Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Biochemical characterisation of dairy yeasts and their application in cheese as anaerobic adjunct cultures

A thesis presented in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

Shantanu Das

2004
MASSEY UNIVERSITY
APPLICATION FOR APPROVAL OF REQUEST TO EMBARGO A THESIS
(Pursuant to AC98/168 (Revised 2), Approved by Academic Board 16.02.99)

Name of Candidate: SHANTANU DAS I.D. Number: 0112.1464

Degree: Doctor of Philosophy Dept / Institute / School: Food Nutrition & Human Health

Thesis Title: Biochemical characterisation of dairy yeasts and their application in cheese as anaerobic adjunct cultures

Name of Chief Supervisor: Mr. Rod Bennett Telephone Ext: 4334

As author of the above named thesis, I request that my thesis be embargoed from public access until (date) September 2006 for the following reasons:

☐ Thesis contains commercially sensitive information.

☐ Thesis contains information which is personal or private and/or which was given on the basis that it not be disclosed.

☐ Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.

☐ Other (specify): ____________________________

Please explain here why you think this request is justified:

The research project was commercially funded by the Fonterra Co-operative Group Ltd. (Formerly New Zealand Dairy Research Institute Ltd.) and in subject to a research agreement controlling confidentiality and publication (A 333).

Signed (Candidate): SHANTANU DAS Date: 03.09.2004

Endorsed (Chief Supervisor): ______________________ Date: 30.06.2004

Approved / Not Approved (Representative of VC): __________________ Date: 09.07.2004

Note: Copies of this form, once approved by the representative of the Vice Chancellor, must be bound into every copy of the thesis.

[MURET appl form Disk 15]
Abstract

Yeasts are traditionally used as part of the surface microflora in surface-ripened cheeses, where they contribute positively to the flavour of the cheese. The primary objective of this study was to investigate the potential of three dairy yeasts to provide attributes as adjuncts in anaerobically ripened cheeses. *Geotrichum candidum* (B9001), *Yarrowia lipolytica* (B9014) and *Candida kefyr* (B9006), obtained from the Fonterra Co-operative Group Ltd, Palmerston North, New Zealand, were studied. They showed diverse metabolic activities in laboratory media, which were influenced by the growth conditions. The metabolic activities of special interest were the lipase and proteinase activities and the production of volatile compounds, as these are important for cheese ripening and flavour development.

Lipase activity (*p*-nitrophenyl butyrate assay) and proteinase activity (fluorescein isothiocyanate β-casein assay) were determined in three fractions prepared from yeast cultures and designated as extracellular fraction, washed-cell fraction and intracellular fraction. Lipase activity of *G. candidum* was detected only in the extracellular fraction and increased five fold when induced by safflower oil in a shake culture (0.16 μM/min/mL supernatant at 24 h). Lipase expression was delayed in static cultures. *Y. lipolytica* showed lipase activity in extracellular, washed-cell and intracellular fractions under all conditions. Static cultures in both glucose and safflower oil media showed higher lipase activity than shake cultures. The lipase activity of *Y. lipolytica* was higher in the late stationary phase than in the log phase under all conditions tested. The highest lipase activity was detected in a 192 h static culture grown in safflower oil medium (0.13 μM/min/mg dry cell weight, 0.3 μM/min/mg dry cell weight and 4.29 μM/min/mL supernatant in the intracellular, washed-cell and extracellular fractions respectively). *C. kefyr* did not show any lipase activity (< 0.03 μM/min/mL culture) under any of the growth conditions tested.

Proteinase activity was detected in the intracellular fraction of 72 h shake cultures of *G. candidum* grown in both glucose medium and safflower oil medium (154 and 122 RFU/min/mg dry cell weight respectively) but was not detected in static cultures. Proteinase activity was absent in the *Y. lipolytica* cultures under all conditions tested.
(<10 RFU/min/mL culture). C. kefyr showed low proteinase activity (12–74 RFU/min/mL supernatant) in the extracellular fraction only in shake cultures grown in glucose medium.

Volatile compounds of the headspace were sampled and analysed using solid phase microextraction (SPME) and gas chromatography–mass spectrometry (GC–MS). The concentrations of volatile compounds were highest in shake cultures grown in glucose medium for all three yeasts. All yeasts produced several alcohols. Several esters were also detected in the G. candidum and C. kefyr cultures whereas aldehydes were detected only in the G. candidum cultures.

G. candidum and Y. lipolytica were selected for cheese production trials because of their active cheese ripening enzymes. These yeasts, grown under different conditions, were added to Cheddar cheese (10 L vat). The yeast adjuncts influenced the cheese ripening by lipolysis [in terms of the production of free fatty acids (FFAs) analysed by gas chromatography–flame ionisation detector (GC–FID)] and the production of volatile compounds (SPME–GC–MS), whereas proteolysis (analysed by size-exclusion high performance liquid chromatography) by yeast enzymes was not obvious.

