A thesis presented in partial fulfilment of the requirements for the degree of:

Doctor of Philosophy
In
Food Engineering and Technology

At Massey University, Palmerston North, New Zealand.

Andrew Richard Hinton
2003
To my loving wife Lisa, for her help, support, encouragement and acceptance of long hours and stressful times.
Abstract

Fouling deposits were suspected of playing a pivotal role in the thermophile contamination problem experienced in the dairy industry during milk powder manufacture. The objective of this work was to investigate thermophile growth and develop an understanding of how fouling deposits affect thermophile contamination in milk powder plants.

Pilot plant and laboratory scale studies were carried out investigating:

- The release of thermophiles from fouled and un-fouled surfaces;
- The survival of thermophiles in fouling during cleaning;
- The rate of re-contamination of thermal equipment after incomplete cleaning;
- and the adhesion of thermophiles to fouled and clean stainless steel.

Thermophile contamination from the pilot plant equipment was also modelled mathematically.

The bulk milk thermophile contamination from sanitised fouled and un-fouled surfaces was found to be not significantly different, showing that fouling deposits by themselves do not increase the steady state amount of bulk contamination and that the more important factor is the amount of surface area available for colonisation within the temperature growth range of the thermophiles.

Milk fouling layers provided much greater protection against cleaning than that of biofilms alone. Thermophiles that survive cleaning or greater initial thermophile concentrations in the raw milk were shown to reduce the plant production time available before concentrations of thermophiles in the bulk milk became excessive (>1x10^6 cfu.ml\(^{-1}\)).

Therefore, cleaning procedures in milk powder plants need to remove or destroy all traces of thermophiles to allow the maximum possible run length. It is similarly important to obtain raw milk with the lowest possible thermophile load before processing.
During adhesion studies, the number of thermophilic bacteria adhering to stainless steel surfaces increased with bulk cell concentration and increasing contact time for adhesion. The adhesion rate of thermophiles to whole milk fouling layers was found to be around ten times higher than the adhesion rate to stainless steel.

Steady state modelling provided a quick estimate of the level of bulk milk contamination that can be expected, however it was dependent on obtaining accurate measurements of the surface numbers. Since surface numbers were underestimated by approximately a decade using techniques that dislodged but did not enumerate loosely adhered cells, the model under predicted the bulk milk contamination.

Unsteady state modelling predicted the trends observed in the experimental data and provided reasonable estimates of the bulk contamination that can be expected over time from the pilot plant. Predictions from the model after changes in key parameters provide an insight to the magnitude of any reduction in contamination that can be made.

The results of this work have demonstrated that thermopile contamination during dairy processing can be minimised through:

- Re/design operating equipment to minimise the residence time of the product in the range of 40-70°C.
- Minimising the contact surface area of thermal equipment by use of alternative direct heating technologies.
- Minimising fouling by management of milk quality, optimising processing conditions, hygienic design of the plant equipment and ensuring the product mix is suited to the plant.
- Ensuring that the plant is thoroughly clean at the commencement of each run through attention to equipment design and optimisation of cleaning procedures.
Acknowledgements

I would firstly like to thank my supervisor Tuoc Trinh and co-supervisors John Brooks, Graham Manderson and Kathy Kitson for their help and guidance throughout the course of my PhD studies.

The financial assistance of the former New Zealand Dairy Board, now part of Fonterra Co-operative Group Ltd.

Thanks to Jon Palmer for his assistance in learning the finer points of microbiological techniques and to Ann-Marie Jackson and Mike Sahayam for their general assistance in the microbiology laboratory.

In the initial stages of the study, Steve Flint, Bruce Hill and Tim Coolbear at the Fonterra Research Centre offered assistance with microbiology methodology and critique of the initial work.

The long experimental runs on the pilot plant would not have been possible without the help of the other postgraduate students. Thanks to Hayden Bennett, Richard Croy, Carol Ma, Mark Downey, Binh Trinh and Irma Wiryawan who volunteered their services to either operate the plant or assist with microbiological testing. Also thanks to Judy Farrand-Collins in the microbiology laboratory, who helped clean up after the experimental runs. The pilot plant was often operated outside the normal operational hours of the steam boiler. Thanks to Gary Radford and also the Massey University facilities management team for extending these normal operating hours so that steam could be supplied to the pilot plant whenever needed.

