Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Partial rootzone drying in apple and in processing tomato

Jorge Artemio Zegbe-Domínguez

2003
Partial rootzone drying in apple and in processing tomato

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

In

Plant Physiology

at

Institute of Natural Resources
Massey University
Palmerston North,
New Zealand

Jorge Artemio Zegbe-Domínguez

2003
Abstract

New water saving irrigation strategies need to be explored and partial rootzone drying (PRD) is such a strategy as it involves irrigating only part of the rootzone with the complement left to dry to a pre-determined level. In other deficit irrigation (DI) methods the entire rootzone is irrigated with less water than evapotranspiration. I focussed on PRD for its effects on apple and on processing tomato.

For apple three field experiments were done, two on ‘Pacific Rose™’ in Manawatu and one on ‘Royal Gala’ in Hawke’s Bay. In all three, leaf water potential (Ψ\text{leaf}) was similar between PRD and commercially irrigated (CI) treatments and so were yield and fruit quality. However, ‘Pacific Rose™’ PRD fruit in one experiment had lower water loss in storage than did CI fruit. For ‘Royal Gala’, PRD fruit quality was improved in terms of flesh firmness and total soluble solids concentration. In all apple experiments PRD trees received only 50% of water given to CI trees. I recommend PRD as a feasible irrigation strategy for apples in New Zealand, but suggest further research for drier areas.

‘Petopride’ tomato was studied in six glasshouse experiments. Depending on the experiment, PRD irrigation was shifted to the previously-unwatered rootzone on the basis of volumetric soil water content, on a daily basis, and on intervals of 2, 4, and 6 days. Maintenance of Ψ\text{leaf}, photosynthetic rate, stomatal conductance, yield, and fruit quality in PRD depended on the extent of soil drying. Irrigation use efficiency was almost twice higher in PRD plants than in CI plants. Blossom-end rot was higher in some of the PRD treatments, but in an especially-designed experiment I found out that PRD per se could not be the cause. From an experiment involving the measurement of root water potential, I concluded that water does not move from the wet roots to dry roots during PRD. I found that the tomato fruit, which is normally a stronger sink than vegetative parts, becomes a weaker sink during water stress. I recommend PRD for processing tomato, but with a suitable irrigation frequency to avoid lowering the midday Ψ\text{leaf} to a value of less than −1.2 MPa. This necessitates field trials in various environmental conditions.
Acknowledgements

I would like to thank my chief supervisor, Professor M. Hossein Behboudian for his support, patience, guidance, and help throughout my doctorate programme. I also thank my co-supervisors Drs Brent E. Clothier and Alexander Lang (both of HortResearch) for sharing ideas that helped me improve my research work.

I express my infinite appreciation to my son Jorge Omar and my daughter Miriam for their patience during this step of my life. I promise you, I will not partake in another PhD program for the rest of my life! I deeply dedicate this research work to my little brother Manuel. He was born 42 years ago. He could not develop and grow up normally as did my brothers, sisters, and myself. His ineffective body impeded this possibility. For him, the daylight is darkness and the darkness is the sunrise because his body is resting. However, Manuel, my dear little brother, has been an inspiration and encouragement for all of us. I extend my gratitude to Bertha, my lovely mother. Your support, motivation, and encouragement has been crucial not only for me, but also for my sisters and brothers Adriana, Verónica, Ivonne, and César and Omar.

I deeply appreciate the friendship and generous help received from Edgardo Moreno, Hatsue Nakajima, Chris Rawlingson, and Karma Dorji. Without their help, I would have lost valuable information that is included in this thesis. Special thanks go to Ms Helen Barnes. Her friendship and help made me feel more secure at the beginning of my doctorate programme. I also appreciate the help received from Alma Rosa Rodríguez in some stages during this period of time.

I am going to miss my family at Plant Growth Unit: Lindsay Sylva, Leslie Taylor, Ben Anderson, Steve Ray, Gareth Corkran, and Anthony Stewart. My kiwi friends too: Jason and Sahara Johnston, Paul Johnstone, and Michelle D’Ath.