The influence of Y. lipolytica as an anaerobic adjunct to cheese ripening was dependent on the growth conditions used during its propagation in laboratory media. The concentration of total FFAs was very high (37.1 mg/g cheese at 6 months) when a 192 h Y. lipolytica culture grown in safflower oil medium was added to a cheese make, whereas the cultures grown in glucose medium did not have any detectable effect. Addition of G. candidum culture to the cheese curd was more effective than its addition to the cheese milk.

Both G. candidum and Y. lipolytica lipase(s) selectively hydrolysed the long-chain unsaturated fatty acids from the milk triglyceride in the cheese environment. Also, Y. lipolytica lipase exhibited some selectivity towards hydrolysis of butyric acid from the milk fat in the cheese.

2-Heptanone, 3-methyl-2-butanone and 2-nonanone were detected (1–10 x 10^6 relative peak area) only in the cheeses with yeast adjuncts but not in the control cheese.
Enhancement of the production of both conjugated linoleic acid (CLA) and ethyl esters in a washed-curd, dry-salted cheese (375 L vat), made with *G. candidum*, *Y. lipolytica*, *Propionibacterium freudenreichii* ssp. *shermanii*, *Lactobacillus fermentum* and *Lb. rhamnosus*, was only partially successful. Higher concentrations of ethyl esters (> five fold; analysed by SPME–GC–MS) were produced in the cheeses made with yeast adjuncts. However, the concentration of total CLA (free plus esterified; analysed by GC–FID) did not increase although a higher concentration of free linoleic acid (> 10 fold), the substrate for CLA synthesis, was produced in the cheeses made with yeast adjuncts.

A study of the formation of aromatic volatile compounds by *C. kefyr* in a medium containing L-phenylalanine (L-phe) showed that the yeast’s ability to produce phenyl ethanol, phenyl ethyl acetate and benzaldehyde (analysed by SPME–GC–MS) was enhanced with an increase in the initial L-phe concentration (in the experimental range; analysed by enzymatic assay using phenylalanine ammonia lyase), but the yield was very low (20–27%). The initial concentration of glucose (in the experimental range; analysed by enzymatic assay using Peridochrom glucose reagent) did not affect the production of these aromatic volatile compounds.

This study successfully showed that the yeasts *G. candidum* and *Y. lipolytica*, when used as anaerobic adjuncts, can influence the ripening and flavour development in Cheddar and washed-curd, dry-salted cheeses. The study also showed the capability of *C. kefyr* to produce aromatic volatile compounds from amino acid fermentation but the yields need to be increased by further manipulation of the medium components and the culture conditions before this capability can be used commercially.
To my wife Jinita and daughter Nilotri
For your love and support
Acknowledgements

I would like to express my deep sense of gratitude and appreciation to my chief supervisor Mr Rod Bennett and supervisors Dr Vaughan Crow, Dr Ross Holland and Dr Graham Manderson, for their invaluable guidance and constant encouragement throughout my Ph.D. study. Thanks for your patience in reading my English and making yourselves available at anytime I needed, in spite of your very busy work-schedule. Most of the times I even did not take an appointment.

I would like to acknowledge my special thanks to Mr Rod Bennett for arrangement of this excellent project, constant support, helpful guidance and valuable discussions throughout my Ph.D. tenure. Thanks for your understanding the difficulties of studying in a far-away place in a new environment and your constant support to overcome those difficulties. Thank you for giving me opportunity to present my research work in three international conferences.

I would like to convey my special thanks to Dr Vaughan Crow for explaining to me many details of cheese science over the last three years. Thanks for your patience to help me developing the scientific logic in every step of my research. Special thanks to you for training me to cope with scientific research work after spending five years in industrial production.

I convey my gratitude to Dr Ross Holland for the invaluable support, guidance and discussions during the experimental work and thesis writing. Special thanks to you for the care you have taken for helping me in the preparation of conference presentations and journal articles throughout my Ph.D. tenure and getting all of them passed through the complex approval channel, sometimes in a very tight time schedule.

I convey my sense of gratitude to Dr Graham Manderson for the constant support, guidance and valuable suggestions during the experimental works and thesis writing. Special thanks to you for your constructive criticisms of my works and helping me in finding suitable solutions.
For their invaluable contributions at different stages of my research work, I would like to thank:

- Dr Shao Liu for mentoring me in Fonterra laboratories and valuable suggestions in L-phenylalanine catabolism work.
- Dr Julian Reid for helping in fluorometry and size-exclusion HPLC.
- Mr Mark Reynolds for CLA analyses.
- Dr Barbara Kuhn-Sherlock for help in statistical analyses.
- Mr Graham Holdaway and Mr. Garry Taekema for help in cheese manufacture.
- Ms Sharon Gibson for CLA synthesis works in laboratory media.
- Ms Tianli Wang for help in FFA analyses.
- Mrs Michelle Christison for help in GC-MS analyses.
- Mrs Stephanie Harvey for help in UF of yeast cultures.
- Ms Emily Chen, Ms Kylie Hellier, Ms Julie Ng, Mr Michael Sahayam, Mr Steve Glasgow for various help during the experimental works.
- Dr Shantanu Deb Chaudhury and Mr Peter Jeffery for help in thesis formatting.
- Dr Claire Woodhall for editing.
- Analytical Service Group, Fonterra Co-operative Group, Palmerston North for analysis of cheese composition.

