficient than the
formation of the MBW1 complexes, to enforce the negative feedback mechanism.

We noted however that repeating the simulation with all complex association rates set to the same
value lead to similar results.

Table D.4: Regulatory complexes kinetic parameters for the anthocyanin biosynthesis regulation
pathway

Regulatory complex Association rate (/molecule/s) Dissociation rate (/s)

MBW1 1 0.1
MBW2 2 0.1
MBWr 2.5 0.1

R3-bHLH1 1.5 0.1
R3-bHLH2 1.5 0.1
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D.5.4 Genetic mutations

The value of the QTL effect coefficients used in the simulation are presented in Table D.5. The
wild-type individual does not possess any mutation (all QTL effect coefficients set to one). In their
experiment, (Albert et al., 2014) overexpressed the MYBrep gene in the first mutant plants by using a
virus promoter for the gene. We reproduce in silico this mutation by increasing the transcription rate
of the gene in the mutant individual. This is is done by setting the QTL effect coefficient qtlTCrate
of the MYBrep gene to 50. We use this value to allow a clear visualisation. Note that this coefficient
can be further increased to obtain a mRNA ratio of 40 as experimentally measured, but as the MYBrep
protein is already in excess in the system any further increase in MYBrep transcription does not affect
the overall results of the simulation. For this mutant individual, we also set the qtlTCregbind QTL
effect coefficient of the MYBrep gene to zero, so that the transcription regulators (activators as well
as repressors) of the gene do not show any affinity for the gene promoter and hence the transcription
of the gene is independent of the regulators. This is a reasonable assumption since the MYBrep gene
is expressed with a different promoter that probably does not contain binding sites for the original
regulators of MYBrep. The MYBrep knock-down plants were experimentally obtained by RNA
interference. We reproduce this RNA interference by increasing the decay rate of the MYBrep gene
in the mutant by 12, i.e. setting the QTL effect coefficient qtlRDrate of the gene to 12. This value
gives an mRNA abundance ratio of 0.4 when comparing wild-type plant to the MYBrep-silenced
mutant plants, similar to the experimental value.

Table D.5: QTL effect coefficients for the anthocyanin biosynthesis regulation pathway

In silico plant Affected QTL effect coefficient QTL effect coefficient value

Wild-type – –
MYBrep

overexpressed
qtlTCrate 50

MYBrep
overexpressed

qtlTCregbind 0

MYBrep silenced qtlRDrate 12
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Figure E.1: Number of edges in the inferred causal graphs from different methods, as a function of
the value of the tuning parameters. The points show the average number of edges across the 260
simulated datasets, with the vertical bars showing the minimum and maximum values. The size of
the points represent the fraction of runs that finished within the 10-minutes limit (i.e. smaller points
indicate that more runs exceeded the limit and were interrupted).
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Figure E.3: True causal graph for one network from configuration 1, and graph inferred by each method for the ancestor query. The colour of the edges
represent whether the edge is present in the true network (dark blue if yes, light red if not). The colour of the nodes in the graph show the the biological
role of the genes in the network (green for transcription regulators and gray for target genes).