I thank Mr. Leon Stallard, the owner of the ‘Royal Gala’ commercial orchard used in one of my apple experiments. I am grateful to Mr. Ben van Hooijdonk and Stewart Field for their useful comments on my apple and tomato manuscripts and to Dr Tessa Mills who commented on two of my manuscripts that have been accepted for publication by refereed journals.

My thanks go to the Chilean families Canumir and Hepp, and Jiménez family for the funny moments that we all had together along with Latin American and other friends.

I am grateful to the Secretaría de Educación Pública-PROMEP-México, Universidad Autónoma de Zacatecas, and the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias de México for the financial support provided for my PhD programme at Massey University. Also, thanks to the Academic Board and University Council of Massey University for awarding me with the Helen E Akers Ph D Scholarship.
Table of Contents

Abstract ... ii
Acknowledgements ... iii
Table of Contents .. iv
List of Figures .. x
List of Tables ... xiii
List of Symbols and Abbreviations ... xvii

Chapter 1 ... 1
General introduction ... 1

1.1 Introduction ... 1
1.2 The concept of partial rootzone drying ... 1
1.3 Physiological implications of PRD ... 3
 1.3.1 Plant water status ... 4
 1.3.1.1 Partial rootzone drying and plant water status 5
 1.3.1.1.1 Perennial plants ... 5
 1.3.1.1.2 Annual plants .. 6
 1.3.2 Stomatal conductance (g_s) and transpiration (E) 7
 1.3.3 Photosynthetic rate (A) ... 8

1.4 Impact of PRD on the vegetative and reproductive growth of plants 9
 1.4.1 Root growth ... 10
 1.4.2 Plant ... 11
 1.4.3 Leaf growth .. 12
 1.4.4 Yield and fruit quality .. 13

Chapter 2 .. 15
Research problem ... 15

2.1 Introduction ... 15
2.2 Partial rootzone drying ... 15
2.3 General objective and hypothesis ... 16

Chapter 3 .. 17
General materials and methods .. 17

Material and methods common to all experiments are briefly described in this Chapter.
Those specific to an experiment will be described in the corresponding Chapter. 17

3.1 Measurements of soil water status ... 17
3.2 Measurements of plant water status .. 18
 3.2.1 Root water potential ... 18
 3.2.2 Leaf water potential .. 18
 3.2.3 Fruit water potential in apple experiments .. 19
3.3 Measurements of stomatal conductance, photosynthesis, and transpiration .. 19
3.4 Measurements of plant growth in apple experiments 19
 3.4.1 Shoot growth .. 19
 3.4.2 Trunk and shoot cross sectional area ... 20
 3.4.3 Fruit growth ... 20
3.5 Measurements of plant efficiency ... 20
 3.5.1 Crop load .. 20
 3.5.2 Fruit yield ... 21
 3.5.3 Yield efficiency ... 21
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.4</td>
<td>Harvest index</td>
<td>21</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Irrigation use efficiency</td>
<td>21</td>
</tr>
<tr>
<td>3.6</td>
<td>Dry mass distribution</td>
<td>21</td>
</tr>
<tr>
<td>3.7</td>
<td>Determination of fruit maturity</td>
<td>22</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Internal ethylene concentration</td>
<td>22</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Starch pattern index</td>
<td>22</td>
</tr>
<tr>
<td>3.8</td>
<td>Determination of fruit quality</td>
<td>23</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Fruit density</td>
<td>23</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Fruit background skin colour</td>
<td>23</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Fresh firmness</td>
<td>23</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Total soluble solids concentration</td>
<td>23</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Dry mass concentration of fruit</td>
<td>24</td>
</tr>
<tr>
<td>3.8.6</td>
<td>Fruit water content</td>
<td>24</td>
</tr>
<tr>
<td>3.8.7</td>
<td>Fruit water loss</td>
<td>24</td>
</tr>
<tr>
<td>3.8.8</td>
<td>Leaf and fruit mineral concentration</td>
<td>24</td>
</tr>
<tr>
<td>3.9</td>
<td>Statistical analysis</td>
<td>24</td>
</tr>
</tbody>
</table>