In helping to build the pilot plant, I would like to thank Byron McKillop and Don McLean for their help in the manufacture of equipment. Also thanks to Tony Mackereth from the Fonterra Research Centre for his assistance in designing direct steam injectors. Thanks also to Mark Dorsey for the electrical and process control work he carried out. Also thanks to the other postgraduate students, Hayden Bennett, Richard Croy, Carol Ma, Mark Downey and Binh Trinh, who helped design, construct and automate the
various parts of the pilot plant and who helped with fine tuning and continuous improvement.

Thanks to the undergraduate students Kate Osbaldiston, Ola Mohamed Aly, Jackie Ng and Stephen Millward for their work on thermophile adhesion, which helped sharpen the focus of further adhesion studies.

For his assistance with modelling techniques and the use of MATLAB, thanks to John Bronlund from The Institute of Technology and Engineering at Massey University.

Thanks to Liz Nickless and Al Rowland for training and assistance with the confocal microscope.

Thanks to Dave Woodhams for his helpful comments that helped keep the work aligned with the needs of the dairy industry and for his critique of reports submitted as part of the Plant Availability Project, of which this study was sub-project.

Identification of the thermophilic bacteria isolated from the pilot plant by random amplified polymorphic DNA (RAPD) analysis was carried out by Hugh Morgan and staff at Thermophile research unit at the University of Waikato.

Thanks to Hong Chen, Hugh Waters, David Powell and Keary Adeane from Fonterra for granting the time off work necessary to complete this thesis. Also thanks to Neil Walker and David Powell from Fonterra for financial assistance to print and bind the thesis.

Lastly thanks to my wife Lisa, for her help in preparing materials for and providing assistance during experimental runs. Also thanks for her support and encouragement throughout the course of my PhD.
Contents

1. **INTRODUCTION** ... 1
 1.1. Objectives .. 2
2. **LITERATURE REVIEW** ... 3
 2.1. Thermophiles in Food Products .. 3
 2.1.1. Occurrence of thermophiles .. 3
 2.1.2. Thermophilic Spoilage ... 4
 2.1.3. Control .. 5
 2.2. Bacterial Relationships with Surfaces ... 6
 2.2.1. Introduction – Bacterial adherence in food processing ... 6
 2.2.2. Biofilm life cycle processes .. 6
 2.2.2.1. Colonisation and Growth ... 7
 2.2.2.2. Detachment ... 8
 2.2.2.3. Interaction, Competition and Succession ... 9
 2.2.3. Surface behaviour of attached bacteria and biofilms .. 9
 2.2.3.1. Proposed Mechanisms of Bacterial adhesion to surfaces ... 10
 2.2.3.2. Adhesion Factors .. 11
 2.2.3.3. Cell Properties .. 11
 2.2.3.4. Attachment Surface Properties ... 18
 2.2.3.5. Suspending Fluid Properties ... 25
 2.2.3.6. Resistance to Sanitation .. 29
 2.2.3.7. Control of Biofilms in the food industry ... 32
 2.2.4. Mathematical modelling of biofilms ... 34
 2.2.4.1. History and Current Status ... 34
 2.2.4.2. Biofilm modelling in food processing .. 35
 2.3. Methods of Detection, Study, and Enumeration of Bacteria on Surfaces .. 40
 2.3.1. Introduction ... 40
 2.3.2. Generation of material for study ... 40
 2.3.3. Removal Methods .. 41
 2.3.3.1. Introduction ... 41
 2.3.3.2. Swabbing .. 42
 2.3.4. Microscopy .. 43
 2.3.4.1. Types of Microscopy ... 43
 2.3.5. Impedance Microbiology ... 49
 2.4. Incidence of Thermophiles in Dairy Processing Plants ... 55
 2.4.1. Unit Operations ... 55
 2.4.1.1. Prior to Plant ... 55
 2.4.1.2. Pre-heaters / Heat Exchangers/ Pasteurisers/ Separators .. 57
 2.4.1.3. Evaporation ... 62
 2.4.1.4. Membranes ... 64
 2.4.1.5. Drying ... 64
 2.4.1.6. Storage tanks ... 65
 2.4.1.7. Overall Plant ... 65
 2.5. Milk Powder Manufacture .. 68
 2.5.1. Milk Powder manufacturing process .. 68
 2.5.2. Fouling and thermophiles in Milk Powder Manufacture .. 69
 2.6. Literature Summary ... 71
 2.6.1. Summary of Literature .. 71
3. THE METHODS AND MATERIALS