I would like to thank Commonwealth Scholarship and the Fonterra Co-operative Group for their financial assistance in terms of Ph.D. scholarship and project funding respectively.

I extend my sense of gratitude to Dr Tim Coolbear for his support and encouragement during my working in Fonterra laboratories. I am thankful to him for his help in fluorometry and excellent editorial inputs in conference presentations and journal articles throughout my Ph.D. study.

I thank Mr Mathew Levin, Mrs Yvonne Parkes, Mrs Christine Ramsay, Mrs Míria Busby and Mrs Karen Pickering of IFNHH, Mrs Ann-Marie Jackson of ITE, Ms Priscilla Putu of Fonterra for their administrative support.
I would like to take the opportunity to thank my friends and colleagues in New Zealand Ngaio, Rogerio, PK, Hasmukh, Debjit, Krishanti, Subhas, Rajesh, Gaurav, Dilip, Sunny, Arunee and Allan for their help and valuable suggestions at many occasions during my Ph.D. study.

I thank my old friends in India Ashitava, Surojit, Amitava, Kaushik, Samit and Moitreyee, who had helped me in the rigorous process of scholarship application and selection.

I would like to thank my wife Jinita, who encouraged and supported me in all my efforts of Ph.D. study. I cannot express strongly enough my gratitude for your support and continuous encouragement and for your love. I express my gratitude to my parents for their constant support and encouragement throughout and handling a number of administrative tasks regarding scholarship and travel. I express my gratitude to my parents-in-law for their constant support and encouragement. I thank my relatives for their words of encouragement and courage throughout the period. Last but not least I express my thanks and love to my little daughter Nilotri, who with her love, affection and support made my tough tenure of Ph.D. study an enjoyable period.
Contents

Abstract ... i
Acknowledgements ... v
List of contents .. viii
List of tables .. xvii
List of figures .. xx

Chapter 1. Introduction .. 1

Chapter 2. Review of the literature .. 5
 2.1 Introduction .. 5
 2.2 Classifications and characteristics of yeasts .. 6
 2.3 Yeasts in cheese and their potential for cheese ripening .. 8
 2.3.1 Growth characteristics of yeasts .. 8
 2.3.2 Presence of yeasts in cheese .. 11
 2.3.2.1 Yeasts in Blue and Camembert cheese .. 12
 2.3.2.2 Yeasts in bacterial surface-ripened cheese ... 13
 2.3.2.3 Yeasts in hard cheese .. 14
 2.3.2.4 Yeasts in cheese flavour concentrate .. 16
 2.3.3 The lipolytic activity of yeasts ... 17
 2.3.3.1 Geotrichum candidum lipase ... 17
 2.3.3.2 Yarrowia lipolytica lipase ... 22
 2.3.4 The proteolytic activity of yeasts ... 25
 2.3.4.1 The proteolytic system of G. candidum ... 26
 2.3.4.2 The proteolytic system of Y. lipolytica ... 27
 2.3.4.3 The proteolytic systems of other yeasts ... 28
 2.3.5 Assimilation of sugar and organic acids by yeasts ... 29
 2.3.5.1 Assimilation of sugar (lactose) by yeasts .. 29
 2.3.5.2 Assimilation of organic acids by yeasts .. 30
 2.3.6 Aroma compounds produced by yeasts ... 31
2.3.6.1 Aroma compounds produced by *G. candidum* .. 32
2.3.6.2 Aroma compounds produced by *Y. lipolytica* .. 35
2.3.6.3 Aroma compounds produced by co-cultures of yeasts and bacteria 36
2.4 Natural conversion of free linoleic acid to CLA ... 38
2.4.1 CLA: isomers and structures ... 38
2.4.2 Biological activities of CLA ... 39
2.4.3 Sources of CLA ... 40
2.4.3.1 Biosynthesis of CLA in the rumen ... 40
2.4.3.2 CLA in milk and dairy products ... 40
2.4.4 Conversion of linoleic acid to CLA by dairy cultures 42
2.4.4.1 CLA conversion by *Propionibacterium* sp. .. 44
2.4.4.2 CLA conversion by *Lactobacillus* sp. .. 45
2.4.4.3 CLA conversion by *Bifidobacterium* sp. ... 45
2.4.4.4 Effect of the phase of growth on CLA synthesis ... 46
2.4.4.5 Effect of additives on CLA synthesis .. 46
2.4.4.6 Mechanism of CLA conversion ... 46
2.5 Production of phenyl ethyl alcohol and related aromatic compounds by yeasts 48
2.5.1 Biological production of PE: pathways of phenylalanine degradation 48
2.5.1.1 The effect of the constituents of the medium on the production of PE and other aromatic volatile compounds ... 53
2.5.1.2 The effect of the culture conditions on the production of PE and other aromatic volatile compounds ... 56
2.6 Conclusions .. 57

