Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE ROLE OF DIET
IN FELINE
INFLAMMATORY BOWEL DISEASE

by

Claudia Esther Ugarte

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Veterinary Clinical Science
(Companion Animal Clinical Nutrition)

Massey University

2003
The Role of Diet in Feline Inflammatory Bowel Disease

Volume I
Inflammatory bowel disease (IBD) is a chronic, idiopathic inflammatory condition of the gut mainly studied in man but also recognized in the cat. The main constraint of working with IBD is that diagnosis cannot be reached with absolute certainty. A role for diet in the initiation and/or maintenance of chronic inflammation in IBD has long been suspected among a number of other possible risk factors. On the other hand, diet is also recognized as a very important mode of therapy in IBD. There is a paucity of information on feline IBD and the effects of dietary components on gastrointestinal inflammation in the cat. This is partly due to the lack of practical and effective techniques to improve diagnosis and easily monitor therapy in a clinical patient. To test the hypothesis that diet does have a role in feline IBD, a retrospective multicentre epidemiological study and two prospective dietary clinical trials examining the influence of different sources of carbohydrates and a dietary fibre equivalent were conducted. In addition a device for easy and simple collection of colo-rectal mucosal fluid was developed and tested in a small number of cats. This device may help to improve diagnosis or to measure responses to treatment, including the response to dietary management of feline inflammatory bowel disease.

Since IBD diagnosis is a deciding factor in the inclusion criteria for both the retrospective and prospective study, it is of pivotal importance to define how this diagnosis was reached. In this thesis a diagnosis of IBD was restricted to cats with chronic clinical signs of gastrointestinal disease (anorexia, vomiting, diarrhoea, weight loss, haematochezia) and signs of leukocytic infiltration in the lamina propria of the gastrointestinal tract. In addition these cats had negative serology for
FIV/FeLV, negative faecal flotation, normal haematology and biochemistry, normal serum thyroxine concentration, a lack of response to a week-long dietary trial and a lack of abnormalities detected either by abdominal radiography or ultrasound. Other tests were included in the prospective studies as considered necessary to establish the diagnosis.

The epidemiological study investigated diet and other risk factors associated with the presence of IBD in cats. Data on the signalment, stress factors (sexual activity, length of ownership, change of address, number of cats in the house, other pets in the house, frequency of boarding and cats show attendance), environment, temperament, lifestyle, presence of disease and diet prior to the diagnosis of IBD were collected. Matched (by age, gender and breed) and random control groups were included. Cats with IBD were commonly females, 7 to 15 years old. Exotic breeds were over-represented. In addition, having only one dog in the household appeared to be associated with the disease, while more than one did not. Overall, a higher frequency of potential stress factors appeared to significantly predispose to the disease. Vomiting, diarrhoea, anorexia and dental disease were found to be common in cats with IBD before diagnosis. Skin (acne, reaction to insecticide spray, eosinophilic plaque, plasma cell pododermatitis, otitis externa) and respiratory problems (sneezing or coughing) were also more prevalent among cats with IBD. Lifestyle, veterinary care and diet were very variable between countries but none of them proved to be significantly associated with feline IBD.

The retrospective nature of epidemiological studies does not allow all possible nutritional associations to be studied. This fact along with the known nutritional idiosyncrasies of feline nutrition provided the logic to investigate diet as a mode of treatment in two prospective dietary trials. One trial involved a comparison of different sources of starch (rice, barley, tapioca and corn 18.4 – 25.8%ME) by healthy cats and cats with IBD. The rationale for this comparison was that cats do not possess all the tools to deal with dietary carbohydrates when compared to other species, and that carbohydrate malabsorption can occur during gastrointestinal inflammation and contribute to the clinical signs of gastrointestinal disease. The other prospective dietary trial tested diets supplemented with different amounts of inulin (0, 0.1 or 0.2%DM). Inulin is an oligosaccharide which effects
in the gastrointestinal tract of man and other species resemble the actions of dietary fibre. The products of fermentation of dietary fibre are considered beneficial for colonic health and have been used for the treatment of idiopathic colitis in several species.