3.1. Pilot Plant (design, construction, description)

3.1.1. Pre-heat section (overview)

3.1.2. Direct steam injection (DSI)

3.1.2.1. DSI description

3.1.2.2. DSI design

3.1.3. Tubular heat exchanger (THE)

3.1.4. Mini plate heat exchangers (MHE)

3.2. Acquisition of operational data

3.2.1. Computer interface

3.2.2. Temperature Measurement

3.2.3. Flow rate

3.2.4. Pressure

3.3. Fouling methodology

3.3.1. Preparation

3.3.2. Operation

3.3.3. Recording of fouling structures

3.4. Pilot Plant Clean in Place (CIP)

3.4.1. CIP Procedure

3.5. Microbiological Techniques

3.5.1. Milk sampling

3.5.2. Bulk milk thermophile counts

3.5.3. Isolate

3.5.4. Confocal laser scanning microscopy (CLSM)

3.5.4.1. Method development

3.5.4.2. CLSM technique

3.5.5. Swabbing

3.5.6. Impedance microbiology

3.5.7. Epi - fluorescence microscopy

3.5.8. Random amplified polymorphic DNA (RAPD) analysis

3.6. Experimental procedures

3.6.1. Thermophile contamination experiments

3.6.1.1. Run 1

3.6.1.2. Run 2

3.6.1.3. Run 3

3.6.1.4. Run 4

3.6.1.5. Run 5

3.6.2. Survival during cleaning

3.6.2.1. Cleaning

3.6.3. Re-contamination after cleaning

3.6.3.1. Lab scale - transport mechanism study

3.6.3.2. Pilot Plant Experimental Run (Run 5)

3.6.4. Adhesion investigations

3.6.4.1. Adhesion

3.6.4.2. Method

3.7. Data Processing

3.7.1. Plate counts

3.7.2. CLSM

3.7.3. Plant data

3.7.4. Impedance
Direct Steam Injection Design Formulae ... B-3
Example of dilution series used for enumeration of thermophiles in bulk milk B-5
Thermophile release data .. B-6

APPENDIX C - FOULING PHOTOGRAPHS ... C-1
Experimental Run 1 ... C-1
Experimental Run 2 ... C-2
Experimental Run 3 ... C-6
 THE inner tube photographs ... C-6
 MHE plate surface photographs ... C-8
Experimental Run 4 ... C-10
 THE inner tube photographs ... C-10
 MHE plate surface photographs ... C-12
Experimental Run 5 ... C-13
 THE inner tube photographs ... C-13
 MHE plate surface photographs ... C-14

APPENDIX D - PILOT PLANT DATA ... D-1
Experimental Run 1 ... D-1
Experimental Run 2 ... D-2
Experimental Run 3 ... D-3
Experimental Run 4 ... D-5
Experimental Run 5 ... D-10

APPENDIX E - OTHER MODELLING INFORMATION .. E-1
Estimation of unknown model parameters ... E-1
Sensitivity Analysis .. E-2
 Variation of constant ‘a’ .. E-2
 Variation of constant ‘kr’ .. E-3
Numerical error checks ... E-5
 MATLAB® Solver Tolerance .. E-5
 Number of Nodes per THE tube ... E-5
 Comparison with 1D model .. E-6
MATLAB® script and function files .. E-8
 Script file for 2D finite difference model ... E-8
 Function file for 2D finite difference model .. E-10
Example input and output .. E-12
 Input .. E-12
 Output ... E-12
 Script file for 1D model .. E-14
 Function file for 1D model .. E-15

APPENDIX F - PEER REVIEWED PAPERS ... F-1
 Paper 1: 6th World Congress of Chemical Engineering, Melbourne 2001 F-1
 Paper 2: 9th APCChE Congress and CHEMICA 2002 F-1
 Paper 3: 9th APCChE Congress and CHEMICA 2002 F-1