Chapter 4

Responses of ‘Pacific Rose™’ apple to partial rootzone drying: first experiment in Manawatu

Abstract

<table>
<thead>
<tr>
<th>4.1</th>
<th>Introduction</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Materials and methods</td>
<td>26</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Experimental site, plant material, and treatments</td>
<td>26</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Pre-harvest parameters</td>
<td>27</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Measurements of volumetric soil water content</td>
<td>27</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Measurements of leaf and fruit water status</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Measurements of photosynthesis and stomatal conductance</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2.4</td>
<td>Shoot growth and fruit growth</td>
<td>28</td>
</tr>
<tr>
<td>4.2.2.5</td>
<td>Yield and fruit quality</td>
<td>28</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Post-harvest parameters</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Fruit quality at harvest and after storage</td>
<td>29</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Return bloom</td>
<td>29</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Statistical analysis</td>
<td>30</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>30</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Pre-harvest parameters</td>
<td>30</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Post-harvest parameters</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussion</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>41</td>
</tr>
</tbody>
</table>

Chapter 5

Fruit quality responses of ‘Royal Gala’ apple to partial rootzone drying: an experiment in Hawke’s Bay

Abstract

<table>
<thead>
<tr>
<th>5.1</th>
<th>Introduction</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Materials and methods</td>
<td>43</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Experimental site, plant material, and treatments</td>
<td>43</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Measurements of volumetric soil water content</td>
<td>44</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Measurements of plant water status, photosynthesis, and stomatal</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>conductance</td>
<td>45</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Fruit growth and fruit quality</td>
<td>45</td>
</tr>
</tbody>
</table>
5.2.5 Statistical analysis ... 45
5.3 Results ... 46
5.4 Discussion ... 50
5.5 Conclusions ... 51

Chapter 6 .. 52
Responses of ‘Pacific Rose™’ apple to partial rootzone drying: second experiment in Manawatu ... 52

Abstract... 52
6.1 Introduction .. 53
6.2 Materials and methods ... 53
6.2.1 Experimental site, plant material, and treatments 53
6.2.2 Pre-harvest parameters .. 54
6.2.2.1 Measurements of volumetric soil water content 54
6.2.2.2 Measurements of leaf water status 54
6.2.2.3 Measurements of photosynthesis and stomatal conductance . 55
6.2.2.4 Shoot growth ... 55
6.2.2.5 Yield and fruit quality .. 55
6.2.3 Post-harvest parameters .. 56
6.2.3.1 Fruit quality at harvest and after storage 56
6.2.3.2 Return bloom .. 56
6.2.4 Statistical analysis .. 56
6.3 Results ... 57
6.3.1 Pre-harvest parameters ... 57
6.3.2 Post-harvest parameters .. 60
6.4 Discussion ... 63
6.5 Conclusions ... 65

Chapter 7 .. 66
Comparing partial rootzone drying and deficit irrigation for their effects on water relations, growth, and yield of processing tomatoes .. 66

Abstract... 66
7.1 Introduction .. 67
7.2 Materials and methods ... 68
7.2.1 Experimental conditions and plant material 68
7.2.2 Treatments and soil water measurements 68
7.2.3 Physiological parameters ... 69
7.2.4 Yield and irrigation use efficiency 69
7.2.5 Fruit quality assessment .. 70
7.2.6 Statistical analysis .. 70
7.3 Results ... 70
7.3.1 Volumetric soil water content 70
7.3.2 Physiological parameters ... 71
7.3.3 Yield and irrigation use efficiency 72
7.3.4 Dry mass distribution .. 73
7.3.5 Fruit quality assessment .. 73
7.4 Discussion ... 74
7.5 Conclusions ... 76

Chapter 8 .. 77
Maintenance of yield and fruit quality in processing tomatoes by partial rootzone drying.... 77
Chapter 11
Partial rootzone drying does not promote blossom-end rot in ‘Petopride’ processing tomato
Abstract