Chapter 3. Objectives ... 58

Chapter 4. Characterisation of three dairy yeasts for their potential use as flavour cultures in cheese ... 60
4.1 Introduction .. 60
4.2 Materials and methods ... 62
4.2.1 Growth experiments ... 62
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.2 Enzyme activities</td>
<td></td>
</tr>
<tr>
<td>4.2.2.1 Sample preparation</td>
<td>64</td>
</tr>
<tr>
<td>4.2.2.2 Lipase assay</td>
<td>64</td>
</tr>
<tr>
<td>4.2.2.3 Proteinase assay</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3 Estimation of volatile compounds</td>
<td>67</td>
</tr>
<tr>
<td>4.2.4 Statistical analysis</td>
<td>67</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1 Characterisation of G. candidum</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1.1 Growth characteristics of G. candidum</td>
<td>68</td>
</tr>
<tr>
<td>4.3.1.2 Lipase activity of G. candidum</td>
<td>71</td>
</tr>
<tr>
<td>4.3.1.3 Proteinase activity of G. candidum</td>
<td>72</td>
</tr>
<tr>
<td>4.3.1.4 Production of volatile compounds by G. candidum</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2 Characterisation of Y. lipolytica</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2.1 Growth characteristics of Y. lipolytica</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2.2 Lipase activity of Y. lipolytica</td>
<td>77</td>
</tr>
<tr>
<td>4.3.2.3 Proteinase activity of Y. lipolytica</td>
<td>80</td>
</tr>
<tr>
<td>4.3.2.4 Production of volatile compounds by Y. lipolytica</td>
<td>80</td>
</tr>
<tr>
<td>4.3.3 Characterisation of C. kefyr</td>
<td>81</td>
</tr>
<tr>
<td>4.3.3.1 Growth characteristics of C. kefyr</td>
<td>81</td>
</tr>
<tr>
<td>4.3.3.2 Lipase activity of C. kefyr</td>
<td>82</td>
</tr>
<tr>
<td>4.3.3.3 Proteinase activity of C. kefyr</td>
<td>83</td>
</tr>
<tr>
<td>4.3.3.4 Production of volatile compounds by C. kefyr</td>
<td>83</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>84</td>
</tr>
<tr>
<td>4.4.1 Growth</td>
<td>84</td>
</tr>
<tr>
<td>4.4.2 Lipase activity</td>
<td>86</td>
</tr>
<tr>
<td>4.4.3 Proteinase activity</td>
<td>87</td>
</tr>
<tr>
<td>4.4.4 Volatile flavour compounds</td>
<td>88</td>
</tr>
<tr>
<td>4.5 Conclusions</td>
<td>89</td>
</tr>
<tr>
<td>Chapter 5. Yeasts as adjunct cultures in Cheddar cheese</td>
<td>90</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Materials and methods</td>
<td>92</td>
</tr>
<tr>
<td>5.2.1 Cheese manufacture</td>
<td>92</td>
</tr>
</tbody>
</table>
5.2.2 Estimation of free fatty acids (FFAs) in cheese .. 94
5.2.3 Estimation of total fatty acids (free plus esterified) in cheese 95
5.2.4 Estimation of peptides in cheese .. 96
5.2.5 Estimation of volatile compounds ... 97
5.2.6 Composition analysis ... 97
5.3 Results .. 99
5.3.1 Cheddar cheese with \textit{G. candidum} adjunct culture 99
5.3.1.1 Composition and pH .. 99
5.3.1.2 Lipolysis ... 100
5.3.1.3 Proteolysis .. 104
5.3.1.4 Production of volatile compounds .. 106
5.3.2 Cheddar cheese with \textit{Y. lipolytica} adjunct culture .. 107
5.3.2.1 Composition and pH .. 107
5.3.2.2 Lipolysis ... 108
5.3.2.3 Proteolysis .. 111
5.3.2.4 Production of volatile compounds .. 112
5.4 Discussion ... 114
5.4.1 Lipolysis in cheese ... 115
5.4.2 Proteolysis in cheese ... 118
5.4.3 Production of volatile compounds in cheese ... 119
5.5 Conclusions .. 120

