Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Evolutionary Genetics and the Major Histocompatibility Complex of New Zealand Robins (Petroicidae)

Hilary C. Miller

A thesis submitted for the degree of Doctor of Philosophy in Molecular BioSciences at Massey University, New Zealand

June 2003
The founding black robin pair, Old Blue (above), and Old Yellow (right)
Abstract

The genes of the major histocompatibility complex (MHC) are highly polymorphic and play a direct role in disease resistance. Loss of variation at MHC loci may increase extinction risk in endangered species, due to an inability to combat a range of pathogens. In this thesis, the evolution of class II B MHC genes is investigated, and levels of variation at these loci are measured in two species of New Zealand robin, the endangered Chatham Island black robin (*Petroica traversi*), and the non-endangered South Island robin (*Petroica australis australis*). Transcribed class II B MHC loci from both black robin and South Island robin were characterised prior to analysis of MHC variation. To this end, a non-lethal protocol for isolation of transcribed sequences from blood using 3’RACE and RT-PCR was developed. Four class II B cDNA sequences were isolated from black robin, and eight sequences were isolated from the South Island robin, indicating there are at least four class II B loci. RFLP analysis indicated that all class II MHC loci were contained in a single linkage group. Analysis of 3’untranslated region sequences enabled orthologous loci to be identified in the two species, and indicated that multiple rounds of gene duplication have occurred. A partial genomic DNA sequence of a putative pseudogene was also isolated from the black robin. Evolution of MHC genes in New Zealand robins appears to be influenced by gene conversion and balancing selection, resulting in loss of orthologous relationships in the coding region, and a highly diverse peptide-binding region. In order to assess the effect of population bottlenecks on MHC variation, levels of variation in the extant black robin population, which is descended from a single breeding pair, were compared with artificially bottlenecked populations of South Island robin and their respective source populations. Both RFLP and sequence analysis indicated that the black robin is monomorphic at class II B loci, while both source and bottlenecked populations of South Island robin have retained moderate to high levels of variation. Comparison of MHC variation with minisatellite DNA variation in each population indicated that genetic drift was the predominant force determining MHC diversity in bottlenecked populations in the short-term. Despite its lack of MHC variation, the black robin population appears to be viable under existing conditions. The evolutionary history of New Zealand’s *Petroica* species, investigated by phylogenetic analysis of mitochondrial DNA sequences, is also discussed.
Acknowledgements

Firstly, I would like to thank my supervisor, Professor David Lambert, for the opportunity to work on such an interesting topic, and for his guidance, support and insights throughout the course of this degree.

This project was made possible by a Marsden grant to David Lambert (99-MAU-039). I wish to acknowledge the support of a Massey University Doctoral Scholarship, a scholarship from the New Zealand Federation of University Women, and an Institute of Molecular BioSciences postgraduate bursary.

The following people assisted with collection of blood samples for this project: Paul Barrett, Doug Armstrong, Lara Shepherd, and Hilary Aikman. Special thanks to Paul Barrett for teaching me how to blood sample small passerines. The black robin samples could not have been collected without support from the New Zealand Department of Conservation, in particular Christine Reed, Hilary Aikman, Mike Thorsen, and all the staff at the Chatham Islands Area Office. Hilary Aikman also kindly made available the black robin genealogy database. In addition I would like to thank Brent Beavan, Raewyn Empson, and David Pattemore for providing feathers for the phylogenetics study, Alan Tennyson of Te Papa for the museum specimens, and Doug Armstrong for making the North Island robin blood samples available.

I would like to thank Craig Millar for the many helpful discussions regarding both technical and theoretical aspects of this project, and Don Merton for help and support in early stages of this project, and for giving me a copy of the black robin “bible”. Thanks also to Rob Slade for constructing the BR6 probe and Judith Robins for CRDR1 primer sequence. I would also like to thank a number of people within the Institute of Molecular BioSciences who helped with various aspects of the project: Kathryn Stowell, for allowing me to use her spectrophotometer; Michelle McGill for various RNA-related protocols; and Lorraine Berry for her tireless work on the DNA sequencer.

I would like to thank my friends and colleagues who have passed through the Molecular Ecology laboratory, the Ecology department, and the Allan Wilson Centre during my four
years in Palmerston North, including Lara Shepherd, Peter Ritchie, Jenny Hay, Olly Berry, Jennifer Anderson, Leon Huynen, Gwilym Haynes, Gillian Gibb, Niccy Aitken, Tania King, Richelle Marshall, Wayne Linklater, and Ed Minot (and others I’ve probably missed out). I’ve really appreciated all the helpful discussions, advice, humour and coffee breaks that have made day-to-day life in the lab enjoyable. Special thanks to Jen for the black robin pathogen data, Pete for assistance with phylogenetic analysis, and for answering my endless inane questions about thesis writing and everything else, and to Jenny, Olly, and Lara for proofreading various parts of this thesis. Thanks also to Steve Trewick for the helpful discussion about robin phylogenetics.