The study on carbohydrate tolerance was a crossover study that included a control group of healthy cats from a research facility and cats diagnosed with IBD (according to the criteria mentioned above). Breath hydrogen collection, faecal grade and water content, faecal sodium, faecal potassium, faecal osmolar gap and gastrointestinal clinical signs were used to compare carbohydrates. IBD cats showed a higher area under the curve (AUC) of breath hydrogen ($p=0.0001$) indicating malabsorption of carbohydrate, irrespective of starch source, when compared with healthy controls. No deleterious effects on faecal characteristics, clinical signs or body weight were observed. The faecal osmolar gap did not prove to be useful to identify cats with IBD. Rice increased faecal sodium/potassium ratio when compared with the other starches. In summary, carbohydrate malabsorption seems to be a feature of gastrointestinal inflammation in the cat but in the short term it does not seem to be detrimental in terms of clinical signs or body weight. On the other hand the feline colon appears to have an amazing capacity to maintain water absorption in the midst of an increased load of fermentable material. Hence carbohydrate malabsorption cannot be judged by faecal characteristics in the cat. In addition, the use of rice as the preferred carbohydrate for dietary management of feline IBD may need to be further examined since the AUC when consuming rice was similar or higher than with the other sources of starch. The significance of the finding that the rice based diet was associated with an increase in faecal sodium is uncertain.

The inulin study was conducted in healthy cats (20 belonging to a research facility and 10 owned by the public) and a small number of cats with IBD. Changes in microdissection parameters (number of dividing cells per crypt, number of epithelial cells per crypt cell column, crypt length, crypt width and crypt area) in the duodenum, colon and rectum were studied as well as changes in histological preparations, transit of radiopaque markers and macronutrient digestibility. The addition of inulin to feline diets was associated with an increase in the number of
epithelial cells per colonic crypt (p=0.006) and colonic crypt length (p=0.025) after the cats ate the diets supplemented with inulin for four weeks with no indication of a dose response to inulin. There was also a trend towards a greater number of dividing cells in duodenal (p=0.07) and colonic (p=0.07) crypts in publicly owned cats consuming the diet with 0.2% inulin. Much variation was found between research colony cats and publicly-owned cats before the trial started. The addition of inulin was not detrimental to faecal characteristics, macronutrient digestibility and did not cause any change in the transit of radiopaque markers in healthy cats. The increase in crypt cellularity in healthy cats is a potentially beneficial effect for the treatment of colitis but further research in cats with clinical colitis is required.
Dedicated to the

LOVING MEMORY

of my father
ACKNOWLEDGEMENTS

At the start of this degree I was told that it would be a ‘sink or swim experience’. Staying afloat was, at times, very difficult and I have swallowed a fair amount of water in the process. Little did I know when I started that besides the academic challenge, life would have a few surprises in store. However, the support of family and friends and the generosity of many people I did not know carried me through and were fundamental to my finishing of this thesis. Although this thesis will bare my name, it is the result of the time, effort and good will of many people.

I am indebted to my close and extended family as they were the ones that were always there (maintaining sanity within reach). My daughter Bali had no part with her mother many times but managed to love me anyway and forgave me always. My partner Craig generously accepted to be solo father for long periods of time. Granddad, Grandma and Nanna, Adrienne and Eva were always ready to step in when needed. I could not have done it without them.

I owe a more than large thank you to Nicolas Lopez-Villalobos for his selfless assistance with statistics and for providing enlightened discussion. I have to also thank him for his friendship and constant encouragement to finish this PhD by gentle prodding and nudging. You succeeded!