\textbf{Chapter 6. Yeast adjuncts in a washed-curd, dry-salted cheese} 121
6.1 Introduction .. 121
6.2 Materials and methods .. 123
6.2.1 Culture preparation for cheese manufacture .. 123
6.2.2 Cheese manufacture ... 123
6.2.3 Estimation of free CLA .. 125
6.2.4 Microbial analysis ... 126
6.3 Results .. 127
6.3.1 pH, composition and yeast count of cheeses (10 kg blocks) 127
6.3.2 Fermentation by propionibacteria in cheeses ripened at 20°C (10 kg blocks) 128
6.3.3 Lipolysis in cheeses ripened at 20°C (10 kg blocks) .. 129
6.3.4 CLA content in cheeses ripened at 20°C (10 kg blocks) 134
6.3.5 Volatile compounds in cheeses ripened at 20°C (10 kg blocks) 137
6.3.6 Effect of ripening temperatures on the cheeses with yeast adjuncts
(10 kg blocks) .. 138
6.3.7 Effect of different levels of yeast adjuncts on the ripening of cheeses at 20°C
(1 kg blocks) .. 143
6.3.7.1 Cheeses with different levels of G. candidum adjunct culture 144
6.3.7.1.1 Fermentation by propionibacteria ... 144
6.3.7.1.2 Lipolysis .. 145
6.3.7.1.3 Production of volatile compounds.. 146
6.3.7.2 Cheeses with different levels of Y. lipolytica adjunct culture 148
6.3.7.2.1 Fermentation by propionibacteria ... 148
6.3.7.2.2 Lipolysis .. 148
6.3.7.2.3 Production of volatile compounds.. 151
6.4 Discussion ... 153
6.5 Conclusions ... 156

Chapter 7. Production of volatile aroma compounds by C. kefyr through L-
phenylalanine metabolism .. 158
7.1 Introduction ... 158
7.2 Materials and methods .. 160
7.2.1 Growing the cultures ... 160
7.2.2 Estimation of volatile compounds... 160
7.2.3 Correlating the concentrations of metabolites and GC–MS peak areas ... 161
7.2.4 Estimation of L-phe ... 161
7.2.5 Estimation of glucose ... 162
7.2.6 Statistical analysis .. 163
7.3 Results .. 164
7.3.1 Dynamics of L-phe metabolism by C. kefyr ... 164
7.3.2 Effect of different initial concentrations of L-phe .. 166
7.3.3 Effect of different initial concentrations of glucose .. 171
7.4 Discussion .. 174
7.5 Conclusions ... 177

Chapter 8. Final conclusions ... 178

Chapter 9. Future directions .. 182

References .. 184

Appendices

Appendix 4.1 Correlation between OD$_{600}$ and dry cell weight (mg/mL) of G. candidum culture ... 204

Appendix 4.2 Correlation between OD$_{600}$ and dry cell weight (mg/mL) of Y. lipolytica culture ... 205

Appendix 4.3 Correlation between OD$_{600}$ and dry cell weight (mg/mL) of C. kefyr culture ... 206

Appendix 4.4 Volatile compounds detected in 24 h G. candidum cultures grown under different conditions ... 207

Appendix 4.5 Volatile compounds detected in 24 h Y. lipolytica cultures grown under different conditions ... 208

Appendix 4.6 Volatile compounds detected in 24 h C. kefyr cultures grown under different conditions ... 209

Appendix 5.1 Correlation between retention time and molecular weight in SE-HPLC 210
Appendix 5.2A Concentrations of FFAs originating from milk fat (mg/g cheese) in Cheddar cheeses made without (G1) and with (G2, G3 and G4) *G. candidum* over 6 months of ripening at 13°C

Appendix 5.2B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in Cheddar cheeses made without (G1) and with (G2, G3 and G4) *G. candidum* over 6 months of ripening at 13°C

Appendix 5.3A Concentrations of FFAs originating from milk fat (mg/g cheese) in Cheddar cheeses made without (Y1) and with (Y2, Y3 and Y4) *Y. lipolytica* over 6 months of ripening at 13°C

Appendix 5.3B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in Cheddar cheeses made without (Y1) and with (Y2, Y3 and Y4) *Y. lipolytica* over 6 months of ripening at 13°C

Appendix 6.1 Screening propionibacteria for CLA synthesis

Appendix 6.2A Concentrations of FFAs originating from milk fat (mg/g cheese) in washed-curd, dry-salted cheeses made without yeast adjuncts or extraneous enzyme (C), with yeast adjuncts (E1, E2 and E3) and with commercial lipase (M) over 4 months of ripening at 20°C

Appendix 6.2B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in washed-curd, dry-salted cheeses made without yeast adjuncts or extraneous enzyme (C), with yeast adjuncts (E1, E2 and E3) and with commercial lipase (M) over 4 months of ripening at 20°C

Appendix 6.3 Concentrations of acetic acid and propionic acid in cheeses containing yeast adjuncts with and without added linoleic-acid-rich safflower oil after 2 months of ripening at 20°C
Appendix 6.4A Volatile compounds produced in washed-curd, dry-salted cheeses made without (C) and with (E1, E2 and E3) yeast adjuncts after 4 month of ripening at 20°C

Appendix 6.4B Sensory analysis of washed-curd, dry-salted cheeses ripened at 20°C

Appendix 6.5 Concentrations of acetic acid (A), propionic acid (B) and FFAs originating from milk fat (C) in 4-month-old washed-curd, dry-salted cheeses containing yeast adjuncts at different ripening temperatures.