281

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

G20

G17

G8

G3

G9

G11

G5
G10

G15

G19

G1

G2

G4

G6

G7

G12

G13

G14

G16

G18

True causal graph

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

G10

G13

G20

G17

G8

G3

G11

G14

G1

G12

G15

G16

G18

G19

G2

G4

G5

G6

G7

G9

PC

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

G10

G13

G20

G17

G8

G3

G11

G14

G1

G12

G15

G16

G18

G19

G2

G4

G5

G6

G7

G9

FCI

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

G10

G13

G20

G17

G8

G3

G11

G14

G1

G12

G15

G16

G18

G19

G2

G4

G5

G6

G7

G9

FCI+

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

G10

G3

G11

G14

G1

G12

G13

G15

G16

G17

G18

G19

G2

G20

G4

G5

G6

G7

G8

G9

GES

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

G10

G13

G20

G17

G8

G3

G11

G14

G1

G12

G15

G16

G18

G19

G2

G4

G5

G6

G7

G9

FGES

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

G10

G13

G20

G3

G9

G5 G14

G1

G11

G12

G15

G16

G17

G18

G19

G2

G4

G6

G7

G8

MMHC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

G10

G3

G11

G14

G1

G12

G13

G15

G16

G17

G18

G19

G2

G20

G4

G5

G6

G7

G8

G9

ARGES

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
G20

G17

G8

G14
G10

G1

G11

G12

G13

G15

G16

G18

G19

G2

G3

G4

G5

G6

G7

G9

ARACNe

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
G20

G8

G1

G10

G11

G12

G13

G14

G15

G16

G17

G18

G19

G2

G3

G4

G5

G6

G7

G9

GENIE3

Is the edge in the true skeleton: No Yes Regulator of: ● ●− (target gene) Transcription

Potential parent query

Figure E.4: True causal graph for one network from configuration 1, and graph inferred by each method for the potential parent query. The colour of the
edges represent whether the edge is present in the true network (dark blue if yes, light red if not). The colour of the nodes in the graph show the the
biological role of the genes in the network (green for transcription regulators and gray for target genes).
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Figure E.5: True causal graph for one network from configuration 1, and graph inferred by each method for the potential ancestor query. The colour of
the edges represent whether the edge is present in the true network (dark blue if yes, light red if not). The colour of the nodes in the graph show the the
biological role of the genes in the network (green for transcription regulators and gray for target genes).
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Figure E.6: Two examples of network from configuration 7 (left) and 8 (right), with the consensus skeleton of the graphs inferred by the
different methods (except GES, ARGES and GENIE3 that were excluded from this plot), when using RNA and protein measurements for
the causal inference. The colour of the edges indicates whether the edge is present in the true skeleton (dark blue if yes, light red if not),
and the width of the edges indicate the number of methods that inferred the presence of the edge. The biological role of the genes in the
network are indicated in colours, with regulators of transcription highlighted in green, regulators of RNA decay in yellow, regulators of
protein decay in blue, while target genes are shown in gray.
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Figure E.7: Two examples of network from configuration 9, with the consensus skeleton of the graphs
inferred by the different methods (except GES, ARGES and GENIE3 that were excluded from this
plot), when using RNA and protein measurements for the causal inference. The colour of the edges
indicates whether the edge is present in the true skeleton (dark blue if yes, light red if not), and
the width of the edges indicate the number of methods that inferred the presence of the edge. The
biological role of the genes in the network are indicated in colours, with regulators of transcription
highlighted in green, regulators of post-translational modification in purple, while target genes are
shown in gray.
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F.1 RNA extraction protocol

• Add <100 mg ground potato tuber to 1.7ml tube.
• Add 500 µl ice-cold Plant RNAReagent and vortex well. Incubate horizontally with occassional
mixing for 5 minutes at room temperature.

• Spin at 12,000×g for 2 minutes at room temperature. Transfer supernatant (around 500 µl) to
a clean tube.

• Add 100 µl of 5M NaCl and mix by tapping the tubes.
• Add 300 µl chloroform:isoamyl alcohol (24:1) and mix thoroughly by inversion.
• Spin at 12,000 ×g for 10 minutes at 4◦C. Transfer upper, aqueous phase (around 500 µl) to
clean tube.

• Add 500 µl of 4M LiCl; incubate at -20◦C for 2-3 hours.
• Spin at 12,000 ×g for 30 minutes at 4◦C. Remove all supernatant with a pipette, spinning and
using a finer tip if required.

• Wash twice with 1ml 80% EtOH. After second wash, remove all remaining EtOH with a fine
tip and allow to air-dry around 5 minutes.

• Resuspend in 25µl of 1mM DTT and 0.75 µl RNaseOUT and flick the mix. Leave on ice (or in
fridge) for 30 minutes to resuspend fully.

