Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
NUTRITIONAL STUDIES ON *LOTUS CORNICULATUS* CONTAINING CONDENSED TANNINS TO INCREASE REPRODUCTIVE RATE AND LAMB GROWTH UNDER COMMERCIAL DRYLAND FARMING CONDITIONS

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Animal Science

At Massey University, Palmerston North,
New Zealand

Carlos Alberto Ramírez-Restrepo
2004
DECLARATION

The studies presented in this thesis were completed by the author whilst a Postgraduate student in the Institute of Veterinary, Animal and Biomedical Science, Massey University, Palmerston North, New Zealand. I hereby affirm that the content of this thesis is original research conducted by the author. All views and conclusions are the sole responsibility of the author. All references to previous work are included in the References section of each chapter. Any assistance received during the preparation of this thesis has been acknowledged.

I certify that the content of this thesis has not already been submitted for any degree and is not being currently submitted for any other degree. I certify that to the best of my knowledge any help received in preparing this thesis, and all sources of materials used, have been acknowledged in the thesis.

Carlos Alberto Ramírez-Restrepo
PhD candidate

Professor T. N. Barry
Chief Supervisor

Dr. W. C. McNabb
Co-supervisor

T. G. Harvey
Co-supervisor

Dr. P.D. Kemp
Co-supervisor

N. M. Shadbolt
Co-supervisor
ABSTRACT

Five rotational grazing experiments were carried out at Massey University's Riverside farm, in the Wairarapa, on the East Coast of the Southern North Island, New Zealand, to compare the effects of feeding *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) or perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) dominant pasture upon sheep year round productivity. These studies also investigated under grazing, seasonal and annual net herbage accumulation rate and seasonal dynamics of undisturbed (i.e. non-grazed) net herbage accumulation rate of *L. corniculatus* relative to that of grass-dominant pasture. Aspects of *in vivo* digestibility of dry matter (DMD), organic matter (OMD), digestible organic matter in the dry matter (DOMD) and metabolisable energy (ME) concentration of *L. corniculatus* at different stages of maturity over the spring, summer and autumn were investigated in three indoor digestion trials.

1. Two field experiments (Chapter 2) were conducted during spring to assess the effects of grazing mixed age undrenched ewes on *L. corniculatus* (*n* = 50) or pasture (*n* = 50) and their lambs (mainly twins) on live weight (LW), wool production, faecal nematode egg count (FEC) and dag score. In Experiment 1 (18 October 2000 to 21 January 2001) and Experiment 2 (3 October 2001 to 2 January 2002) both forages were fed *ad libitum*. Total condensed tannin (CT) concentration in the diet selected was 24 to 27 g CT/kg DM for *L. corniculatus* and 1.4 to 1.5 g CT/kg DM for pasture. The LW gain, weaning LW and wool production were consistently greater (*P* < 0.001) for lambs grazing *L. corniculatus*, in either
Experiment 1 (258 vs. 189 g/day; 36.1 vs. 30.1 kg; 1.17 vs. 0.98 kg) and in Experiment 2 (247 vs. 162 g/day; 31.8 vs. 24.1 kg; 1.17 vs. 0.81 kg), respectively. Ewe and lamb dag scores were strongly and positively correlated with dag weight ($P < 0.001$) and generally increased with time in sheep grazing pasture, whilst grazing on *L. corniculatus* consistently reduced dag score. FEC in ewes grazing pasture showed a post-parturient rise (PPR) following lambing, whilst ewes grazing *L. corniculatus* had a reduced PPR in FEC. Up to day 70, FEC in lambs grazing *L. corniculatus* was lower than that for lambs grazing pasture, but between day 70 and the end of both experiments (approximately day 90), FEC in lambs grazing *L. corniculatus* increased to similar values as for pasture-fed lambs. FEC was not correlated with dag score or dag weight in ewes or lambs grazing pasture, but these indices were weakly and positively correlated in ewes and lambs grazing *L. corniculatus*, suggesting that lowering FEC on *L. corniculatus* also reduced dag formation.

It was concluded that under dryland farming conditions, the use of *L. corniculatus* during the spring/early summer lactation period can increase lamb LW and wool production, whilst eliminating the need for pre-lambing anthelmintic drenching and probably reducing the amount of insecticide needed to control flystrike. These effects compared to pasture are probably due to higher digestibility, higher ME concentration, higher voluntary feed intake (VFI), and to the effect of CT in reducing rumen protein degradability and controlling internal parasites in sheep grazing *L. corniculatus*. The absence of endophyte in *L. corniculatus* may have also have contributed to these effects.
2. During 2001 and 2002 (Chapter 3), grazing trials from February to November were conducted for 279 days (Experiments 1) and 285 days (Experiment 2), to compare the effects of grazing shorn mixed age Romney ewes in light condition on *L. corniculatus* versus pasture during the mating period (9 weeks, Experiment 1) and 11 weeks (Experiment 2). In Experiment 2, the length of time (days) that ewes need to graze *L. corniculatus* before mating to maximise reproductive performance was also investigated. Common objectives in both Experiments were to measure forage feeding effects on ewe wool production and LW of their lambs at weaning.