Appendix 6.6A Concentrations of FFAs originating from milk fat (mg/g cheese) in 2- and 4-month-old washed-curd, dry-salted cheeses containing yeast adjuncts and ripened at different temperatures.

Appendix 6.6B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in 2- and 4-month-old washed-curd, dry-salted cheeses containing yeast adjuncts and ripened at different temperatures.

Appendix 6.7A Concentrations of FFAs originating from milk fat (mg/g cheese) in 1-, 2- and 4-month-old washed-curd, dry-salted cheeses containing G. candidum adjuncts at different levels and ripened at 20°C.

Appendix 6.7B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in 1-, 2- and 4-month-old washed-curd, dry-salted cheeses containing G. candidum adjuncts at different levels and ripened at 20°C.

Appendix 6.8 Production of acetic acid and propionic acid by propionibacteria in washed-curd, dry-salted cheeses in the presence of different concentrations of Y. lipolytica adjunct over 4 months of ripening at 20°C.

Appendix 6.9A Concentrations of FFAs originating from milk fat (mg/g cheese) in 1-, 2- and 4-month-old washed-curd, dry-salted cheeses containing Y. lipolytica adjuncts at different levels and ripened at 20°C.
Appendix 6.9B Concentrations of FFAs originating from milk fat (as a % of total FFAs) in 1-, 2- and 4-month-old washed-curd, dry-salted cheeses containing Y. lipolytica adjuncts at different levels and ripened at 20°C .. 230

Appendix 7.1 Correlation between OD₆₀₀ and dry cell weight (mg/mL) of C. kefyr in a medium containing 13.9 mM L-phe and 61.2 mM glucose (30°C and 200 rev/min). . 231

Appendix 7.2A Correlation between relative peak areas detected by GC–MS (10⁶) and PE concentrations (mM). .. 232

Appendix 7.2B Correlation between relative peak areas detected by GC–MS (10⁶) and PEA concentrations (mM). .. 233

Appendix 7.2C Correlation between relative peak areas detected by GC–MS (10⁶) and benzaldehyde concentrations (mM). ... 234

Appendix 7.3 Correlation between OD₂₉₀ values and L-phe concentrations (mM). ... 335

Appendix 7.4 Correlation between OD₅₁₀ values and glucose concentrations (mM). 236

Appendix 7.5 Dry cell weight and pH data for C. kefyr cultures grown in media containing different initial concentrations of L-phe at 30°C with 200 rev/min for 72 h (average results from two independent fermentations) .. 237
List of tables

Table 2.1 Biological activities of CLA ... 39

Table 2.2 Comparison of the concentrations of \textit{cis}-9, \textit{trans}-11 C18:2 (CLA) in dairy products from different studies (table adapted from Jiang \textit{et al.}, 1997) .. 41

Table 2.3 Dairy cultures capable of converting linoleic acid to CLA, the media used and the sources of the linoleic acid: studied by various researchers .. 43

Table 2.4 Production of aromatic volatile compounds from phenylalanine by different yeasts. .. 52

Table 4.1 Volatile compounds detected in \textit{G. candidum} shake culture grown in glucose medium at 30°C at different points of incubation .. 74

Table 4.2 Volatile compounds detected in \textit{Y. lipolytica} shake culture grown in glucose medium at 30°C at different points of incubation .. 80

Table 4.3 Proteinase activities in different cell fractions of \textit{C. kefyr} shake cultures grown in glucose medium at 30°C .. 83

Table 4.4 Volatile compounds detected in \textit{C. kefyr} shake culture grown in glucose medium at 30°C at different points of incubation .. 84

Table 5.1 Culture conditions of \textit{G. candidum} adjunct cultures and the manufacturing steps in which the adjunct cultures were added .. 92

Table 5.2 Culture conditions of \textit{Y. lipolytica} adjunct cultures and the manufacturing steps in which the adjunct cultures were added .. 93

Table 5.3 pH and composition of 1-day-old Cheddar cheeses with (G2, G3 and G4) and without (G1) \textit{G. candidum} adjunct culture .. 99
Table 5.4 Ratio between long-chain unsaturated (C18:1 and C18:2) and saturated (C14, C16 and C18) FFAs in the different cheeses between 1 and 6 months of ripening at 13°C

Table 5.5 Proteins and peptides as proportions of the total peak area in different cheeses (G1, G2, G3 and G4) at three sampling points (1 day, 30 days and 60 days) of ripening at 13°C

Table 5.6 Volatile compounds produced in the cheeses without (G1) and with (G2, G3 and G4) G. candidum adjunct culture after 6 months of ripening at 13°C

Table 5.7 pH and composition of 1-day-old Cheddar cheeses without (Y1) and with (Y2, Y3 and Y4) Y. lipolytica adjunct culture