• Flick/vortex to resuspend. Spin 1 minute at room temperature and transfer to clean tube.
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Figure F.1: Distribution of the measured phenotypes over 142 samples.
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Figure F.3: Population structure uncovered with STRUCTURE for two half-sibling families. The
posterior membership probability of the parents and progeny samples for the five subpopulations
identified with STRUCTURE are plotted for a) family 2158 and b) family 2174. In both cases, the
progeny samples membership probability profile reflects those of the parents with a 1:1 ratio, except
for progeny sample 2174_4 which is probably a misslabeled sample.
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Figure F.4: Population structure uncovered with STRUCTURE and DAPC for parent samples. The
posterior membership probabilities of the parent samples are displayed for the five subpopulations
identified with STRUCTURE (top left panel) and for a number of clusters varying from 2 to 6 with
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Table F.1: Markers detected as significant per phenotype with the different GWAS settings. The estimated marker score and effect on the phenotype are
indicated. Note that with the general model the marker effect is not computed. If the marker is found within a gene, the ensembl ID and description (if
available) of the gene are provided.

Chromosome Position GWAS setting Score Effect Found in gene Gene description

Dmperc
61,773,721 K + Q_DAPC - additive 7.51 1.63

ST4.03ch01
61,773,810 K + Q_DAPC - additive 7.66 1.86

PGSC0003DMG400008978 Xyloglucanase inhibitor

K + Q_DAPC - 2-dom-ref 6.52 3.82
12,111,253

K - 2-dom-ref 6.95 3.92
PGSC0003DMG400003174 Protein AFR

K + Q_STRUCTURE - 2-dom-ref 6.63 3.88

K + Q_DAPC - 2-dom-ref 6.70 3.86
15,284,228

K - 2-dom-ref 7.29 3.97
PGSC0003DMG400017862 Potassium transporter 11ST4.03ch02

22,602,384 K + Q_STRUCTURE - 2-dom-ref 6.65 3.89 PGSC0003DMG400003324 Squalene epoxidase

K + Q_DAPC - additive 7.45 1.76

K - additive 7.81 1.79
ST4.03ch04 25,442,106

K + Q_STRUCTURE - additive 7.91 1.85

K + Q_STRUCTURE - 2-dom-alt 7.02 3.81
ST4.03ch11 39,182,523

K + Q_DAPC - 2-dom-alt 7.55 3.93

-

K + Q_DAPC - additive 7.13 1.21

K + Q_STRUCTURE - additive 7.26 1.23
ST4.03ch12 52,336,153

K - additive 7.29 1.23
PGSC0003DMG400011612 ABC transporter family protein

General_Impression
K - 1-dom-alt 7.00 0.92

Q_DAPC - 1-dom-alt 7.27 0.95

Q_STRUCTURE - 1-dom-alt 7.29 0.94
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Table F.1: Markers detected as significant per phenotype with the different GWAS settings. The estimated marker score and effect on the phenotype are
indicated. Note that with the general model the marker effect is not computed. If the marker is found within a gene, the ensembl ID and description (if
available) of the gene are provided. (continued)

Chromosome Position GWAS setting Score Effect Found in gene Gene description

K + Q_DAPC - 1-dom-alt 7.34 0.96
ST4.03ch06 53,234,244

K + Q_STRUCTURE - 1-dom-alt 7.43 0.97

PGSC0003DMG400041029 Bcl-2-associated athanogene

K + Q_DAPC - general 7.28 NA

K - general 7.38 NA
ST4.03ch08 53,949,510

K + Q_STRUCTURE - general 7.94 NA
PGSC0003DMG400022756 Adenosine 3’-phospho 5’-phosphosulfate transporter

K + Q_DAPC - 1-dom-ref 6.27 -0.90
ST4.03ch11 850,745

Q_DAPC - 2-dom-ref 6.55 -0.74
PGSC0003DMG400013331 Glutamate decarboxylase isoform2

