CASTLE: a Computer-Assisted sentence Stress Teaching and Learning Environment

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Manawatu New Zealand

Jingli Lu
2010
Abstract

A Computer-Assisted sentence Stress Teaching and Learning Environment (CASTLE) is proposed and developed, in order to help learners of English as a Second Language (ESL) to perceive and produce English stress correctly.

Sentence stress plays an important role in English verbal communication. Incorrect stress may confuse listeners, and even break down a conversation. Stress is also challenging for ESL learners to master. It is neither easy for them to produce nor easy to perceive stress. Learners tend to transfer the stress patterns of their first language into English, which is not always appropriate. However, stress has been overlooked in English language teaching classes, due to the time limits of a class and teachers’ lack of confidence of teaching stress. Thus, CASTLE is intended to help ESL learners to use sentence stress correctly.

There are three modules in CASTLE: an individualised speech learning material providing module, a perception assistance module and a production assistance module.

Through conducting an investigation into which voice features (i.e. gender, pitch and speech rate) makes a teacher’s voice preferable for learners to imitate, we find that learners’ imitation preferences vary, according to many factors (e.g. English background and language proficiency). Thus, the speech material providing module of CASTLE can provide individualised speech material for different learners, based on their preferred voice features.

In the perception assistance module of CASTLE, we propose a set of stress exaggeration methods that can automatically enlarge the differences between stressed and unstressed syllables in teachers’ voice. These stress exaggeration methods are implemented by the manipulation of different prosodic features (i.e. pitch, duration and intensity) of the teachers’ voice. Our experimental results show that all our proposed exaggeration methods could help ESL learners to perceive sentence stress more accurately.
In the production assistance module of CASTLE, we propose a clapping-based sentence stress practice model that is intended to help ESL learners to be aware of the rhythm of English language. By analysing the limitation of conventional categorical representation of stress, we propose a fuzzy representation which is intended to better represent the subjective nature of stress. Based on the fuzzy representation of stress, we propose three feedback models in order to help the learners correct their stress errors.

In addition to the development of CASTLE, we also propose an enhanced fuzzy linear regression model which can overcome the spreads increasing problem encountered by previous fuzzy linear regression models.
Dedicated to my parents for their love, encouragement and endless support.
Acknowledgements

I would like to take this opportunity to express my appreciation and gratitude to those people who have supported me to achieve this qualification.

My first sincere thanks go to my supervisor, Dr. Ruili Wang, for his invaluable guidance and tremendous support throughout this research. Without his tireless directions and continuing encouragement, it would have been unfeasible for me to achieve my PhD degree. His intellectual rigour and logical way of thinking have had a remarkable influence on my academic career.

I would like to express my deep gratitude to my co-supervisors Dr. Liyanage C. De Silva and Dr. Helen Zhou, for the time and effort they have spent with me, during my PhD study. I appreciate their valuable suggestions and constructive comments.

I am also grateful to Dr. Shichao Zhang, my previous supervisor for my Master’s degree, who introduced me to the field of Computer Science and put my footsteps onto the research path.

I thank Claire, Rosalind and all the participants for their help in the system evaluation. Thanks to Jason, Frank, Yan and June, and other friends at Massey University, for their support and friendship.

I gratefully acknowledge the funding from the Foundation for Research, Science and Technology towards my study and research.

Lastly, my special thanks go to my parents for their support, understanding and encouragement.
Contents

Chapter 1. Introduction and Scope ... 1
1.1 Introduction ..1
1.2 Scope of this thesis ...3

Chapter 2. Motivation and Research Objectives 5
2.1 Motivation ...5
 2.1.1 Importance of English stress ..5
 2.1.2 Difficulties in learning English stress faced by ESL learners7
 2.1.3 Current computer-assisted pronunciation teaching ...8
2.2 Computer-Assisted sentence Stress Teaching and Learning Environment (CASTLE) ..10
 2.2.1 Research issues and proposed solutions ...10
 2.2.2 A framework for sentence stress teaching systems ..12
 2.2.3 Flowchart of CASTLE system ...13
2.3 Summary ...15

Chapter 3. Speech Processing Techniques for CASTLE 16
3.1 Literature review of automatic phoneme alignment ...16
 3.1.1 Previous work on automatic phoneme alignment ..17
 3.1.2 Performance comparison ..20
3.2 Automatic phoneme alignment in CASTLE ...22
 3.2.1 Deficiency of previous phoneme alignment algorithms22
 3.2.2 Linear-regression-based flexible boundary phoneme alignment24
 3.2.2 TIMIT speech corpus ...27
 3.2.3 Experiments ...28
3.3 Literature review of automatic stress detection ..30
 3.3.1 Previous work on automatic stress detection ...30
 3.3.2 Performance comparison ..32
3.4 Automatic stress detection in CASTLE ..33
 3.4.1 Boston University Radio News speech corpus ..33
 3.4.2 Feature extraction ...35
 3.4.3 Experiments ...37
3.5 Summary ...38