11.1 Introduction
11.2 Materials and methods
11.2.1 Experimental conditions and treatments
11.2.2 Measurements of soil water content
11.2.3 Measurements of photosynthesis, stomatal conductance, and plant water status
11.2.4 Measurements of plant growth, yield, harvest index, and irrigation use efficiency
11.2.5 Advancement in fruit maturity
11.2.6 Fruit quality assessment
11.2.7 Statistical analysis
11.3 Results
11.3.1 Volumetric soil water content
11.3.2 Plant water status, photosynthesis, and stomatal conductance
11.3.3 Plant growth, yield, harvest index, and irrigation use efficiency
11.3.4 Advancement in fruit maturity
11.3.5 Fruit quality evaluation at firm red stage
11.4 Discussion
11.5 Conclusions

Chapter 12
Processing tomato response to partial rootzone drying at different phenological stages
Abstract

12.1 Introduction
12.2 Materials and methods
12.2.1 Experimental conditions and treatments
12.2.2 Measurements of soil water content
12.2.3 Measurements of plant water status
12.2.4 Measurements of plant growth, yield, harvest index, and irrigation use efficiency
12.2.5 Flower abortion and fruit growth inhibition
12.2.6 Fruit quality assessment
12.2.7 Statistical analysis
12.3 Results
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3.1</td>
<td>Volumetric soil water content</td>
<td>138</td>
</tr>
<tr>
<td>12.3.2</td>
<td>Plant water status</td>
<td>140</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Plant growth, yield, harvest index, and irrigation use efficiency</td>
<td>142</td>
</tr>
<tr>
<td>12.3.4</td>
<td>Fruit quality</td>
<td>143</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Multivariate analysis</td>
<td>143</td>
</tr>
<tr>
<td>12.4</td>
<td>Discussion</td>
<td>146</td>
</tr>
<tr>
<td>12.5</td>
<td>Conclusions</td>
<td>149</td>
</tr>
</tbody>
</table>

Chapter 13

General discussion, conclusions, and recommendations | 150
13.1 General discussion and conclusions | 150
13.2 Recommendations for future research | 155

References | 156
List of Figures

Figure 4.1 Changes in volumetric soil water content in commercially irrigated (CI) trees and both sides of partial rootzone drying (PRD) trees. Vertical bars represent the least significant difference (LSD) at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 4.2 Seasonal changes in predawn (A) and midday (B) leaf water potential in commercially irrigated (CI) and partial rootzone drying (PRD) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 4.3 Diurnal changes in leaf water potential in commercially irrigated (CI) and partial rootzone drying (PRD) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 4.4 Fruit water potential (Ψ_{fw}), fruit osmotic potential (Ψ_{os}), and fruit turgor potential (Ψ_{tp}) for ‘Pacific Rose™’ apple under partial rootzone drying (PRD) and commercially irrigated (CI) trees. Vertical bars represent the LSD at $P \leq 0.05$.

Figure 4.5 Seasonal variation in photosynthetic rate (A), transpiration rate (B), and stomatal conductance (C) in ‘Pacific Rose™’ apple under partial rootzone drying (PRD) and commercially irrigated (CI) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 4.6 Cumulative fruit growth, in terms of fruit volume, of ‘Pacific Rose™’ apple under partial rootzone drying (PRD) and control irrigated (CI) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 4.7 Cumulative fruit water loss as percentage of original weight during storage at $0 \pm 1 \, ^\circ C$ (A) and at $20 \pm 1 \, ^\circ C$ (B) for 12-week and 18-day, respectively, of ‘Pacific Rose™’ apple under partial rootzone drying (PRD) and commercial irrigation (CI) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 5.1 Changes in soil water content in commercially irrigated (CI) trees and both sides of partial rootzone drying (PRD) trees. Vertical bars represent the least significant difference (LSD) at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 5.2 Cumulative fruit growth, in terms of fruit diameter, of ‘Royal Gala’ apple under partial rootzone drying (PRD) and commercially irrigated (CI) trees. Vertical bars represent the LSD at $P \leq 0.05$.