In Experiment 1, groups of ewes (*n* = 100) were fed on either *L. corniculatus* or pasture at a herbage allowance of 1.8 kg green DM/ewe/day for the first three weeks of feeding and increased to *ad libitum* (2.3 kg green DM/ewe/day) during the mating period for two cycles. In Experiment 2, groups of 75 ewes grazed *L. corniculatus* for 42, 21, 10 and 0 days before a synchronised oestrus, with pasture being grazed for the balance of the 42 days. All *L. corniculatus* groups continued grazing *L. corniculatus* for a further 5 weeks. Feed allowance was initially 2.0 kg green DM/ewe/day, increased to 2.3 kg green DM/ewe/day during the mating period over the two cycles. At the end of *L. corniculatus* feeding in both experiments the groups were combined and grazed on pasture until weaning. Total CT concentration in the diet selected was 18 to 29 g CT/kg DM for *L. corniculatus*, with only trace amounts in pasture.
In Experiment 1 mating ewes on *L. corniculatus* compared to pasture increased number of lambs born and lambs weaned per ewe lambing by 16 and 32% units respectively (*P* < 0.05), due to more multiple and less single births (*P* = 0.06) and to reduced lamb mortality (*P* < 0.05) between birth and weaning. In Experiment 2, increasing the numbers of days of grazing *L. corniculatus* before ovulation (0, 10, 21, 42 days) linearly increased ovulation rate (*P* < 0.05), lambs born and lamb weaned by up to 16% units, but had no effect upon lamb mortality. Mating ewes on *L. corniculatus* increased wool production (*P* < 0.01) and fibre length (*P* < 0.05) in Experiment 1 but not in Experiment 2. Grazing *L. corniculatus* had no effect on lamb birth weight and only small positive effects on weaning LW.

It was concluded that, under commercial dryland farming conditions, the use of *L. corniculatus* during the mating season in late summer/autumn can be used to increase reproductive efficiency and wool production, with the largest responses in years with exceptionally dry autumn periods. These effects are probably due to the higher digestibility and ME concentration of *L. corniculatus* than pasture and to the CT in *L. corniculatus* reducing rumen protein degradability and leading to greater essential amino acid (EAA) absorption from the small intestine. Effects of forage CT upon the uterine microenvironment at the time of conception, implantation and early foetal growth, need to be investigated in future studies. It is also suggested that effects of mating on *L. corniculatus* upon lamb mortality between birth and weaning should be further investigated with ewe numbers/treatment increased from 100 to 350.
3. During the summer of 2002/2003, another grazing trial (Chapter 4: 95 days) compared the effects of grazing *L. corniculatus* and pasture on LW and the dynamics of nematode parasite infection in Suffolk x Romney weaned lambs fed *ad libitum*. Half of the lambs (*n* = 30) grazing either *L. corniculatus* or pasture received oral anthelmintic at the start and at monthly intervals (regular-drenched groups), whilst the remaining 30 lambs in each treatment only received oral anthelmintic when mean faecal nematode egg counts (FECs) exceed 1,000 eggs/g wet faeces (trigger-drenched groups), which occurred on day 58 only for both groups. Trigger and regular-drench lambs grazed separate areas. Total CT concentration in the diet selected was 40 to 31 g CT/kg DM for *L. corniculatus*, with only trace amounts in pasture.

Regular-drenched lambs grazing *L. corniculatus* had significantly higher LW gain (298 g/day) and carcass weight gain (133 g/day) than all the other groups, whilst trigger-drenched lambs grazing *L. corniculatus* had significantly greater LW gain (228 g/day) and carcass gain (99 g/day) than regular-drenched (200; 66 g/day) and trigger-drenched (187; 63 g/day) lambs grazing pasture. Carcass fatness was significantly lower for trigger-drenched lambs than for regular-drenched lambs, when fed either *L. corniculatus* or pasture. Dag score was consistently lower for regular-drenched lambs grazing *L. corniculatus* than pasture; trigger-drenched lambs showed similar effects up to day 48, with no differences between the two groups thereafter. Regular anthelmintic treatment maintained FECs at low values, while parasitised lambs on *L. corniculatus* tended to have higher FECs than pasture-fed lambs. Relative to trigger-drenched lambs that grazed pasture, grazing
trigger-drenched lambs on *L. corniculatus* had significantly reduced worm burdens of *Haemochus contortus*, *Teladosargia* spp., *Nematodirus* spp. and *Cooperia* spp. at slaughter, but greater burdens of *Trichostrongylus* spp., *Chabertia ovina*, *Oesophagostomum* spp. and *Trichuris ovis* were present in *L. corniculatus*-fed lambs.

It was concluded that grazing *L. corniculatus* under dryland farming conditions compared to pasture can increase LW gain of weaned lambs, whilst reducing reliance on anthelmintic drenches to control parasites. These effects are probably due to increased protein supply from the action of CT enabling the lambs to have a higher LW gain when carrying a parasite burden, and to *L. corniculatus* better maintaining its high ME value under drought conditions. Using *L. corniculatus* to finish weaned lambs without anthelmintic drenches for a seven-week period is proposed.

4. A three-year study (Chapter 5; November 2000 to October 2003) was conducted to compare, under grazing conditions, seasonal and annual grazed net herbage accumulation rate and seasonal dynamics of undisturbed (i.e. non-grazed) net herbage accumulation rate of *L. corniculatus* relative to grass-dominant pasture. Prediction equations to estimate standing DM in *L. corniculatus* and pasture from the rising plate meter (RPM) and sward surface height were also generated.