Chapter 4. Individualised Speech Material Module 40
4.1 Previous research on voices suitable for learners to imitate40
 4.1.1 The learner’s own voice ...41
 4.1.2 Voices of multiple speakers ..42
4.2 In search of golden speaker from imitation preference perspective44
4.3 Prosody modification techniques ...46
 4.3.1 Duration modification ..46
 4.3.2 Pitch modification ..47
4.4 Experimental setup ...49
 4.4.1 Speech material ..49
 4.4.2 Participants ...50
 4.4.3 Procedures ...50
Chapter 5. Exaggeration-based Perception Assistance Module.............. 61
 5.1. Hyper-pronunciation training...61
 5.2. Pronunciation training based on prosody modification 63
 5.3. Automatic stress exaggeration ... 65
 5.3.1 Pitch-based stress exaggeration .. 66
 5.3.2 Duration-based stress exaggeration .. 69
 5.3.3 Intensity-based stress exaggeration ... 70
 5.3.4 Combined stress exaggeration ... 71
 5.4 Perceptual experiments .. 72
 5.4.1 Participants .. 72
 5.4.2 Speech material ... 72
 5.4.3 Results and discussion ... 74
 5.5 Summary ... 76

Chapter 6. Production Assistance Module ... 78
 6.1 Clapping-based pronunciation practice assistance model 78
 6.1.1 Clapping in pronunciation learning .. 78
 6.1.2 Description of the CPPA model ... 79
 6.2 Representation of stress ... 81
 6.2.1 A limitation of the categorical representation of stress............... 81
 6.2.2 A fuzzy representation of stress .. 82
 6.3 Fuzzy representation based stress-error feedback models 83
 6.3.1 Model FeedbackPC ... 85
 6.3.2 Model FeedbackMC ... 87
 6.3.3 Model FeedbackDF ... 89
 6.4 Flowchart of the production assistance module 89
 6.5 Summary ... 91

Chapter 7. An Enhanced Fuzzy Linear Regression Model....................... 92
 7.1 Fuzzy linear regression .. 92
 7.2 Fuzzy number and the spreads increasing problem 96
 7.2.1 Fuzzy number .. 96
 7.2.2 Arithmetic operations on fuzzy numbers 97
 7.2.3 Spreads increasing problem ... 98
 7.3 Review on related literature ... 99
 7.3.1 Model FLR_{KC02} and model FLR_{KC03} 99
 7.3.2 Model FLR_{NN04} ... 101
 7.3.3 Model FLR_{D_Urso03} and model FLR_{Coppi06} 101
 7.3.4 Model FLR_{CD08} ... 104
 7.4 Flexible spreads FLR model FLR_{FS} ... 105
 7.4.1 Description of model FLR_{FS} .. 105
 7.4.2 Property of model FLR_{FS} ... 109
 7.4.3 Parameters estimation ... 110
 7.5. Numerical examples ... 113
 7.5.1 Initial values setting ... 113
 7.5.2 Examples .. 114
7.6 Summary ...121

Chapter 8. Conclusions and Future Work ... 123
8.1 Summary of main findings and contributions..123
 8.1.1 Individualised speech learning material...123
 8.1.2 Stress-exaggeration-based perception assistance..125
 8.1.3 Production assistance ...125
 8.1.4 Linear-Regression-based flexible boundary phoneme aligner.........................127
 8.1.5 An enhanced fuzzy linear regression model ...127
 8.2 Further research ..128

Appendix Questionnaire ...129

References ...130

Publications Related to This Research ...140
Published papers ..140
Submitted papers ...140
List of figures

Figure 2.1 Flowchart of CASTLE system ...13
Figure 3.1 Viterbi-based forced alignment ..19
Figure 3.2 Comparison between estimated duration and its reference counterpart23
Figure 3.3 Relationships between estimated and reference syllable durations24
Figure 3.4 Possible boundary relationships of two conjunctive phonemes25
Figure 3.5 Overview of the LR-FB phoneme aligner ...26
Figure 4.1 Screenshot of CASTLE system ..51
Figure 4.2 Distributions of the most and the least wanted to be imitated speech53
Figure 5.1 Pitch contour comparison ...69
Figure 5.2 Duration-based stress exaggeration ..70
Figure 5.3 Spectrum comparison ...71
Figure 5.4 Boxplot of the F-Measures of listeners’ stress pattern labeling75
Figure 6.1 Illustration of the utterance ...80
Figure 6.2 Resynthesis of clapping-based teacher’s utterance81
Figure 6.3 Stress difference between a teacher’s syllable and a learner’s imitation ..84
Figure 6.4 Flowchart of the production assistance module90
Figure 7.1 Membership functions of the estimated and observed fuzzy numbers ...111
List of tables

Table 3.1 Accuracies of different phoneme aligners on the TIMIT corpus.
Table 3.2 Parameters used to train the LR-FB phoneme aligner in CASTLE
Table 3.3 Performances of base phoneme aligners and the LR-FB phoneme aligner
Table 3.4 Performance comparison of previous stress detectors.
Table 3.5 ToBI labels associated with stressed syllables.
Table 3.6 Input features of the stress detector(s) in CASTLE
Table 3.7 Performances of different stress detectors
Table 4.1 The average of the absolute deviations from the mean
Table 5.1 ToBI labels and their corresponding exaggeration operations.
Table 5.2 Distribution of syllables and stressed syllables in sentences and clusters.
Table 5.3 Distribution of utterance clusters in each type of listening material.
Table 5.4 Comparison of listeners’ stress pattern labeling accuracy
Table 6.1 Inputs and output of the prototype of stress-error feedback model
Table 7.1 Dataset1
Table 7.2 Dataset2
Table 7.3 Fuzzy regression models of dataset2
Table 7.4 Comparison of the performance of difference methods on Dataset2
Table 7.5 Dataset3
Table 7.6 Fuzzy regression models of dataset3
Table 7.7 Comparison of the performance of difference methods on Dataset3
Table 7.8 Dataset4: Restaurants data
Table 7.9 Comparison of the performance of difference methods on Dataset4