ST4.03ch12 58,347,097 Q_DAPC - additive 6.82 -0.27 PGSC0003DMG400029264 Anthocyanin acyltransferase

Perc_saleable
K + Q_STRUCTURE - 2-dom-ref 6.47 -6.03

Naive - 2-dom-ref 6.79 -6.03
ST4.03ch08 28,681,951

Q_STRUCTURE - 2-dom-ref 7.20 -6.31
-

spr
K + Q_DAPC - 2-dom-alt 6.72 1.51

K + Q_STRUCTURE - general 6.94 NA

K - 2-dom-alt 6.97 1.53ST4.03ch09 58,507,500

K + Q_STRUCTURE - 2-dom-alt 7.50 1.62

PGSC0003DMG400036801 F-box/LRR-repeat protein

Vigour
K + Q_STRUCTURE - 2-dom-alt 6.80 -1.09

ST4.03ch07 3,858,659
Q_STRUCTURE - 2-dom-alt 6.96 -1.07

PGSC0003DMG400027940 ATP binding protein
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Table F.2: Enrichment of co-expression modules whose eigengene is significantly correlated with the
bruising mean score for biological process- and molecular function-related GO terms.

GO term ID GO term definition Enrichment p-value

Module 74 (33 genes)
GO:0006480 N-terminal protein amino acid methylation 0.009

Module 121 (19 genes)
GO:0031348 negative regulation of defense response 0.015
GO:0060548 negative regulation of cell death < 0.001

Module 182 (10 genes)
GO:0102499 SHG alpha-glucan phosphorylase activity < 0.001
GO:0102250 linear malto-oligosaccharide phosphorylase activity < 0.001
GO:0008184 glycogen phosphorylase activity < 0.001
GO:0030170 pyridoxal phosphate binding 0.019
GO:0004645 1,4-alpha-oligoglucan phosphorylase activity < 0.001
GO:0042802 identical protein binding < 0.001



F.1. RNA extraction protocol 293

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N = 15 N = 14 N = 40 N = 18 N = 11

1

2

3

0 1 2 3 4
Dosage

G
en

e 
ex

pr
es

si
on

Kruskal Wallis p.value = 0.273 (N = 98)a)

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

N = 41 N = 18 N = 41

1

2

3

low middle high
Phenotype group

G
en

e 
ex

pr
es

si
on

Samples used in the DE analysis ● ●No Yes

Kruskal Wallis p.value < 0.001 (N = 100)b)

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

N = 15 N = 14 N = 40 N = 18 N = 11

0

1

2

3

4

0 1 2 3 4
Dosage

B
ru

is
in

g 
m

ea
n 

sc
or

e

Kruskal Wallis p.value = 0.083 (N = 98)
c)

Figure F.5: Relationship between the dosage of the high-scoring marker ST4.03ch02_41355270 (for
the bruising fraction phenotype), the expression of the gene PGSC0003DMG400026406 in which it
is found (RPKM counts), and the bruising mean score. a) The gene expression for the samples is
plotted against their dosage for the considered marker. b) The gene expression for the samples is
plotted against the phenotype group in which they belong (low/middle/high bruising mean score).
Samples used for the differential expression analysis are highlighted in red. c) The bruising mean
score of the samples is plotted against their dosage for the considered marker.
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G.1 Metabolomics data generation protocol

G.1.1 Samples preparation

Freeze dried samples were weighed into Eppendorf tubes and extracted with 70% ethanol, 30%
water at 10mg/ml equivalent and extensively vortex mixed. They were centrifuged at 14000 ×g
for 5 minutes. A 400µl aliquot of the supernatant was filtered with a Single Stepr vial containing
a 0.22µm PVDF (Thompson™ Part No. 65531-200) filter. Vials were held at 8O◦C in the LCMS
sample chamber before injection.