I am also extremely grateful to the many people that helped me through the experimental part of this thesis. Especially to Pat Davey and Pam Black from the pathology department, Debbie Anthony, Neil Ward and Dr McIntosh from the physiology department, Laurie Sandall from the virology department and Barbara Arlington from the parasitology department. They not only helped when they did not have to, but did it with a smile. They provided me with knowledge, bench space, instruments, keys to access laboratories, etc. In addition, many other technical and secretarial staff from Massey University helped at different times. I realize I was an interruption when they were already busy, and also know that without their unselfish attitude I would have not seen it through. I am also very
grateful to my assistants, Evelyn and Louise, for doing more than was required to obtain reliable results and take wonderful care of our friends the cats.

I thank Dr Wouter Hendriks, Heather and Karin from the Best Friend Feline Unit for allowing me to use their cats and for their assistance with the trials. Similarly, I thank Debbie Chesterfield from the Small Animal Production Unit for allowing me to use their facilities to keep some cats at no cost.

I also thank the Massey University Teaching Hospital, the Veterinary Teaching Hospital of the University of California at Davis and the Teaching Hospital of the University of Pennsylvania in Philadelphia for providing me with access to their records and clients. Far from home, Dr Stanley Marks and Dr Robert Washabau were especially attentive to my needs. I will not forget their kindness or their assistants Ann and Dan, which made my stay at these institutions extremely pleasant. In addition, the staff of these veterinary teaching hospitals provided much help in dealing with clinical cases and I thank them for that.

I am grateful to Dr Lois Roth at the Angell Memorial Hospital in Boston for accepting to review free of charge all pathology slides from the IBD cats, and do it without delay. Similarly I thank Dr Mark Collet for reading all slides from experimental cats and making a special effort to make some sense of the findings. I also thank Dr Robert Sanson, Dr Dirk Pfeiffer and Dr Joanna Olczak for reviewing and discussing the questionnaire for the project on epidemiology of IBD.

I am grateful, as well, to the Pathology service of the Ministry of Agriculture and Fisheries of New Zealand for providing a national search of their records and giving me free access to their pathology slide files which added many more cats to the epidemiology project.

I am very appreciative of the effort and support my sponsor, the Waltham Centre for Pet Nutrition, and their representative Dr Peter Markwell have given to this project. They provided all diets, advice, and discussion and generously funded the whole project.
I thank Dr Grant Guilford, my main supervisor, for carrying out the painful task of reading my original manuscripts and transforming my “Span-english” into easier to understand traditional English. I am sure that his effort much improved the final product and added further insight into tricky questions.

I am also grateful to the New Zealand small animal veterinarians at large and their staff for their willingness to participate in clinical research and for allowing me access to their clients. I thank as well all pet owners that patiently gave their free time to complete the epidemiology questionnaire and those that trusted me with their beloved pets.

I also thank my room-mates and fellow post-graduate students, especially Luis, Nicolas, Eli, Jose, Brendon, Julie, Kaylani, Mike, Carlos and Amy for sharing their time and experiences with me. Through the years they have come and gone, but the memory of time spent chatting, laughing and discussing issues will always bring a smile to my face. We may not have solved all the problems of this world, but we surely tried. They were always a source of encouragement.
THE ROLE OF DIET IN FELINE INFLAMMATORY BOWEL DISEASE

VOLUME 1

TABLE OF CONTENTS

Abstract.. ii
Acknowledgements... vii
Table of contents .. x
List of figures... xviii
List of tables ... xxi
List of diagrams.. xxiv