Table 5.8 Proteins and peptides as proportions of the total peak area in different cheeses (Y1, Y2, Y3 and Y4) at three sampling points (1 day, 30 days and 60 days) of ripening at 13°C

Table 5.9 Volatile compounds produced in the cheeses without (Y1) and with (Y2, Y3 and Y4) Y. lipolytica adjunct culture after 6 months ripening at 13°C

Table 6.1A Microbial adjuncts and extraneous enzymes added to different cheese vats

Table 6.1B Curd (1 kg) from vat C was mixed with different levels of yeast adjuncts

Table 6.2 pH and composition of the 1-day-old cheeses (average values from duplicate analyses)

Table 6.3 Yeast counts (cfu/g cheese) in different cheeses at 1 day and 2 months (average values from duplicate analyses)

Table 6.4 Viable cell counts of propionibacteria (cfu/g cheese) in different cheeses at 1 day and 2 months (average values from duplicate analyses)
Table 6.5 Concentrations of the free CLA isomers in the 2-month-old cheeses made with and without yeast adjuncts and ripened at 20°C

Table 6.6 Concentrations of the total CLA isomers (free plus esterified) in the 2-month-old cheeses made with and without yeast adjuncts and ripened at 20°C

Table 6.7 Free and total CLA content in the C and E1 cheeses over the ripening period

Table 6.8 Ratio between long-chain unsaturated (C18:1 and C18:2) and saturated (C14, C16 and C18) FFAs in different cheeses after 2 and 4 months of ripening at 20, 13 and 10°C

Table 6.9 Free and total (free plus esterified) CLA content in the C and E1, E2 and E3 cheeses after 2 months of ripening at different temperatures

Table 6.10 Volatile compounds produced in cheeses with different levels of *G. candidum* after 4 months of ripening at 20°C

Table 6.11 Volatile compounds produced in cheeses with different levels of *Y. lipolytica* after 4 months of ripening at 20°C

Table 7.1 Comparison of the production of PE by some yeasts in media supplemented with L-phe
List of figures

Figure 2.1 Chemical structures of linoleic acid and CLA (the cis-9, trans-11 isomer). 39

Figure 2.2 Catabolism of L-phe and biosynthesis of PE in yeast (Etschmann et al., 2002). ... 49

Figure 2.3 (a) Ehrlich pathway for PE synthesis. ... 50

Figure 2.3 (b) L-phe degradation in yeasts via the cinnamate pathway. 51

Figure 4.1A Preparation of fractions from yeast cultures, designated extracellular, washed-cell and intracellular fractions. .. 65

Figure 4.1B Schematic representation of enzyme location during cultivation of yeast cells: enzymes located in intracellular (1), washed-cell (C) and extracellular (E) fractions (diagram adapted from Pereira-Meirelles et al., 2000). ... 65

Figure 4.2 G. candidum grown in glucose medium as a shake or static culture over 72 h of incubation at 30°C. ... 69

Figure 4.3 Dry cell weights of G. candidum shake cultures grown in glucose medium and safflower oil medium over 168 h of incubation at 30°C. 70

Figure 4.4 Changes in pH of G. candidum shake and static cultures grown in glucose medium and safflower oil medium over 168 h of incubation at 30°C. 70

Figure 4.5 Extracellular lipase activities of G. candidum shake and static cultures grown in glucose medium and safflower oil medium at 30°C. 71

Figure 4.6 Intracellular proteinase activities of G. candidum shake cultures grown in glucose medium and safflower oil medium at 30°C. 72
Figure 4.7 Dry cell weights of *Y. lipolytica* shake and static cultures grown in glucose medium and safflower oil medium over 264 h of incubation at 30°C. 75

Figure 4.8 Changes in pH of *Y. lipolytica* shake and static cultures in glucose medium and safflower oil medium over 264 h of incubation at 30°C. .. 76

Figure 4.9A Intracellular, washed-cell and extracellular lipase activities in *Y. lipolytica* shake cultures in glucose medium incubated at 30°C. .. 77

Figure 4.9B Intracellular, washed-cell and extracellular lipase activities of *Y. lipolytica* static cultures in glucose medium incubated at 30°C. .. 78

Figure 4.9C Intracellular, washed-cell and extracellular lipase activities of *Y. lipolytica* shake cultures in safflower oil medium incubated at 30°C. ... 79

Figure 4.9D Intracellular, washed-cell and extracellular lipase activities of *Y. lipolytica* static cultures in safflower oil medium incubated at 30°C. ... 79

Figure 4.10 Dry cell weights of *C. kefyr* shake and static cultures grown in glucose medium and safflower oil medium over 148 h of incubation at 30°C. 81

Figure 4.11 Changes in pH of *C. kefyr* shake and static cultures grown in glucose medium and safflower oil medium over 148 h of incubation at 30°C. 82