L. corniculatus and pasture growing in a moderate fertility and low-pH soil (pH 5.35) accumulated similar total herbage masses (24.3 vs. 24.1 t DM/ha) over the 3-year period, with the DM production being greater for *L. corniculatus* than for
pasture during 2000–2001, producing more DM during summer/autumn drought conditions. The net herbage accumulation rate from undisturbed areas of *L. corniculatus* and pasture were similar in spring, summer and autumn. Seasonal variation in the calibration regressions fitted to estimate herbage mass of *L. corniculatus* non-destructively, suggested a combination of destructive and non-destructive methods are needed to assess herbage mass. It was concluded that *L. corniculatus* has the potential to increase the performance of a pasture-based sheep dryland farming system due to its ability to grow in acidic soils, its tolerance of drought conditions during summer/autumn and its seasonality of feed supply.

5. Three digestion experiments involving cryptorchid weaned lambs were conducted for 14 days over the spring, summer and autumn to determine changes in *in vivo* digestibility of DM, OM, digestible OM in the DM and ME concentration of *L. corniculatus* at different stages of maturity. *In vivo* digestibility samples were then used as standards to investigate if the enzymatic *in vitro* system of Roughan and Holland (1977) could predict OMD and DOMD of CT-containing *L. corniculatus*. Digestibility of *L. corniculatus* declined as it matured, but the rate of decline was much less than occurs for temperate grasses and for white clover. It was concluded that the *in vitro* enzymatic system of Roughan and Holland (1977) can be used to predict OMD and DOMD of *L. corniculatus*, provided a standard curve involving *in vivo* data generated with *L. corniculatus* is used. Using a standard curve with *in vivo* data from pasture led to bias which increased at lower OMD values. Reasons for the consistent differences between *L. corniculatus* and
pasture standard curves are discussed, including possible effects of residual bound CT in lowering in vitro digestibility.

From this series of experiments, this study is the first to report that relative to conventional perennial ryegrass/white clover, mating ewes on *L. corniculatus* under grazing conditions may reduce post-natal lamb mortality. It is also the first study to show that grazing sheep on *L. corniculatus* can maintain productivity during spring and summer with reduced dependence on anthelmintic drench input. It is concluded that whole farm modelling, mechanical harvesting and conservation strategies, selection of *L. corniculatus* germplasm for creeping-type plants more suited to grazing and the integration of new crops containing secondary compounds, such as chicory, should be considered to support major advances in sustainable dryland sheep farming systems.
ACKNOWLEDGEMENTS

I am especially grateful to my Chief Supervisor Professor Tom Barry, Institute of Veterinary, Animal and Biomedical Sciences, Massey University not only for providing me with the opportunity to undertake a PhD course of study, but also for his teaching philosophy, excellent guidance, friendship, continued support, feedback on manuscripts and close advice throughout the course of this research. I am also very grateful for interest, expert agronomic guidance and assistance given by my Co-supervisor, Dr. Peter D. Kemp, Institute of Natural Resources, Massey University.

I also wish to express my deepest gratitude to my Co-supervisors, Dr. Warren C. McNabb, Nutrition and Behaviour Group, AgResearch Limited, Mrs. Nicola M. Shadbolt, Institute of Food, Nutrition and Human Health, Massey University and Dr. Tim G. Harvey, Agricultural Services, Massey University for their helpful advice, support and encouragement given to make this PhD thesis a successful co-tutorial.

My heartfelt thanks to my first teacher in school Mrs. Carmen Viuda de Peña, who with preparation, communication, serenity and love taught me to read and write and also how to study and reach academic goals throughout life.

I am deeply indebted to Dr. Nicolás López-Villalobos, Institute of Veterinary, Animal and Biomedical Sciences for his encouragement, invaluable criticism, cultural understanding and statistical advice.
Special thanks are extended to Dr. Bill W. Pomroy, Mrs. Barbara Adlington and Ms. Anne Tunnicliffe, Institute of Veterinary, Animal and Biomedical Sciences for technical advice on parasitology issues and Ms. Felicity S. Jackson, Miss Maggie L. Zou and Mr. Hian S. Voon for their skilled technical laboratory assistance. Thanks are extended to Andrew Rowatt, Roper Quentin and Mrs. Gillian Budge, Institute of Veterinary, Animal and Biomedical Sciences for their skilful computer support.

Geoff Purchas, Institute of Veterinary, Animal and Biomedical Science, Mr. Neil Kilmister, Mr. James Bruce, Mr. Gavin Anstis, Mr. Colin Morgan and Mr. Nathan Crombie, Massey University's Riverside farm, and Alastair McDonald, Gareth Evans and Geoff Warren, Agricultural Services are thanked immensely for their valuable help and support to this project.

On behalf of my wife, Carmen Lucia, and our children, María Paulina and Sebastian, I would sincerely like to express our deepest gratitude for the support provided by: the community in Masterton in the Wairarapa, where this experimental programme was developed and to the Catholic Church there and in Palmerston North. We also thank Mr. Charles Chua and Mrs. Silvia Hooker, International Students Office and the staff at the English Language Centre, Massey University. Their friendship, assistance, cooperation and help cannot be forgotten.