VOLUME I

CHAPTER 1

INTRODUCTION... 1

References .. 6
CHAPTER 2

REVIEW OF THE ROLE OF DIET IN FELINE INFLAMMATORY BOWEL DISEASE 17

Introduction .. 18

DIAGNOSIS OF EXCLUSION: A TRUE DIAGNOSIS? ... 18

EPIDEMIOLOGY ... 17

Sex .. 18

Age .. 18

Race and breed ... 19

Allergic disease and respiratory infections ... 20

Breast feeding and gastrointestinal disease ... 21

Stress ... 21

Smoking ... 22

Diet .. 23

Crohn’s disease ... 23

Ulcerative colitis ... 24

Constraints of dietary epidemiology ... 24

Miscellaneous .. 26

CAUSAL FACTORS .. 27

Inherited defects ... 27

Mucosal barrier defects ... 30

Increase leakage of proteins and peptides .. 31

Disturbances of oral tolerance ... 34

Enterocytes as effective antigen presenting cells ... 40

Gut inflammation and dietary perspective ... 41

The immunological response to dietary antigens ... 44

The bacterial flora and IBD .. 48
DIETARY MANAGEMENT .. 56
Method of feeding and diet characteristics ... 59
Protein, amino acids and nucleotides... 67
Protein requirements in IBD ... 72
Arginine, ornithine and polyamines ... 73
Nucleotides and nucleosides .. 75
Glutamine ... 76
Taurine, cysteine and methionine ... 78
Fats ... 79
Minerals and vitamins ... 88
Fat soluble vitamins .. 88
Water soluble vitamins ... 91
Minerals ... 93
Antioxidants .. 94
Probiotics, prebiotics and synbiotics ... 97
Probiotics ... 99
Prebiotics .. 101
Synbiotics ... 103
Carbohydrates .. 104
Dietary Fibre .. 106
Dietary fibre research: a complex arena ... 106
Composition of dietary fibre .. 109
Dietary fibre properties ... 113
Nutritional value of dietary fibre and its effects on gastrointestinal structure116 and function ... 116

THE CAT AND DIETARY FIBRE: WHAT DO WE KNOW SO FAR? 143
CONCLUSIONS ... 149
References ... 151
CHAPTER 3
MULTICENTRE EPIDEMIOLOGICAL STUDY OF FELINE INFLAMMATORY BOWEL DISEASE

Materials and Methods ... 206
Results ... 215
Signalment variables ... 215
 Sex .. 215
 Hair length ... 215
 Coat colour .. 217
 Breed ... 217
 Weight ... 220
 Body condition .. 220
 Age ... 220
Stress variables .. 222
 Age at neutering .. 222
 Length of ownership .. 222
 Area of residence .. 223
 Address changes .. 223
 Number of cats in the household .. 225
 Presence of other (non-feline) pets in the household ... 227
 Frequency of boarding .. 229
 Attendance at cat shows .. 230
 Stress score ... 230
Environment, temperament and lifestyle variables .. 230
 Exposure to cigarette smoke .. 230
 Presence of a cat door ... 232
 Time spent outdoors .. 232
Fighting frequency ... 233
Physical activity ... 234
Sleeping quarters ... 235
Veterinary visits ... 235
Vaccination and worming ... 236
Temperament ... 237

History of Disease ... 240

Clinical Signs of gastrointestinal disease

Anorexia ... 240
Vomiting ... 242
Diarrhoea ... 242

Urinary Disease ... 243

Skin disease and flea allergy dermatitis (FAD) ... 244

Dental disease ... 245

Adverse reactions to food ... 245

Joint disease ... 245

Respiratory disease ... 245

Upper respiratory tract signs ... 245

Sneezing or coughing ... 245

Asthma or wheezing ... 245

Other diseases ... 245

Diet, eating behaviour and hunting activity ... 247

Who fed the cat? ... 247

Frequency of feeding ... 247

Rapidity of food consumption ... 248

Fastidiousness towards food ... 248

Hunting activity ... 248

Dietary history ... 250

Pet foods ... 250

Fresh or cooked meat meals ... 252
CHAPTER 5
THE EFFECTS OF INULIN ON THE GASTROINTESTINAL TRACT OF HEALTHY CATS AND ITS POSSIBLE APPLICATIONS TO FELINE INFLAMMATORY BOWEL DISEASE WITH PARTICULAR EMPHASIS ON THE LARGE BOWEL