Figure 5.1 Production of total FFAs from four vats of cheeses over 6 months of ripening at 13°C. G1 is the control cheese without any yeast adjunct culture; G2, G3 and G4 are cheeses with *G. candidum* adjunct cultures, grown under different conditions and added at different steps as summarised in Table 5.1. ... 100

Figure 5.2 Comparison of the proportions of the individual FFAs expressed as a % of the total FFAs originating from milk fat in 4-month-old Cheddar cheeses containing *G. candidum* (G2, G3 and G4) with those of the 4-month-old control cheese (G1), as well as with the total fatty acid (free plus esterified) profile of the reference cheese............... 102
Figure 5.3 Production of total FFAs from four vats of cheeses over 6 months of ripening at 13°C. Y1 is the control cheese without any yeast adjunct culture; Y2, Y3 and Y4 are cheeses with Y. lipolytica adjunct cultures, grown under different conditions as summarised in Table 5.2

Figure 5.4 Comparison of the proportions of the individual FFAs expressed as a % of the total FFAs originating from milk fat in 4-month-old Cheddar cheese containing Y. lipolytica (Y4) with those of the 4-month-old control cheese (Y1), as well as with the total fatty acid (free plus esterified) profile of the reference cheese

Figure 6.1 Concentration of acetic acid (A) and propionic acid (B) in the control cheese C and in the cheeses with yeast adjuncts (E1, E2 and E3) and a commercial enzyme preparation (M) over 4 months of ripening at 20°C

Figure 6.2 Concentrations of total FFAs in the control (C) and experimental (E1, E2, E3 and M) cheeses over 4 months of ripening at 20°C

Figure 6.3 Comparison of the proportions of the individual FFAs expressed as a % of the total FFAs originating from milk fat in 4-month-old cheeses (C, E1, E2, E3 and M) with the total fatty acid (free and esterified) profile of the reference cheese

Figure 6.4 Concentrations of free linoleic acid in the C, E1, E2, E3 and M cheeses

Figure 6.5 Concentrations of free linoleic acid and CLA in cheeses containing yeast adjuncts with and without added linoleic-acid-rich safflower oil after 2 months of ripening at 20°C

Figure 6.6 Relative concentrations of ethyl esters of butanoic acid (C4), hexanoic acid (C6) and octanoic acid (C8) in the control cheese C without yeast adjuncts and in the cheeses with yeast adjuncts, E1, E2 and E3, after 4 months of ripening at 20°C

Figure 6.7 Concentrations of acetic acid (A), propionic acid (B) and total FFAs originating from milk fat (C) in the 2-month-old cheeses containing yeast adjuncts ripened at different temperatures
Figure 6.8 Comparison of the proportions of the individual FFAs expressed as a % of the total FFAs originating from milk fat in 4-month-old cheese containing yeast adjuncts (E1) ripened at 20, 13 and 10°C with the total fatty acid (free plus esterified) profile of the reference cheese... 141

Figure 6.9 Production of acetic acid (A) and propionic acid (B) by propionibacteria in the presence of different concentrations of G. candidum adjunct culture over 4 months of ripening at 20°C .. 144

Figure 6.10 Production of total FFAs in cheeses with different levels of G. candidum adjunct culture over 4 months of ripening at 20°C .. 145

Figure 6.11 Production of total FFAs in cheeses with different levels of Y. lipolytica adjunct culture over 4 months of ripening at 20°C .. 149

Figure 6.12 Comparison of the proportions of the individual FFAs expressed as a % of the total FFAs originating from milk fat in 4-month-old (ripened at 20°C) cheeses made without (C) and with different levels of Y. lipolytica (YL20, YL100 and YL500) with the total fatty acid (free plus esterified) profile of the reference cheese........................... 150

Figure 7.1 Dry cell weight and glucose concentration (A) and concentrations of L-phe, PE and PEA (B) in C. kefyr cultures over 72 h of incubation.. 165

Figure 7.2 Concentrations of L-phe in C. kefyr cultures grown in media containing different initial concentrations of L-phe over 72 h of incubation. The initial concentrations of the L-phe in the media for cultures A, B, C, D and E were 0.1, 7.8, 12.2, 26.5 and 50 mM respectively... 167

Figure 7.3 Production of PE, PEA and benzaldehyde in C. kefyr cultures with different initial concentrations of L-phe over 72 h of incubation... 168

Figure 7.4 Concentrations of ethyl acetate, 1-hydroxy-3-methyl butylacetate and 3-methyl butanol in C. kefyr cultures over 72 h of incubation.. 170
Figure 7.5 Changes in glucose concentrations in *C. kefyr* cultures in media with different initial glucose concentrations over 72 h of incubation. The initial concentrations of glucose in the media for cultures G, H, I and J were 61.3, 125.1, 232.3 and 487.1 mM respectively.

Figure 7.6 Production of PE and PEA in *C. kefyr* cultures with different initial concentrations of glucose over 72 h of incubation.