Finally, I would like to thank my parents for their support and interest in whatever obscure topic I might be working on, and especially for providing sustenance and a roof over my head during the final month of writing.
Thesis Structure and Format

This thesis is written as a series of papers, with a general introduction and final summary drawing together the main themes of the thesis. The general introduction (Chapter one) is a literature review providing background information on aspects of MHC genetics relevant to this thesis, and enabling the specific topics covered in later chapters to be put into the wider context. Some of this information is reiterated in reduced form in the later chapters, but the introduction provides additional detail that would not be appropriate in a scientific paper. An outline of the major aims of the study is also given.

Chapters two to six are data chapters and are written in the format of scientific papers. Each chapter is written to stand alone as an independent unit, which results in some repetition, particularly in the introduction and reference sections. This format, however, allows each aspect of the study to be considered as a whole, in preparation for publication. Chapters two and four are written in the format of short communications, with the results and discussion sections combined. A modified version of Chapter two (An evaluation of methods of blood preservation for RT-PCR from endangered species) has been accepted for publication as a technical note in Conservation Genetics, and a reprint is included in Appendix D. The remaining chapters are being prepared for publication. The second paper in Appendix D was also published during the course of this work. This paper also involved analysis of genetic variation in an endangered species, but is not directly relevant to main themes of this thesis.

Each of the data chapters includes a discussion, which covers important aspects of the empirical data presented and places the results in the context of existing work. The final chapter summarises the main findings of the study and outlines possible areas of future research. Appendices A and B consist of the raw sequence data from Chapters five and six, respectively, and a full list of samples used in this study is given in Appendix C.

Note on nomenclature: In chapter six, the term “New Zealand robin” refers specifically to Petroica australis, however in the remainder of the thesis “New Zealand robins” is used in more general terms for simplicity, and includes the Chatham Island black robin Petroica traversi as well as Petroica australis.
Table of Contents

Abstract i
Acknowledgments ii
Thesis Structure and Format iv
Table of Contents v
List of Tables ix
List of Figures x

Chapter One: The Major Histocompatibility Complex: Structure, Evolution and the Conservation of Endangered Species

1.1 Overview 1
1.2 The Major Histocompatibility Complex 2
 1.2.1 Genomic organization of the MHC 2
 1.2.2 Structure and function of classical MHC molecules 5
 1.2.2.1 MHC diversity and the specificity of peptide binding 7
1.3 Polymorphism and evolution of MHC genes 8
 1.3.1 Gene conversion 9
 1.3.2 Concerted evolution and the birth-and-death model 11
 1.3.3 Balancing selection 13
 1.3.3.1 Sources of balancing selection 14
1.4 Pathogen resistance and MHC variation 16
 1.4.1 Evidence for pathogen-driven selection 16
 1.4.2 Models of pathogen-driven selection 18
 1.4.3 How strong is balancing selection? 19
 1.4.4 Pathogen resistance, MHC diversity and conservation 22
1.5 Conservation genetics and the black robin 23
1.6 Thesis aims and outline 25
1.7 References 26
Chapter Two: An Evaluation of Methods of Blood Preservation for RT-PCR from Endangered Species

2.1 Introduction 37
2.2 Methods 38
 2.2.1 Blood preservation and RNA extraction 38
 2.2.2 RT-PCR 39
2.3 Results and Discussion 41
 2.3.1 Blood preservation and RNA extraction 41
 2.3.2 Isolation of MHC cDNA sequences 43
2.4 References 43

Chapter Three: Class II B MHC Genes in New Zealand Robins: Evolution by Gene Duplication, Gene Conversion and Balancing Selection

3.1 Introduction 45
3.2 Methods 48
 3.2.1 Birds and sample collection 48
 3.2.2 Isolation of genomic DNA 48
 3.2.3 Probes 49
 3.2.4 Southern blot hybridisation 49
 3.2.5 RNA isolation 50
 3.2.6 Isolation of MHC cDNAs 50
 3.2.7 Data analysis 52
3.3 Results 53
 3.3.1 Restriction fragment length polymorphism 53
 3.3.2 Inheritance/linkage of MHC fragments 53
 3.3.3 Isolation of MHC cDNA sequences 54
 3.3.4 Orthology, balancing selection and gene conversion 55
3.4 Discussion 63
 3.4.1 Evolution of class II B MHC genes in NZ robins 65
3.5 References 68
Chapter Seven: Summary and Concluding Remarks