Materials and methods

Results

Healthy cats- food intake
Healthy cats- faecal output
Healthy cats- dietary apparent digestibility
Healthy cats- histology
Healthy cats- microdissection measurements of the duodenum
Healthy cats- microdissection measurements of the colon
Healthy cats- microdissection measurements of the rectum
Summary of microdissection results
Healthy cats- colonic transit time
Cats with idiopathic colitis

Discussion

CONCLUSIONS

References

CHAPTER 6
REVIEW ON THE USES AND COLLECTION METHODS OF FAECAL AND COLO-RECTAL MUCOSAL FLUID IN GASTROINTESTINAL DISEASE DIAGNOSIS AND DEVELOPMENT OF A NOVEL DEVICE FOR RECOVERY OF COLO-RECTAL FLUID IN THE CAT
Methods used to collect faecal fluid

Dilution based methods of faecal fluid collection .. 474

Non-dilution methods of faecal fluid collection ... 475

Miscellaneous methods used to collect intestinal or mucosal fluid 479

Applications and constraints of the use of faecal fluid and dialysis bags in gastrointestinal
disease diagnosis ... 481

Materials and methods .. 485

Results ... 487

Discussion .. 488

CONCLUSIONS .. 489

References .. 489

APPENDIX to Chapter 6 ... 494

Preliminary development of capsules

Laboratory pilot study of a capsule containing filter paper and absorbent crystals 495

Use of capsules containing filter paper and water absorbing crystals in a
small number of cats ... 496

References .. 497
LIST OF FIGURES

CHAPTER 1

Figure 1.- Dietary influences in Inflammatory Bowel Disease ..3

CHAPTER 3

Figure 1.- Distribution of IBD cases collected at different sites..207
Figure 2.- Sex distribution in a multicentre population of cats diagnosed with IBD216
Figure 3A.- Frequency of different breeds among IBD cats and a healthy random population of cats........219
Figure 3B.- Frequency of different breeds among IBD cats in different institutions219
Figure 4.- Age distribution of IBD cats and a healthy random cat population ..221
Figure 5.- Frequency of IBD and random control healthy cats living in cities and rural areas224
Figure 6.- Frequency of IBD cats in single cat and multiple cat households among different institutions226
Figure 7.- Frequency of IBD and healthy cats living with other pets in the household228
Figure 8.- Percentage of cats among IBD and control cats with different stress scores231
Figure 9.- Temperament distribution among IBD and random control cats in NZ and America239
Figure 10.- Presence of gastrointestinal signs and other diseases among control and IBD cats (before disease diagnosis) ..241
Figure 11.- Proportion of different types of commercial cat foods (dry and canned) in the daily Meal of IBD and control cats ..251
Figure 12.- Proportion of different types of commercial cat foods (dry and canned) in the daily meal of cats in America and New Zealand ..251
CHAPTER 4

Figure 1.- Feeding Schedule ... 320

Figure 2.- Feline breath hydrogen AUC in healthy and IBD cats while consuming different sources of carbohydrates ... 332

Figure 3.- Breath hydrogen curves from healthy and IBD cats consuming diets with different sources of carbohydrates ... 333

Figure 4.- Faecal water content and faecal grade ... 336

Figure 5.- Proportion of total number of stools produced by five different diets in IBD and control cats .. 338

Figure 6.- Faecal osmolar gap, sodium and potassium ... 339

APPENDIX to Chapter 4

Figure A1.- Increase in faecal fluid osmolality with delay in measurement 358

Figure A2.- Scatter diagram of sodium content in faecal fluid and processed faeces 364

Figure A3.- Scatter diagram of potassium content in faecal fluid and processed faeces 365

Figure A4.- Scatter diagram of differences between the faecal fluid and diluted faeces osmolar gap and their mean .. 371