I am extremely grateful to Meat & Wool Innovations for financially supporting this project.
Finally, my profound gratitude to the New Zealand Ministry of Foreign Affairs and Trade and Massey University in New Zealand, and the Colombian Agriculture Research Agency (CORPOICA) for the provision of Scholarship support for my studies.
THIS THESIS IS DEDICATED TO

MY CHILDREN SEBASTIAN AND MARIA PAULINA,
MY WIFE CARMEN LUCIA,
MY PARENTS RODRIGO AND EDITH,
AND MY SISTER MARIA ELENA
FOR THEIR ENDLESS LOVE, PATIENCE, ENCOURAGEMENT
AND DEVOTED SUPPORT
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxx</td>
</tr>
</tbody>
</table>

Chapter 1. A REVIEW OF LITERATURE

1.1 *LOTUS CORNICULATUS AS A FORAGE PLANT*

1.1.1 Introduction
1.1.2 Agronomic characteristics
1.1.3 Uses
1.1.4 Cultivars
1.1.5 Establishment and growth
 1.1.5.1 Rhizobial requirements
 1.1.5.2 Nitrogen fixation
 1.1.5.3 Soil pH effects
 1.1.5.4 Plant density
 1.1.5.5 Dry matter production
 1.1.5.6 Persistence and pest resistance

xv
1.1.6 Management 15
1.1.7 Chemical composition 16
1.1.7.1 Nutrient concentration 16

1.2 EFFECT OF CONDENSED TANNINS IN LOTUS CORNICULATUS UPON NUTRIENT UTILISATION 17

1.2.1 Chemical properties 17
1.2.2 Condensed tannins, location and concentration 20
1.2.3 Condensed tannins and voluntary feed intake 21
1.2.4 Condensed tannins and rumen digestion of protein 22
1.2.5 Condensed tannins and amino acid absorption from the small intestine 23
1.2.6 Condensed tannins and fibre digestion 25
1.2.7 Condensed tannins and hormonal response 26

1.3 LOTUS CORNICULATUS AND FEEDING VALUE 28

1.3.1 Wool growth and body growth 28
1.3.2 Milk yield and composition 30
1.3.3 Reproductive performance 32

1.4 INTERNAL PARASITES AND DAG FORMATION IN SHEEP 33

1.4.1 Gastro-intestinal nematodes 33
1.4.2 Larval dynamics on pasture 35
1.4.3 Methods for measuring parasites 38
1.4.4 Effect on nutrient metabolism 40
1.4.5 Production losses 41

xvi
2.3 RESULTS

2.3.1 Forage and botanical composition

2.3.2 Chemical composition

2.3.3 Liveweight gain, wool production, wool characteristics and dag weight

2.3.4 Dag score, faecal nematode egg counts and larval culture

2.3.5 Correlations

2.4 DISCUSSION

2.6 REFERENCES

Chapter 3. USE OF LOTUS CORNICULATUS CONTAINING CONDENSED TANNINS TO INCREASE REPRODUCTIVE EFFICIENCY IN EWES UNDER COMMERCIAL DRYLAND FARMING CONDITIONS

ABSTRACT

3.1 INTRODUCTION

3.2 MATERIALS AND METHODS

3.2.1 Experimental design

3.2.2 Climatic factors

3.2.3 Forages

3.2.4 Grazing management
3.2.4.1 Experiment 1 127
3.2.4.2 Experiment 2 128
3.2.5 Animal measurements 128
3.2.5.1 Experiment 1 128
3.2.5.2 Experiment 2 129
3.2.6 Laboratory analyses 129
3.2.6.1 Forages 129
3.2.6.2 Wool samples 130
3.2.7 Statistical analyses 130

3.3 RESULTS 132

3.3.1 Forage and botanical composition 132
3.3.2 Chemical composition 134
3.3.3 Live weight, wool production and wool characteristics 134
3.3.4 Reproductive rate, lamb survival and lamb body growth 140
3.3.5 Correlations 142

3.4 DISCUSSION 146

3.5 REFERENCES 152
Chapter 4. USE OF LOTUS CORNICULATUS CONTAINING CONDENSED TANNINS TO INCREASE LAMB GROWTH OVER THE SUMMER UNDER COMMERCIAL DRYLAND FARMING CONDITIONS WITH MINIMAL ANTHELMINTIC DRENCH INPUT

ABSTRACT

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Experimental design
4.2.2 Forages
4.2.3 Grazing management
4.2.4 Animal measurements
4.2.5 Laboratory analyses
4.2.5.1 Forages
4.2.5.2 Parasitological techniques
4.2.6 Statistical analyses

4.3 RESULTS

4.3.1 Forage and botanical composition
4.3.2 Chemical composition
4.3.3 Conception treatment
4.3.4 Live weight, liveweight gain, carcass weight and fatness values
4.3.5 Dag score, faecal egg counts and gastrointestinal nematode burdens
Chapter 5. PRODUCTION OF LOTUS CORNICULATUS UNDER GRAZING IN A DRYLAND ENVIRONMENT

ABSTRACT

5.1 INTRODUCTION

5.2 MATERIALS AND METHODS

5.2.1 Experimental design
5.2.2 Establishment and grazing management
5.2.3 Plant measurements
5.2.4 Climatic conditions
5.2.5 Calculation of data and statistical analyses

5.3 RESULTS

5.3.1 Rainfall and soil temperature
5.3.2 Annual and seasonal dry matter production
5.3.3 Grazed net herbage accumulation rate
5.3.4 Un-grazed net herbage accumulation rate
5.3.5Estimation of yields
Chapter 6. ORGANIC MATTER DIGESTIBILITY CONDENSED TANNIN-CONTAINING LOTUS CORNICULATUS AND ITS PREDICTION IN VITRO USING CELLULOSE/HEMICELLULOSE ENZYMES

ABSTRACT

6.1 INTRODUCTION

6.2 MATERIALS AND METHODS

6.2.1 Forage and diets
6.2.2 Animals and in vivo digestibility
6.2.3 Analyses
6.2.4 In vitro digestibility
6.2.5 Statistical analyses