7.1 Introduction
7.2 Summary of major findings
7.3 Future directions
 7.3.1 Does MHC monomorphism increase disease susceptibility in the black robin?
 7.3.2 Locus specificity in studies of the passerine MHC
7.4 References

Appendix A: Class II B MHC peptide-binding region sequences

Appendix B: Petroica mitochondrial DNA sequences

Appendix C: Details of Petroica samples used in this study

Appendix D: Manuscripts

I. An evaluation of methods of blood preservation for RT-PCR from endangered species

II. Minisatellite DNA profiling detects lineages and parentage in the endangered kakapo (Strigops habroptilus) despite low microsatellite DNA variation.
List of Tables

1.1 Examples of MHC-disease associations .. 17
1.2 Species with low or no polymorphism at MHC loci 20
2.1 Storage conditions of sparrow samples ... 40
3.1 Sequences and annealing temperatures of primers for isolation of class II B MHC cDNA sequences .. 51
3.2 Nonsynonymous and synonymous substitution values for class II B MHC sequences ... 62
3.3 Gene conversion events between class II B MHC sequences from NZ robins .. 62
4.1 PCR primers used in this chapter .. 73
4.2 Pairwise sequence diversity between the Petr05 sequence and previously isolated cDNA sequences .. 75
5.1 Average Percent Difference values for each enzyme with the BR6 probe ... 90
5.2 Distribution and frequency of class II B MHC alleles in NZ robins 95
5.3 Nonsynonymous and synonymous substitution values for class II B sequences ... 96
5.4 Percentage of genetic diversity lost in bottlenecked populations compared with their source ... 97
6.1 *Petroica* taxa sampled in this study .. 113
6.2 Pairwise sequence divergence within and between ingroup taxa 119
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Genomic organization of the MHC in birds and humans</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Structure of class I and class II molecules</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>(A) Agarose gel electrophoresis of RNA</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>(B) RT-PCR products amplified using β-Actin primers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(C) 3’RACE product amplified from black robin cDNA</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Position of PCR primers used in isolation of class II B MHC cDNA sequences</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>RFLP profiles of class II B MHC genes in New Zealand robins</td>
<td>54</td>
</tr>
<tr>
<td>3.3</td>
<td>Nucleotide sequence alignment of class II B MHC cDNA sequences</td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Amino acid sequence alignment of MHC class II B exon 2 sequences</td>
<td>60</td>
</tr>
<tr>
<td>3.5</td>
<td>Neighbour-joining trees of class II B MHC 3’UTR and exon 2 sequences</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Sequence of the putative pseudogene from black robin</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Neighbour joining trees showing the relationship between Petr05 and other</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>passerine sequences</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>(A) Map of New Zealand and the Chatham Islands</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>(B) Schematic representation of populations</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Position of PCR primers used in this study</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Alignment of intron sequences flanking exon 2</td>
<td>94</td>
</tr>
<tr>
<td>5.4</td>
<td>Amino acid sequences of class II B MHC alleles</td>
<td>96</td>
</tr>
<tr>
<td>5.5</td>
<td>Plot of MHC diversity vs minisatellite DNA diversity</td>
<td>97</td>
</tr>
<tr>
<td>6.1</td>
<td>Map of New Zealand and Pacific islands</td>
<td>114</td>
</tr>
<tr>
<td>6.2</td>
<td>Mitochondrial gene order in birds</td>
<td>118</td>
</tr>
<tr>
<td>6.3</td>
<td>The observed number of transitions and transversions versus sequence</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>divergence</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Relationships of NZ Petroica species based on cyt b sequences</td>
<td>123</td>
</tr>
<tr>
<td>6.5</td>
<td>Relationships among Petroica australis and Petroica macrocephala subspecies</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>based on CR sequences</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Alignment of peptide-binding region sequences</td>
<td>139</td>
</tr>
<tr>
<td>B.1</td>
<td>Sequence of 1371 bp of the mitochondrial genome from P. traversi and P. a.</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>australis</td>
<td></td>
</tr>
<tr>
<td>B.2</td>
<td>Alignment of cytochrome b sequences</td>
<td>144</td>
</tr>
<tr>
<td>B.3</td>
<td>Alignment of control region sequences</td>
<td>146</td>
</tr>
</tbody>
</table>