Quality Control (QC) samples were prepared by taking an equal volume of every sample to
make a multi-mix. To this mix were added stable 13C isotopes at a 1:10 dilution from stock of
Cambridge Isotopes Lab Metabolomics QC Standard 1, Cat. Number MSK-QC-1 and Standard 2,
Cat. Number MSK-QC2-1. This resulted in each 13C compound being at 0.4µg/ml in the QC mix
except 13C11-L-Tryptophan which was at 4µg/ml.

G.1.2 Liquid Chromatograph Mass Spectrometry (LCMS) conditions

The LCMS system consisted of a Thermo Scientific™ (San Jose, CA, USA) Q Exactive™ Plus Orbitrap
coupled with a Vanquish™ UHPLC system (Binary Pump H, Split Sampler HT, Dual Oven); calibrated
immediately prior to sample analysis batch with Thermo™ premixed solutions (Pierce™ LTQ ESI
Positive and negative ion calibration solutions, catalogue numbers: 88322 and 88324 respectively).

Aqueous normal phase conditions (H)

A 2 µl aliquot of each prepared extract was separated with a mobile phase consisting of 0.1 % formic
acid in acetonitrile (A) and 5mM ammonium acetate in water (B) by normal phase chromatography
(Hypersil Gold HILIC 1.9µm, 100mm x2.1mm, P/N:26502-102130) maintained at 55 ◦C with a flow
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rate of 400 µl/min. A gradient was applied: 0-1 min/5% B, linear increase to 12 min/98% B, isocratic
16min/98% B, equilibration 16-17 min/5% B, isocratic to end 20min/5% B.

Reverse phase conditions (C18)

A 2 µl aliquot of each prepared extract was separated with a mobile phase consisting of 0.1 % formic
acid in type 1 water (A) and 0.1 % formic acid in acetonitrile (B) by reverse phase chromatogra-
phy (Accucore Vanquish C18 1.5µm, 100mm x2.1mm, P/N: 27101-102130, Thermo Scientific)
maintained at 40◦C with a flow rate of 400µl/min. A gradient was applied: 0-1 min/0% B, linear
increase to 7 min/50% B, linear increase to 8min/98% B, isocratic to 11 min/98% B, equilibration
11-12min/0% B, isocratic to end 17 min/0% B.

The eluent from (H) and (C18) chromatography was scanned from 0.5-16 and 0.4-11.5 minutes
respectively by API-MS (Orbitrap) with heated electrospray ionisation (HESI) at 350◦C in the negative
and positive mode with capillary temperature of 320◦C. Data were acquired for precursor masses
from m/z 80–1200 amu (H) and m/z 100-1500(C18) at 70K resolution (AGC target 3e6, maximum IT
100ms, profile mode) with data dependent ms/ms for product ions generated by normalised collision
energy (NCE:35, 45, 65) for C18 and (NCE:25, 45, 75) for (H) at 17.5K resolution (TopN 10, AGC
target 2e5, Maximum IT 50ms, Isolation 1.4 m/z).
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Figure G.1: Distribution of the variants GWAS scores without (x-axis) and with (y-axis)correcting for population structure, across the different genetic
models tested. The variants selected with the full DIABLO analysis are shown as points on top of the hex-plot. Their colours indicate whether they
are retained for the first (maroon) or second (light green) latent component. The dotted lines show the scores above which variants are considered as
high-scoring markers.
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Figure G.4: Consensus skeleton of the graphs inferred with the nine causal and network inference
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coloured by the latent component for which they were selected with DIABLO.
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Figure G.5: Comparison for the transcriptomics dataset of the WGCNA topological overlap score
distributions between pairs of transcribed genes that are found causally linked in the graph inferred
by each causal and network inference method and those that are not linked.
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Figure G.6: Comparison for the metabolomics dataset of the WGCNA topological overlap score
distributions between pairs of genes that are found causally linked in the graph inferred by each causal
and network inference method and those that are not linked.
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Figure G.7: Distribution of the confidence score of positive answers to each causal query for the
different causal and network inference methods.
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Table G.1: Edges in the consensus skeleton of inferred graphs (with blacklist) with a high average confidence score across the causal and network
inference methods. For comparison, the mean confidence score of the edges across the four considered methods (PC-stable, FGES, MMHC and
GENIE3) without blacklist is presented. When possible, the possible pathway in which the molecules are involved is indicated. Genomic variants are
represented as follows: chromosome, genomic position; transcribed genes as: description - chromosome, genomic position (Ensembl ID) - whether it is
differentially expressed or not; metabolic compounds as: description if identified - formula if identified, molecular weight - whether it is differentially
abundant or not. Note that most chemical formulas have been automatically generated by the metabolomics analysis software.