Figure A5.- Scatter diagram of differences between the faecal fluid and dilute faeces osmolar gap mean (using regression equations for calculation of electrolyte concentration) ... 371

Figure A6.- Scatter diagram of faecal osmolar gap measured in faecal fluid and in diluted faeces .. 374

CHAPTER 5

Figure 1.- Faecal grading scale .. 397

Figure 2.- Mounting tissue for morphometry .. 403

Figure 3.- Measurement of surface area in a crypt using a cylinder as a model 404

Figure 4.- Crypt measurements ... 405

Figure 5.- Mitotic figures and crypts from different segments of the gastrointestinal tract as seen when using the microdissection technique ... 406

Figure 6.- Mean +/- SEM daily food intake in grams per Kg of metabolic weight (BW^{0.75}) in colony and publicly owned cats consuming the experimental diets .. 411

Figure 7.- Diet composition expressed on a dry matter basis. Digestibility expressed as mean +/-SEM .. 413
Figure 8.- Differences in digestibility between colony cats and publicly owned cats consuming diets with different content of inulin (NF=control diet with no inulin added, F1=0.1% and F2=0.2% inulin)...413

Figure 9.- Duodenal morphometric parameters (mean +/-SEM) in colony and publicly owned cats consuming three different diets (NF=control diet, F1=0.1% DM, F2=0.2%DM inulin added)...417

Figure 10.- Duodenal villi morphometric parameters (mean +/-SEM) in colony and publicly owned cats consuming three different diets (NF=control diet, F1=0.1%DM, F2=0.2%DM inulin added)...423

Figure 11.- Colon mucosal crypts from three different healthy cats as seen with the microdissection technique...427

Figure 12.- Rectal mucosal crypts from three different healthy cats as seen with the microdissection technique...427

Figure 13.- Colonic morphometric parameters (mean +/-SEM) in colony and publicly owned cats consuming three different diets (NF=control diet, F1=0.1%DM, F2=0.2%DM inulin added)...429

Figure 14.- Rectal morphometric parameters (mean +/-SEM) in colony and publicly owned cats consuming three different diets (NF=control diet, F1=0.1%DM, F2=0.2%DM inulin added)...435

Figure 15.- Distribution of BIPS (%) along the gastrointestinal tract of colony and publicly owned cats fed three different experimental diets...443

Figure 16.- Colonic geometric centres of large BIPS in cats consuming three different diets444

Figure 17.- Colonic geometric centres of small BIPS in cats consuming three different diets444

Figure 18.- Colonic geometric centres of large BIPS in healthy cats tested at three different stages...445

Figure 19.- Gastrointestinal transit time of small (A) and large (B) BIPS in three cats with colitis ...450

Figure 20.- Colonic geometric centres of large BIPS in IBD cats consuming different diets450

Figure 21.- Colonic geometric centres of small BIPS in IBD cats consuming different diets450

CHAPTER 6

Figure 1.- Capsule for faecal fluid collection ..486

APPENDIX to Chapter 6

FigureA1.- Capsule trial in the laboratory to demonstrate fluid absorption by filter paper from a thin fluid film ..496
LIST OF TABLES

CHAPTER 3

Table 1.- Risk factor investigated in this study ... 212
Table 2.- Breeds frequency among IBD cats and their odds ratios 218
Table 3.- Frequency of age groups and odds ratios of IBD cats 221
Table 4.- Frequency of age groups and odds ratios of IBD cats 221
Table 5.- Odds ratios of cats with IBD vs. random control cats living in different areas 224
Table 6.- Odds ratios of IBD cats whose owners changed address sometime during the cat’s life .. 225
Table 7.- Odds ratios of feline IBD in multiple cat households 226
Table 8.- Odds ratios in cats living with other pets ... 228
Table 9.- Odds ratios in healthy and IBD cats according to their use of boarding facilities 229
Table 10.- Stress scoring system .. 231
Table 11.- Odds ratios of IBD cats regarding fighting behaviour 234
Table 12.- Odds ratios of IBD cats regarding physical activity 234
Table 13.- Odds ratios of IB cats according to how often they visit their veterinarian 236
Table 14.- Odds ratios of temperament in IBD cats compared with the random controls 238
Table 15.- Stepwise conditional logistic regression results .. 255
Table 16.- Log-linear model results ... 256