6.3 RESULTS

6.4 DISCUSSION

6.5 REFERENCES
Chapter 7. GENERAL DISCUSSION

7.1 INTRODUCTION

7.2 SYNTHESIS OF RESULTS

7.2.1 Reproductive performance
7.2.2 Lactation and wool production
7.2.3 Finishing of weaned lambs and sustainable control of parasitism
7.2.4 Agronomic value of *Lotus corniculatus*
7.2.5 Chemical composition and nutritive value of *Lotus corniculatus*

7.3 IMPLICATION FOR PRODUCTION SYSTEMS; FUTURE TECHNOLOGY TRANSFER AND RESEARCH NEEDS

7.4 REFERENCES
LIST OF FIGURES

CHAPTER 1

Figure 1.1 Biosynthetic origins of hydrolysable and condensed tannins, and lignin, in plants (Swain, 1979).

Figure 1.2 Duodenal non-ammonia nitrogen (NAN) flow per unit total nitrogen intake as a function of herbage condensed tannin concentration in sheep fed on *Lotus* species. (○) High- and (●) low-tannin *Lotus pedunculatus*. (∆), high- and (▲) low-tannin *Lotus corniculatus*. Results are compared with the non-tannin containing herbages; (□), short rotation ryegrass, (■) perennial ryegrass, and (■) white clover. All results are for an N intake of 28 g/d and refer to fresh forages. Adapted from Barry and McNabb (1999).

Figure 1.3 Milk production (g/h) (a) and yields (g/h) of (b) protein, (c) lactose, and (d) fat in the milk of twin lactating ewes grazing *Lotus corniculatus*. Control ewes (▲); ewes given twice-daily oral supplementation of polyethylene glycol (PEG; MW 3500) (○). Means are for 14 ewes per treatment. Vertical bars represent S.E.S. (Wang *et al.*, 1996a).

Figure 1.4 Representation of seasonal contamination by nematode egg output of un-drrenched ewes and lambs and the pattern of larval availability on the pasture (Brunsdon, 1981).

Figure 1.5 Faecal egg output (a) and pasture contamination with L₃ larvae (b) of undrenched ewes and lambs (…) and five times
anthelmintic drenched lambs (−) grazing perennial ryegrass/white clover pasture during twelve months of the year. (Adapted from Brunsdon, 1981). The data refers to whole farm ewe and lamb systems, with the lambs either drenched or undrenched.

CHAPTER 2

Figure 2.1 Comparative dag score of ewes and lambs grazing (♦) *Lotus corniculatus* L. (birdsfoot trefoil) and (■) perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture in two consecutive experiments.

Figure 2.2 Experiment 1. Comparative least square means of faecal egg counts (FEC) (eggs g/wet faeces) of ewes grazing (♦) *Lotus corniculatus* or (■) perennial ryegrass/white clover pasture. Vertical bars show pooled standard error from square-root transformed data for clearer interpretation of trends.

Figure 2.3 Experiment 2. Least square means of faecal egg counts (FEC) (eggs g/wet faeces) of ewes grazing *Lotus corniculatus* (♦) or perennial ryegrass/white clover pasture (■). I = pooled standard error from square-root transformed data for clearer interpretation of trends.

Figure 2.4 Experiment 1. Least square mean values of FEC (eggs g/wet faeces) in groups of lambs grazing (♦) *Lotus corniculatus* or (■) perennial ryegrass/white clover pasture. Bars represent pooled standard error from square-root transformed data for clearer interpretation of trends.
Figure 2.5 Experiment 2. Least square mean values of FEC (eggs g/wet faeces) in groups of lambs grazing *Lotus corniculatus* (♦) or perennial ryegrass/white clover pasture (■). I = pooled standard error from square-root transformed data for clearer interpretation of trends.

Figure 2.6 Experiment 2. Comparative proportions of infective gastrointestinal nematode larvae of ewes and lambs grazing (■) *Lotus corniculatus* L. (birdsfoot trefoil) and (■) perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture. Chab/Oes: *Chabertia* and *Oesophagostomum* species. *(P < 0.05); **(P < 0.01); ****(P < 0.001).

CHAPTER 3

Figure 3.1 Experiment 1. (A) Mean live weight and (B) mean condition score of ewes fed (♦) *Lotus corniculatus* L. (birdsfoot trefoil) and (■) perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture over the mating period of 2001 and changes afterwards until weaning (I= S.E.M).

Figure 3.2 Experiment 2. (A) Comparative live weight and (B) condition score of ewes grazing (×) perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture and *Lotus corniculatus* L. (birdsfoot trefoil) over the mating period of 2002 and changes afterwards until weaning. Groups of ewes were grazed on *L. corniculatus* for (♦), 21 (■), 10 (×) days before ovulation and continued on *L. corniculatus* during the mating. Vertical bars (I) represent pooled standard error for clearer interpretation of trends.
Chapter 4

Figure 4.1 Pre-grazing dead matter in areas of *Lotus corniculatus* (●) and perennial ryegrass/white clover pasture (■) grazed by groups or weaned lambs regularly anthelmintic treated or trigger-drenched over the spring/summer season of 2002 and 2003 in a commercial dryland system on the East Coast of New Zealand. Vertical bars represent one standard error of the mean.