Edge between And Mean
confidence
score -
blacklist

Mean
confidence
score - no
blacklist

Possible pathway

9-HOTrE
(9-hydroxy-10E,12Z,15Z-octadecatrienoic acid) -

C18H30O3, 294.22 g/mol - upregulated

(10E,12Z)-9-Hydroxy-10,12-octadecadienoic acid
- C18H32O3, 296.23 g/mol - upregulated

1.00 1.00 α-linoleic acid
metabolism

C20H28O3P2, 378.15 g/mol - upregulated C9H23N11O2P2, 379.15 g/mol - upregulated 1.00 1.00 -
C18H26N4O3S, 378.17 g/mol - upregulated C20H30O3P2, 380.17 g/mol - upregulated 1.00 1.00 -
C17H20N10O2S, 428.15 g/mol - upregulated 431.15 g/mol - upregulated 1.00 1.00 -
pigment from marker pen - 265.16 g/mol -

downregulated
265.66 g/mol - downregulated 1.00 1.00 -

L-Glutathione (reduced) - C10H17N3O6S, 307.08
g/mol - downregulated

L-Glutathione (reduced) - C10H17N3O6S, 307.08
g/mol - downregulated

1.00 1.00 Glutathione
metabolism

Leucine-rich repeat - ST4.03ch00, 23.1Mb
(PGSC0003DMG400010887) - upregulated

Cc-nbs-lrr resistance protein - ST4.03ch10, 59Mb
(PGSC0003DMG402011427) - not DE

1.00 1.00 Disease/Pathogen
resistance

Breakdown product of Glutathione - C13H6O,
178.04 g/mol - downregulated

C13H17N3O2P2, 309.08 g/mol - downregulated 1.00 1.00 Glutathione
metabolism

Peptide transporter - ST4.03ch06, 56.1Mb
(PGSC0003DMG400006606) - upregulated

Peptide transporter - ST4.03ch00, 38Mb
(PGSC0003DMG400022107) - upregulated

1.00 1.00 -

Non-symbiotic hemoglobin - ST4.03ch01, 85.5Mb
(PGSC0003DMG400025176) - not DE

Enoyl-CoA-hydratase - ST4.03ch01, 85.1Mb
(PGSC0003DMG403025826) - not DE

0.99 0.99 Fatty acid-related
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Table G.1: Edges in the consensus skeleton of inferred graphs (with blacklist) with a high average confidence score across the causal and network
inference methods. For comparison, the mean confidence score of the edges across the four considered methods (PC-stable, FGES, MMHC and
GENIE3) without blacklist is presented. When possible, the possible pathway in which the molecules are involved is indicated. Genomic variants are
represented as follows: chromosome, genomic position; transcribed genes as: description - chromosome, genomic position (Ensembl ID) - whether it is
differentially expressed or not; metabolic compounds as: description if identified - formula if identified, molecular weight - whether it is differentially
abundant or not. Note that most chemical formulas have been automatically generated by the metabolomics analysis software. (continued)

Edge between And Mean
confidence
score -
blacklist

Mean
confidence
score - no
blacklist

Possible pathway

C9H8O2, 148.05 g/mol - not DA Possible breakdown product - C10H8O3, 176.05
g/mol - not DA

0.98 0.98 -

Heat shock protein binding protein - ST4.03ch09,
3.8Mb (PGSC0003DMG400002680) - not DE