Figure 5.3 Canonical scores of the first two canonical discriminant functions for six fruit quality attributes of ‘Royal Gala’ apple (variables in Table 5.3) under partial rootzone drying (PRD) and commercially irrigated (CI) trees.

Figure 6.1 Changes in the volumetric soil water content in commercially irrigated (CI) trees and in both sides of partial rootzone drying (PRD) trees. Vertical bars represent the least significant difference (LSD) at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.

Figure 6.2 Diurnal changes in leaf water potential in commercially irrigated (CI) and in partial rootzone drying (PRD) trees. Vertical bars represent the LSD at $P \leq 0.05$ and the asterisks indicate significant differences at $P \leq 0.05$.
Figure 6.3 Cumulative fruit water loss as percentage of original weight during storage at 0 ± 1 °C (A) and at 20 ± 1 °C (B) for 10 weeks and 16 days, respectively, of 'Pacific Rose™' apple under commercial irrigation (CI) and partial rootzone drying (PRD). Vertical bars represent the LSD at $P \leq 0.05$.

Figure 7.1 Changes in volumetric soil water content in the control, deficit irrigation, and north and south sides of partial rootzone drying (PRD) treatments. Vertical bars represent the least significant difference (LSD) at $P \leq 0.05$.

Figure 8.1 Changes in soil water content for the full irrigation and deficit irrigation (A), the two sides of plant root system in PRD1 (B) and in PRD2 (C). The treatments are described in the text. Vertical bars represent the minimum significant difference (MSD) by Tukey’s test at $P \leq 0.05$.

Figure 8.2 Diurnal changes of leaf water potential for three occasions under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at $P \leq 0.05$.

Figure 8.3 Changes in total dry mass of plants (including root and fruit) under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at $P \leq 0.05$.

Figure 9.1 Changes in soil water content in FI (A) and for the two sides of plant root system for PRD2, PRD4, and PRD6 treatments. Vertical bars represent the minimum significant difference (MSD) by Tukey’s test at $P \leq 0.05$.

Figure 9.2 Diurnal changes of leaf water potential for three occasions under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at $P \leq 0.05$.

Figure 9.3 Changes in total dry mass of processing tomato plants (including roots and fruit) under four irrigation treatments. Vertical bars represent the MSD by Tukey’s test at $P \leq 0.05$.

Figure 11.1 Changes in volumetric soil water content for furrow irrigation (A) and drip irrigation (B) treatments applied either to both sides of plant row (Ful in A and Dr in B) or only to one side at a time. Vertical bars, which apply to A and B, represent the minimum significant difference (MSD) by Tukey’s test at $P \leq 0.05$.

Figure 11.2 Diurnal changes in leaf water potential at four occasions under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at $P \leq 0.05$. Abbreviations are explained in Materials and methods of this Chapter.

Figure 11.3 Changes of skin colour of 'Petopride' processing tomato fruit. The treatments are described in the text. Separate bar represents the MSD by Tukey’s test at $P \leq 0.05$.

Figure 12.1 Changes in volumetric soil water content for fully irrigated (FI) plants and PRD treatments in 'Petopride' processing tomato. Vertical bars represent the minimum significant difference (MSD) by Tukey’s test at $P \leq 0.05$.

Figure 12.2 Diurnal changes in leaf water potential of different treatments which are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisk shows significant differences at $P \leq 0.05$.

xi
Figure 12.3 Diurnal changes in leaf water potential at four occasions under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at \(P \leq 0.05 \).

Figure 12.4 Cumulative fruit growth, in terms of fruit diameter of ‘Petopride’ processing tomato under four irrigation treatments. The treatments are described in the text. Vertical bars represent the MSD by Tukey’s test and the asterisks show significant differences at \(P \leq 0.05 \).