Figure 4.2 (A) Mean values of *in vitro* organic matter digestibility and (B) estimated metabolisable energy concentration (ME, MJ/ kg DM) of diet selected by treated and trigger treated lambs grazing *Lotus corniculatus* L. (birdsfoot trefoil; ●) and perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture (■) over the summer finishing season of 2002-2003 in a dryland pastoral system (*I* = S.E.M.).

Figure 4.3 Mean dag score of groups (A) regularly treated (at four weeks intervals) or (B) trigger-drenched lambs grazing *Lotus corniculatus* L. (birdsfoot trefoil; ●) and perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture (■). ▼ Indicates oral anthelmintic given. Vertical bars represent standard error of the mean.

Figure 4.4 Least square mean values of FECs (eggs g/wet faeces) in (A) groups regularly anthelmintic treated (at four weeks intervals) or (B) trigger-drenched lambs (one drench) grazing *Lotus corniculatus* (●) or perennial ryegrass/white clover pasture (■). Indicates oral anthelmintic given ▼. Bars show pooled standard error from square-root transformed data for clearer...
interpretation of trends.

Figure 4.5 Comparative proportions of infective gastrointestinal nematode larvae hatched from 10 days incubation at 25° C of in (A) groups regularly anthelmintic treated (at four week intervals) or (B) trigger-drenched lambs (one drench) grazing *Lotus corniculatus* L. (birdsfoot trefoil) (■) or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture (■). Chab/Oes: *Chabertia* and *Oesophagostomum* species.

Chapter 5

Figure 5.1 Grazed net herbage accumulation rate of (■) perennial 214 ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture and (♦) *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) grown in the Wairarapa on the East Coast of the North Island, New Zealand. Data collected from November 2000 to October 2003. Bars (I) indicate pooled standard error for clearer interpretation of trends when forages significantly different (*P* < 0.05).

Figure 5.2 Comparative un-grazed net herbage accumulation rate (kg 216 DM/ha/day) for spring/summer of (■) perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture and (♦) *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie). Measured from (A) 21/10/00 and 12/01/01 and (B) 7/10/02 to 10/02/03 in a commercial dryland pastoral system in the Wairarapa on the East Coast of the southern North Island, New Zealand. Vertical bars (I) indicate pooled standard error for clearer interpretation of trends.
Figure 5.3 Comparative un-grazed net herbage accumulation rate (kg DM/ha/day) for summer/autumn of (■) perennial ryegrass (Lolium perenne)/white clover (Trifolium repens) pasture and (♦) Lotus corniculatus L. (birdsfoot trefoil; cv. Grasslands Goldie). Measured from (A) 16/02/01 to 27/04/01 and (B) 5/02/02 and 15/04/02 in a commercial dryland pastoral farming system in the Wairarapa on the East Coast of the lower North Island, New Zealand. Vertical bars (I) represent pooled standard error for clearer interpretation of trends.

Figure 5.4 Calibration regressions to estimate herbage mass (kg DM/ha) as a function of plate meter reading (units) for Lotus corniculatus L. (birdsfoot trefoil; cv. Grasslands Goldie) during (A) early spring, (B) late spring, (C) summer, (D) autumn and (E) winter.

Figure 5.5 Comparative calibration regressions during early (A) and late (B) spring, summer (C), autumn (D) and winter (E) to estimate herbage mass (kg DM/ha) at ground level from sward stick height (cm) for Lotus corniculatus L. (birdsfoot trefoil; cv. Grasslands Goldie).

Chapter 6

Figure 6.1 Relationships between in vivo and in vitro digestibility for (A) organic matter digestibility (OMD) and (B) digestible organic matter in dry matter (DOMD) for Experiment 2, using samples of the diet selected by sheep grazing (▲) Lotus corniculatus L. (birdsfoot trefoil) and (■) perennial ryegrass/white clover (Lolium perenne/Trifolium repens) pasture.
LIST OF TABLES

CHAPTER 1

Table 1.1 Annual dry matter yields (t/ha) of *Lotus corniculatus* L. 13

Table 1.2 Mean values of chemical composition (g/kg dry matter (DM)) and *in vitro* organic matter digestibility (% OMD) in the diet select by sheep grazing *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie). 16

Table 1.3 Influence of season and low and high soil fertility on condensed tannin concentrations (% DM) in cultivars of *Lotus corniculatus* L. and *Lotus pedunculatus* (Grasslands Maku). 20

Table 1.4 Effect of CT concentration on the voluntary feed intake in sheep fed *Lotus* sp. Effects were deduced from comparing sheep fed each species with and without PEG supplementation. 21

Table 1.5 The effect of condensed tannins in sheep fed fresh *Lotus corniculatus* (L. c; 22 g/kg DM) and *Lotus pedunculatus* (L. p; 55 g/kg DM) upon the digestion of amino acids. Effects of CT were assessed through intraruminal infusion of polyethylene glycol (PEG, MW 3500) into half the animals fed each forage. 23

Table 1.6 Digestion of structural carbohydrates (cellulose, hemicellulose) and readily fermentable carbohydrates (soluble CHO + pectin) in sheep fed *Lotus pedunculatus* differing in total condensed tannin content and free condensed tannins due to applications of high (1), low (2) and zero (3) rates of polyethylene glycol 25
Together with effect of high (4) and low (5) soil fertility levels on condensed tannin concentration. Apparent digestibility, rumen digestion and post-ruminal digestion are expressed as proportions of feed intake.

Table 1.7 Condensed tannin effect on plasma hormone concentration in sheep fed *Lotus pedunculatus* differing in total condensed tannin content (TCT) due to applications of high (1), low (2) and zero (3) rates of polyethylene glycol (PEG; MW 3350).