TVLP1 - ST4.03ch07, 51.9Mb
(PGSC0003DMG400027646) - not DE

0.96 0.96 Stress response

Possible breakdown product - C10H8O3, 176.05
g/mol - not DA

C8H15N11, 265.15 g/mol - not DA 0.96 0.96 -

Multidrug resistance pump - ST4.03ch08, 2.9Mb
(PGSC0003DMG400004474) - not DE

ST4.03ch08, 3,137,398bp 0.96 0.97 Disease/Pathogen
resistance

BHLH domain class transcription factor -
ST4.03ch03, 58Mb (PGSC0003DMG400014246)

- not DE

DNA-directed RNA polymerase II 19 kD
polypeptide rpb7 - ST4.03ch03, 58Mb
(PGSC0003DMG400014251) - not DE

0.96 0.94 Stress response

366.65 g/mol - downregulated N1, N5, N14-(dihydrocaffeoyl)spermine -
C37H50N4O9, 694.36 g/mol - downregulated

0.92 0.93 Glutathione
metabolism

N1,N10-Bis(dihydrocaffeoyl)spermidine -
C25H35N3O6, 473.25 g/mol - downregulated

N1, N5, N14-(dihydrocaffeoyl)spermine -
C37H50N4O9, 694.36 g/mol - downregulated

0.90 0.90 Glutathione
metabolism

C8H21N18PS, 432.17 g/mol - upregulated C5H13N5S, 175.09 g/mol - upregulated 0.82 0.82 -
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Table G.1: Edges in the consensus skeleton of inferred graphs (with blacklist) with a high average confidence score across the causal and network
inference methods. For comparison, the mean confidence score of the edges across the four considered methods (PC-stable, FGES, MMHC and
GENIE3) without blacklist is presented. When possible, the possible pathway in which the molecules are involved is indicated. Genomic variants are
represented as follows: chromosome, genomic position; transcribed genes as: description - chromosome, genomic position (Ensembl ID) - whether it is
differentially expressed or not; metabolic compounds as: description if identified - formula if identified, molecular weight - whether it is differentially
abundant or not. Note that most chemical formulas have been automatically generated by the metabolomics analysis software. (continued)

Edge between And Mean
confidence
score -
blacklist

Mean
confidence
score - no
blacklist

Possible pathway

Conserved gene of unknown function -
ST4.03ch08, 49.3Mb

(PGSC0003DMG400017523) - upregulated

Conserved gene of unknown function -
ST4.03ch07, 3.3Mb (PGSC0003DMG400030726)

- upregulated

0.79 0.76 -

Breakdown product of Glutathione - C13H6O,
178.04 g/mol - downregulated

L-Glutathione (reduced) - C10H17N3O6S, 307.08
g/mol - downregulated

0.74 0.74 Glutathione
metabolism

Calcium ion binding protein - ST4.03ch04,
71.8Mb (PGSC0003DMG400009911) - not DE

Prephenate dehydrogenase - ST4.03ch02, 7.7Mb
(PGSC0003DMG400042196) - not DE

0.74 0.72 Tyrosine biosyn-
thesis/signalling

Conserved gene of unknown function -
ST4.03ch08, 49.3Mb

(PGSC0003DMG400017523) - upregulated

Conserved gene of unknown function -
ST4.03ch03, 55.1Mb

(PGSC0003DMG400024534) - downregulated

0.71 0.67 -

Conserved gene of unknown function -
ST4.03ch01, 85.3Mb

(PGSC0003DMG400025951) - not DE

Gene of unknown function - ST4.03ch01, 85.4Mb
(PGSC0003DMG400025955) - not DE

0.70 0.69 -

pigment from marker pen - 265.16 g/mol -
downregulated

N1,N10-Bis(dihydrocaffeoyl)spermidine -
C25H35N3O6, 473.25 g/mol - downregulated

0.70 0.70 -
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