CHAPTER 4

Table 1.- Diet composition ... 316
Table 2.- Median breath hydrogen peak times (hours) in healthy and IBD cats consuming different sources of carbohydrates .. 334
Table 3.- Mean +/- SEM indexes of hydrogen production in cats consuming different starch sources

Table 4.- Faecal sodium, potassium content and faecal osmolar gap in IBD and healthy cats consuming different starch sources

Table 5.- Mean faecal sodium/potassium ratio in feline faeces produced while consuming four different carbohydrates

APPENDIX to Chapter 4

Table A1.- Faecal fluid obtained from feline faeces by ultracentrifugation

Table A2.- Osmolality (mOsm/l) of faecal fluid (FF), diluted faecal fluid and conversion to true osmolality using the dilution factor

Table A3.- Faecal fluid and faecal water content

Table A4.- Osmolality of faecal fluid and of diluted faeces calculated by two dilution methods

Table A5.- Details of cats that provided feline intestinal contents for measurement

Table A6.- Osmolality (mOsm/l) of gut contents in cats immediately after euthanasia

Table A7.- Content of sodium and potassium in diluted and non-diluted faecal fluid

Table A8.- Sodium and potassium content (mmol/l) of faecal fluid and diluted faeces using two different dilution factors

Table A9.- Sodium content in diluted faeces calculated according to a regression equation

Table A10.- Potassium content in diluted faeces calculated with a regression equation

Table A11.- Differences in sodium and potassium measurements in faecal fluid between the flame photometer and an ion selective electrode

Table A12.- Comparison of the faecal osmolar gap in normal consistency faeces and diarrhoea samples using the original (Osmolar Gap) and dilution methods –PF(FF) and PF(FW)

Table A13.- Faecal osmolar gap calculated by suing serum osmolality in faecal fluid (Osm Gap), diluted faeces (OG PF) and using a regression equation (OG EQ)

Table A14.- Calculation of bias, limits of agreement and their confidence intervals between the osmotic gap measured in faecal fluid (Osm Gap), diluted faeces (OG PF) and using regression equations (OG EQ)

Table A15.- Use of the faecal osmolar gap calculated with serum osmolality and faecal fluid electrolytes to differentiate diarrhoea from normal faeces

Table A16.- Results of oven drying of feline faeces. Weigh in gram after being in the oven a certain number of days

Table A17.- Results of freeze drying faeces. Weight in grams
CHAPTER 5

Table 1.- Diet composition

Table 2.- Experimental design

Table 3.- Faecal production in colony and public owned cats consuming three different diets

Table 4.- Cell counts and morphometric mean +/-SEM measurements of duodenal crypts in colony cats and cats owned by the public

Table 5.- Morphometric mean +/- SEM measurements of duodenal villi in colony cats and publicly owned cats

Table 6.- Cell counts and morphometric mean +/- SEM measurements of duodenal crypts in colony cats and publicly owned cats

Table 7.- Cell counts and morphometric mean +/- SEM measurements of colonic crypts in colony cats and publicly owned cats

Table 8.- Mean percentage of BIPS not eliminated at 36 hours post-ingestion

Table 9.- Cell counts and morphometric mean +/- SEM measurements in cats with colitis

CHAPTER 6

Table 1.- Rectal fluid collection in cats using a capsule with a filter paper wick inserted in the rectum
LIST OF DIAGRAMS

CHAPTER 4
Diagram 1.- Experimental Protocol .. 322

CHAPTER 5
Diagram 1.- Experimental Protocol .. 396