Table 1.8 Wool production and liveweight gain (LWG) of sheep grazing *Lotus sp.*, lucerne (*Medicago sativa*), sulla (*Hedysarum coronarium*) and pasture (*Lolium perenne/Trifolium repens*) with or without polyethylene glycol (PEG) supplementation.

Table 1.9 Effect of grazing ewes on *Lotus corniculatus* L. or perennial ryegrass/white clover pasture (*Lolium perenne/Trifolium repens*), with or without supplementation with polyethylene glycol (PEG; MW 3500), on ovulation rate (corpora lutea/ewe mated), lambing (lambs born/ewe mated) and liveweight gain (LWG). Mean liveweight (LW) at the start of Experiments 1, 2 and 3 were respectively 54.2, 59.8 and 53.2 kg.

Table 1.10 Arithmetic mean liveweight gains (LWG; g/day), faecal egg counts (FEC; eggs per gram fresh faeces) and total worm burden of anthelmintic drenched (D) and un-drenched (UD) lambs grazing sulla (*Hedysarum coronarium*), lucerne (*Medicago sativa*), *Lotus sp.* and perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture.
CHAPTER 2

Table 2.1 Pre-grazing and post-grazing herbage mass (t DM/ha) and plant components of *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) and perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture.

Table 2.2 Total nitrogen (N), neutral detergent fibre (NDF), condensed tannin (CT), *in vitro* organic matter digestibility (OMD) and digestible organic matter in dry matter (DOMD), as well as estimated metabolisable energy concentration (ME, MJ/kg DM), of the diet selected by sheep grazing perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L.

Table 2.3 Effect of grazing ewes on perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L. upon animal productivity, without use of anthelmintic drench input in dryland farming conditions during two consecutive years.

Table 2.4 Liveweight change (kg), wool production (kg) and dag weight (g) of undrenched lambs grazing on perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L. over the springs 2000 and 2001.

Table 2.5 Correlation coefficients between faecal egg counts (FEC), dag weight and dag score in undrenched ewes and lambs over the springs of 2000 (Exp. 1) and 2001 (Exp. 2).

Table 2.6 Comparative performance of drenched (D) and undrenched XXII
(UD) lactating ewes and their lambs grazing *Lotus corniculatus* L., lucerne (*Medicago sativa*) or pasture (*Lolium perenne/Trifolium repens*).

CHAPTER 3

Table 3.1 Annual rainfall (mm) and seasonal soil (10 cm) and air temperatures during two consecutive years at Massey University’s Riverside farm, in the Wairarapa on the East Coast of the Southern North Island, New Zealand.

Table 3.2 Pre-grazing and post-grazing herbage mass (t DM/ha) and plant components of *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) and perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture that were grazed during mating in 2001 (Experiment 1) and in 2002 (Experiment 2) on the East Coast in New Zealand.

Table 3.3 Mean values of total nitrogen (N), neutral detergent fibre (NDF), condensed tannin (CT), *in vitro* organic matter digestibility (OMD) and digestible organic matter in dry matter (DOMD), and metabolisable energy concentration (ME, MJ/kg DM) of diet selected by sheep grazing perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L. during the mating season in two consecutive years under dryland farming conditions. Mean values with S.E.M.

Table 3.4 Experiment 1. Effect of grazing ewes on perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L. upon ewe liveweight change and body condition score during mating (72 days) and upon
wool production and fibre length at weaning during 2001 in a dryland pastoral system. Mean values with S.E.M.

Table 3.5 Experiment 2. Comparative liveweight change, wool production, wool characteristics and condition score in 2002 of ewes fed perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or *Lotus corniculatus* L. over the mating period (75 days). Mean values with S.E.M.

Table 3.6 Experiment 1. Effect of grazing ewes on perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or *Lotus corniculatus* L. on reproductive efficiency, lamb birth weight, lamb weaning weight and lamb mortality during 2001 in a dryland commercial pastoral system.

Table 3.7 Experiment 2. Effect of grazing ewes on perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or *Lotus corniculatus* L. on reproductive efficiency for cycle one and lamb mortality during the productive season of 2002 in a dryland farming system.

Table 3.8 Experiment 2. Comparative liveweight change of lambs conceived on perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or *Lotus corniculatus* L. over the productive season of 2002 in a commercial grazing dryland system on the East Coast of North Island of New Zealand. Mean values with S.E.M.

Table 3.9 Correlation coefficients between daily live weight gain, body condition score and ovulation rate (OR; square-root transformed) for cycle one in groups of ewes grazing
perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or *Lotus corniculatus* L. (birdsfoot trefoil) over the mating season of 2002 in a commercial dryland farming system.

Table 3.10 Estimated number of lambs and ewes needed to detect treatment differences in lamb mortality between birth and weaning at the 5% level of probability, based upon variation in the lamb mortality data generated between birth and weaning in Experiments 1 and 2.

CHAPTER 4

Table 4.1 Pre-grazing and post-grazing herbage mass (t DM/ha) and plant component of *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) and perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) over the spring/summer season of 2002 and 2003 in a commercial farm on the East Coast in New Zealand.

Table 4.2 Mean values of total nitrogen (N), neutral detergent fibre (NDF), *in vitro* organic matter digestibility (OMD) and digestible organic matter in dry matter (DOMD), estimated metabolisable energy concentration (ME, MJ/ kg DM), condensed tannin (CT) and phenolic fractions of diet selected by treated or trigger-treated lambs grazing *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture.