Figure 12.5 Canonical scores of the first two canonical discriminant functions and thirteen horticultural attributes of ‘Petopride’ processing tomato (variables in Table 12.4) under four irrigation treatments. The treatments are described in the text.
List of Tables

Table 1.1 Worldwide production for apple in 1997* and for processing tomatoes in 2002** .. 2

Table 4.1 Effect of commercial irrigation (CI) and partial rootzone drying (PRD) on some yield attributes, mean fresh mass per fruit (MFMF), trunk cross-sectional area (TCSA), final shoot growth (FSG), and irrigation use efficiency (IUE) of 'Pacific Rose™' apple. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$ 36

Table 4.2 Fruit quality attributes of 'Pacific Rose™' apples at harvest as influenced by commercial irrigation (CI) and partial rootzone drying (PRD). Means within rows followed by the same letter are not significant different by LSD test at $P \leq 0.05$. 37

Table 4.3 Influence of commercial irrigation (CI) and partial rootzone drying (PRD) on flesh firmness (FF) and total soluble solids concentration (TSSC) of 'Pacific Rose™' apple at harvest and after storage at $0 \pm 1 ^\circ C$ and at $20 \pm 1 ^\circ C$ for 12-week and 18-day, respectively. Means followed by the same letter are not significant different by LSD test at $P \leq 0.05$ 37

Table 5.1 Effect of irrigation treatments (ITs) on leaf water potential (Ψ_{leaf}), photosynthesis and stomatal conductance. Means separation by LSD test at $P \leq 0.05$, no significant (ns) at $P \leq 0.05$. The PPF (μmol m$^{-2}$ s$^{-1}$ ± SD) was 669 ± 26 for this occasion 47

Table 5.2 Effect of irrigation treatments (ITs) on mean fresh mass per fruit (MFMF), fruit diameter (FD), fruit volume (FV), fruit density (Fden), flesh firmness (FF), dry mass concentration of fruit (DMCF), total soluble solids concentration (TSSC), starch pattern index (SPI), and fruit colour in terms of hue angle (HA$^\circ$). Means separation by LSD test at $P \leq 0.05$ (*), $P \leq 0.001$ (**), or non-significant (ns) ... 48

Table 5.3 Standardised canonical coefficients (SCC) and correlation coefficients (r) for the first canonical discriminant function (CDF) and six fruit attributes of 'Royal Gala' apple .. 49

Table 6.1 Effect of commercial irrigation (CI) and partial rootzone drying (PRD) on photosynthesis and stomatal conductance of 'Pacific Rose™' apple. Photosynthetic photon flux (PPF ± SD) values are also presented. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$ 59

Table 6.2 Effect of commercial irrigation (CI) and partial rootzone drying (PRD) on mean fresh mass per fruit (MFMF), yield efficiency, trunk cross-sectional area (TCSA), final shoot growth (FSG), and irrigation use efficiency (IUE) of 'Pacific Rose™' apples. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$ 59

Table 6.3 Effect of commercial irrigation (CI) and partial rootzone drying (PRD) on dry mass concentration of fruit (DMCF), internal ethylene concentration (IEC), starch pattern index (SPI), flesh firmness (FF), total soluble solids concentration (TSSC), and fruit skin colour in terms of hue angle (HA$^\circ$). Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$ 60

Table 6.4 Influence of commercial irrigation (CI) and partial rootzone drying (PRD) on internal ethylene concentration (IEC), starch pattern index (SPI), flesh firmness
(FF), and total soluble solids concentration (TSSC) of ‘Pacific Rose™’ apple at harvest. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$.

Table 6.5 Influence of commercial irrigation (CI) and partial root zone drying (PRD) on fruit quality of ‘Pacific Rose™’ apple after 10 weeks in storage at 0 ± 1 °C. Internal ethylene concentration (IEC), starch pattern index (SPI), flesh firmness (FF), total soluble solids concentration (TSSC), and fruit skin colour in terms of huge angle (HA°) are presented. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$.

Table 6.6 Influence of commercial irrigation (CI) and partial root zone drying (PRD) on fruit quality of ‘Pacific Rose™’ apple after 16 days in storage at 20 ± 1 °C. Internal ethylene concentration (IEC), starch pattern index (SPI), flesh firmness (FF), total soluble solids concentration (TSSC), and fruit skin colour in terms of huge angle (HA°) are presented. Means within columns followed by the same letter are not significant different by LSD test at $P \leq 0.05$.

Table 7.1 Effect of irrigation treatments (ITs) on leaf water potential (Ψ_{leaf}, MPa), net photosynthesis rate (A, μmol m$^{-2}$ s$^{-1}$), transpiration rate (E, mmol m$^{-2}$ s$^{-1}$), and stomatal conductance (g_s, mol m$^{-2}$ cm s$^{-1}$) for tomato plants. Values of photosynthetic photon flux (PPF, μmol m$^{-2}$ s$^{-1}$ ± SD) are also shown. Means with same letters within columns are not significantly different using the LSD test at $P \leq 0.05$.

Table 7.2 Effect of irrigation treatments (ITs) on total mass of fruit per plant, irrigation use efficiency (IUE$_{\text{TMMF}}$), and total vegetative mass per plant. Means with same letters within columns are not significantly different using the LSD test at $P \leq 0.05$.

Table 7.3 Effect of irrigation treatments (ITs) on dry mass partitioning of tomato plants. Means with same letters within columns are not significantly different using the LSD test at $P \leq 0.05$.

Table 7.4 Effect of irrigation treatments (ITs) on fruit water content (FWC), total soluble solids concentration (TSSC), and fruit colour in terms of hue angle (HA°). Different letters within columns indicate differences by the LSD test at $P \leq 0.05$.

Table 8.1 Effect of irrigation treatments (ITs) on photosynthesis and stomatal conductance. Photosynthetic photon flux (PPF) is given for each occasion. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 8.2 Effect of irrigation treatments (ITs) on the number of fruit (NF), total fresh mass of plant (TFMP), total fresh mass of fruit (TFMF), irrigation use efficiency (IUE$_{\text{TMMF}}$), and harvest index (HI) per plant. The treatments are described in the text. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 8.3 Effect of irrigation treatments (ITs) on dry mass distribution per plant. The treatments are described in the text. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 8.4 Effect of irrigation treatments (ITs) on mean fresh mass per fruit (MFMF), total dry mass of fruit per plant (TDMF), fruit water content (FWC), total soluble solids concentration (TSSC), blossom-end rot (BER), and fruit colour (in terms of hue angle (HA°)) at green stage and 14 days after harvest (DAH). The treatments are described in the text. Different letters within columns indicate significant differences by Turkey’s test at $P \leq 0.05$.

xiv
Table 11.3 Effect of irrigation treatments (ITs) on dry mass concentration of fruit (DMCF), total soluble solids concentration (TSSC), and fruit colour in terms of hue angle (HA°) at two harvest dates. The treatments are described in the text. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 12.1 Effect of irrigation treatments (ITs) on total fresh mass of plant (TFMP), number of fruit per plant (NF), total fresh mass of fruit (TFMF), total dry mass of fruit (TDMF), irrigation use efficiency in terms of TFMF (IUE_{TFMF}) and TDMF (IUE_{TDMF}), and harvest index (HI) per plant. The treatments are described in the text. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 12.2 Effect of irrigation treatments (ITs) on mean fresh mass per fruit (MFMF), dry mass concentration of fruit (DMCF), fruit water content (FWC), total soluble solids concentration (TSSC), blossom-end rot (BER), and fruit colour in terms of hue angle (HA°) at green and firm red stages. The treatments are described in the text. Different letters within columns indicate significant differences by Tukey’s test at $P \leq 0.05$.

Table 12.3 Mahalanobis squared distance and significance ($P \leq 0.0001$, ****) from irrigation treatments to irrigation treatments (ITs).