Table 4.3 Effect of grazing weaned lambs on *Lotus corniculatus* L. or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture.
repens) pasture upon animal productivity with regular and trigger anthelmaintic drench input in a dryland farming system.

Table 4.4 Comparative liveweight gain (g/day) of grazing weaned lambs on *Lotus corniculatus* L. or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture with regular and restricted anthelmintic drench input in a dryland pastoral system in the Wairarapa on the East Coast of North Island, New Zealand.

Table 4.5 Arithmetic means and least square means of natural log transformed worm counts data (± S.E.M.) in groups of trigger-drenched lambs grazing *Lotus corniculatus* L. (birdsfoot trefoil) or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture over the spring/summer autumn season of 2002-2003 in dryland farming conditions on the East Coast of the lower North Island, New Zealand.

Table 4.6 Arithmetic means and least square means of natural log transformed data and their standard errors of male and female worm counts in groups of trigger-drenched lambs grazing *Lotus corniculatus* L. (birdsfoot trefoil) or perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture over the spring/summer autumn season of 2002-2003 in dryland farming conditions in the Wairarapa on the East Coast of New Zealand.

CHAPTER 5

Table 5.1 Total and seasonal rainfall values compared with the 50-year average values, and mean diurnal soil temperature (10 cm
depth) over three consecutive years at Massey University’s Riverside farm, in the Wairarapa on the East Coast of the lower North Island, New Zealand.

Table 5.2 Annual and seasonal dry matter production (t DM/ha) of perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture or *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) averaged over three consecutive years in a commercial dryland farming system on the East Coast in New Zealand. Mean values with standard error (S.E.M).

Table 5.3 Comparative monthly regression parameters to estimate herbage mass (Y; kg DM/ha) at ground level from plate meter readings (X) for perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture or *Lotus corniculatus* L. (birdsfoot trefoil cv. Grasslands Goldie).

Table 5.4 Comparative slopes (β_1) required to formulate a calibration regression ($Y = \beta_1 x$) between herbage mass (kg DM/ha) from ground level and sward stick height (sward height; cm; X) for perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture or *Lotus corniculatus* L. (birdsfoot trefoil cv. Grasslands Goldie).

Table 5.5 Comparative seasonal slopes (β_1) required for the prediction of herbage mass (Y = $\beta_1 x$; kg DM/ha) at ground level from plate meter readings and sward stick height (sward height; cm) for perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture or *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie).
Chapter 6

Table 6.1 Chemical composition and least square mean values (± SE) of daily intake, *in vivo* digestibility for dry matter, organic matter, digestible organic matter in the dry matter and estimated metabolisable energy concentration (ME, MJ/ kg DM) of *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) at different growth stages, determined with cryptorchid weaned lambs.

Table 6.2 Standard curves for the prediction of *in vivo* organic matter digestibility (OMD; y) from *in vitro* organic matter digestibility (Roughan and Holland, 1977) (x) for perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture (80:20) or *Lotus corniculatus* L.

Table 6.3 Standard curves for the prediction of *in vivo* digestible organic matter in dry matter (DOMD; y) from *in vitro* DOMD (Roughan and Holland, 1977) (x) for perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) pasture (80:20) or *Lotus corniculatus* L.

Chapter 7

Table 7.1 Effect of feeding ewes for different lengths of time on *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) before mating on reproductive efficiency measured as ovulation rate (OR; *corpora lutea* (CL)/ewes mated) and as lambing percentage (lambs born/100 ewes lambing), relative to ewes grazing perennial ryegrass/white clover pasture.
Table 7.2 Comparative performance of non-parasitized (NP) and parasitized (P) lactating ewes and their lambs grazing *Lotus corniculatus* L., lucerne (*Medicago sativa*) or pasture (*Lolium perenne*/*Trifolium repens*).

Table 7.3 Comparative parasite status and liveweight gain of parasitized (P) and non-parasitized (NP) weaned lambs grazing perennial ryegrass (*Lolium perenne*)/white clover (*Trifolium repens*) pasture, lucerne (*Medicago sativa*) and condensed tannin (CT)-containing *Lotus corniculatus* L., sullila (*Hedysarum coronarium*), *Lotus pedunculatus* and chicory (*Chicorium intybus*).

Table 7.4 Depression in carcass weight gain (g/day) caused by internal parasites (regularly drenched animals – parasitized animals) in lambs grazing five forages for 100 days at low and high allowances.

Table 7.5 Effect of grazing weaner red deer on perennial ryegrass/white clover (*Lolium perenne*/*Trifolium repens*) pasture or chicory (*Cichorium intybus* cv. Grasslands Puna) with regular and trigger anthelmentic drench input upon animal productivity, clinical parasitism and nematodes worm counts from the lungs and gastrointestinal tract at slaughter. Grazing period was autumn 2002.

Table 7.6 Concentration in secondary compounds in temperate forages species with pastoral value for New Zealand farming systems.

Table 7.7 Mean values of metabolisable energy concentration (ME; MJ/kg DM), total nitrogen (N; g/kg DM) and condensed tannin
contents (CT; g/kg DM) of the diet selected by sheep and deer grazing perennial ryegrass/white clover (*Lolium perenne/Trifolium repens*) dominant pasture, *Lotus corniculatus* L. (birdsfoot trefoil; cv. Grasslands Goldie) or lucerne (*Medicago sativa*).