Table 12.4 Standardised canonical coefficients (SCC) and correlation coefficients (r) for the first canonical discriminant function (CDF) and thirteen horticultural attributes of ‘Petopride’ processing tomato.
List of Symbols and Abbreviations

A Photosynthetic rate
ABA Abscisic acid
BER Blossom-end rot
°C Degree Celsius
ca Approximately
Ca²⁺ Calcium
CANDISC Canonical discrimination analysis
CDF Canonical discriminant function
CI Commercially irrigated
DAA Days after anthesis
DAS Days after seeding
DAH Days after harvest
DAFB Days after full bloom
DI Deficit irrigation
DMCF Dry mass concentration of fruit
E Transpiration rate
FC Field capacity
FD Fruit diameter
Fden Fruit density
FF Flesh firmness
FI Fully irrigated
FSG Final shoot growth
FV Fruit volume
FWC Fruit water content
FWL Fruit water loss
g Gram (s)
GLM General linear model
gs Stomatal conductance
HA° Hue angle
IEC Internal ethylene concentration
ITs Irrigation treatments
IUE Irrigation use efficiency
IUE_{(TFMF)} Irrigation use efficiency on the basis of total fresh mass of fruit
IUE_{(TDMF)} Irrigation use efficiency on the basis of total dry mass of fruit
HI Harvest index
Hr Hour (s)
kg Kilogram (s)
L Litre
LSD Least significant difference
μL Microlitre (s)
μmol Micromole (s)
m Metre (s)
mb Millibar (s)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m³</td>
<td>Cubic metre (s)</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Mg</td>
<td>Milligram (s)</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre (s)</td>
</tr>
<tr>
<td>MFMF</td>
<td>Mean fresh mass per fruit</td>
</tr>
<tr>
<td>MSD</td>
<td>Minimum significant difference</td>
</tr>
<tr>
<td>N</td>
<td>Number of fruit</td>
</tr>
<tr>
<td>ns</td>
<td>Non-significant</td>
</tr>
<tr>
<td>NF</td>
<td>Number of fruit</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>P_a</td>
<td>External CO₂</td>
</tr>
<tr>
<td>P_i</td>
<td>Internal CO₂</td>
</tr>
<tr>
<td>PPF</td>
<td>Photosynthetic photon flux</td>
</tr>
<tr>
<td>PRD</td>
<td>Partial rootzone drying</td>
</tr>
<tr>
<td>PSRE</td>
<td>Potted split-root experiment (s)</td>
</tr>
<tr>
<td>RS</td>
<td>Root system</td>
</tr>
<tr>
<td>RWC</td>
<td>Relative water content</td>
</tr>
<tr>
<td>RWCR</td>
<td>Relative water content of root</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SCC</td>
<td>Standardised canonical coefficients</td>
</tr>
<tr>
<td>SCS</td>
<td>Standardised canonical scores</td>
</tr>
<tr>
<td>SCSA</td>
<td>Shoot cross-sectional area</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error mean</td>
</tr>
<tr>
<td>SPAC</td>
<td>Soil-plant-atmosphere-continuum</td>
</tr>
<tr>
<td>SPI</td>
<td>Starch patter index</td>
</tr>
<tr>
<td>SRS</td>
<td>Split-root system</td>
</tr>
<tr>
<td>TM</td>
<td>Trade mark</td>
</tr>
<tr>
<td>TCSA</td>
<td>Trunk cross-sectional area</td>
</tr>
<tr>
<td>TFMP</td>
<td>Total fresh mass of plant</td>
</tr>
<tr>
<td>TDMP</td>
<td>Total dry mass of plant</td>
</tr>
<tr>
<td>TFMF</td>
<td>Total fresh mass of fruit</td>
</tr>
<tr>
<td>TDMF</td>
<td>Total dry mass of fruit</td>
</tr>
<tr>
<td>TSSC</td>
<td>Total soluble solids concentation</td>
</tr>
<tr>
<td>WD</td>
<td>Water deficit</td>
</tr>
<tr>
<td>W/D</td>
<td>Wet/Dry</td>
</tr>
<tr>
<td>W/D/W/D</td>
<td>Wet/Dry/Wet/Dry</td>
</tr>
<tr>
<td>Ϝ₀</td>
<td>Volumetric soil water content (m⁻³ m⁻³)</td>
</tr>
<tr>
<td>Ϝ</td>
<td>Water potential</td>
</tr>
<tr>
<td>Ϝₛ</td>
<td>Osmotic potential</td>
</tr>
<tr>
<td>Ϝᵨ</td>
<td>Turgor potential</td>
</tr>
</tbody>
</table>