APPENDIX G - INDEX TO ATTACHED COMPACT DISC G-1

APPENDIX H - REFERENCE LIST .. H-1
List of Figures

Figure 2.3.1. Experimental results and model predictions of de Jong et al. (2002) for the concentration of *S. thermophilus* at the outlet of a heat exchanger 38
Figure 2.5.1a : Diagram of a typical milk powder manufacturing process 68
Figure 2.5.1b : Description of a typical milk powder manufacturing process 69
Figure 3.1.1. Photograph of the milk pilot plant showing preheating (on the right side of the photo) and evaporator (on the left side of the photo) sections 73
Figure 3.1.2. Diagram of typical the set up of the milk pilot plant preheating section showing locations of sampling points .. 74
Figure 3.1.3. Photograph showing two of the DSI units installed in the pilot plant 77
Figure 3.1.4. Diagram of a direct steam injection unit. A complete drawing is provided in Appendix A, page A-6 .. 78
Figure 3.1.5. Photograph of tubular heat exchanger installed in the pilot plant 79
Figure 3.1.6. Cross section of tubular heat exchanger tube, showing the location of the milk in the central tube with hot water heating on both the inner and outer surfaces .. 80
Figure 3.1.7. Drawing of the assembly of an individual heat exchange tube. A complete drawing is provided in Appendix A, page A-5 80
Figure 3.1.8. Photograph of a single MHE unit. Note the thermocouple wire entering from the top of the unit. Milk passes through the top half and hot water through the bottom half of the unit .. 82
Figure 3.1.9. Diagram of MHE unit assembly showing approximate dimensions 82
Figure 3.2.1. Photograph of control room .. 84
Figure 3.2.2. Calibration curve for the two paddle flow meters used to maintain even flow through either side of the THE rig .. 86
Figure 3.5.1. CLSM images of thermophilic bacterial colonies on a fouling layer stained with SYTO 13 at 200x magnification. Bacterial colonies appear as the bright dots, while the fouling layer causes the background fluorescence. Higher areas of the fouling layer appear brighter than the lower regions. In (b) a poorly developed fouling layer is shown, where some of the deposit resembles thermophilic colonies, adding uncertainty to the counts .. 95
Figure 3.5.2. Diagram of the set up of the sample in relation to the CLSM objective lens .. 97
Figure 3.5.3. Calibration curve for planktonic *Bacillus stearothermophilus C₅m (B12)* on the MiniTrac 4000 impedance monitor using TSB as the growth medium. Graph shows the number of colony forming units (CFU) measured in the samples by plate counts versus the impedance detection times (IDT) of the samples 99
Figure 3.6.1. Diagram showing procedure for changing the surface area inside the MHE exposed to the milk flow as half fouled and half un-fouled by changing the portion of the stainless steel surface exposed to the milk flow within the MHE 106
Figure 3.6.2. Bench scale convection experiment rig ... 110
Figure 3.6.3. Diagram of pilot plant equipment used in the pilot plant recontamination experiment ... 112
Figure 3.6.4. Photograph of pre-fouled inner tube after four hours of fouling with the milk inlet temperature at 65 °C and the hot side temperature at 95 °C 113
Figure 3.6.5. Rig for inoculation of the contaminated pre-fouled inner tube 113
Figure 3.6.6. Structure of skim milk fouling layer used in adhesion studies 116
Figure 3.6.7. Structure of whole milk fouling layer used in adhesion studies 116
Figure 3.6.8. Structures of whole milk fouling layers used in adhesion studies where the amount of fouling was varied based on the fouling duration .. 117
Figure 4.1.1. Thermophile bulk contamination at selected locations across pilot plant over time during Run 4. The pre-fouled and un-fouled THE were installed in parallel. Typical temperatures at each position were: Vat 4 °C, PHE 40 °C and other positions 55 °C .. 124
Figure 4.1.2. Thermophilic spore bulk contamination at selected locations across pilot plant over time during Run 4. The pre-fouled and un-fouled THE were installed in parallel .. 125
Figure 4.1.3. Increase in thermophile contamination in the bulk milk as it passes through the pilot plant after 20 hours of operation (Run 4). Two different strains of thermophile were found to contaminate the plant, the inoculated Bacillus stearothermophilus (type Cm) strain and a naturally occurring Bacillus licheniformis (type F/G) strain .. 127
Figure 4.1.4. Thermophile bulk contamination along the THE at 20 hours during Run 4. Bulk contamination values from the end of each tube are plotted against surface area as each tube provides 1200cm² of wetted milk contact surface area 128
Figure 4.1.5. Thermophile bulk contamination along the THE at 12.5 hours during Run 2 .. 128
Figure 4.1.6. Thermophilic spore bulk contamination along THE at 20 hours during Run 4 ... 129
Figure 4.1.7. Thermophilic spore bulk contamination along THE at 12.5 hours during Run 2 ... 129
Figure 4.1.8. Thermophiles released into the bulk milk from the THE per unit wetted surface contact area over time for Run 2. These values are calculated from the slope of graphs such as in Figure 4.1.5. Errors bars show 95% confidence intervals in the prediction of the slope through regression .. 131
Figure 4.1.9. Thermophiles released into the bulk milk from the THE per unit wetted surface contact area over time for Run 4. These values are calculated from the slope of graphs such as Figure 4.1.4. Error bars show 95% confidence intervals in the prediction of the slope through regression .. 132
Figure 4.1.10. Thermophilic spores released to the bulk milk from the THE per unit wetted surface contact area over time for Run 2. These values are calculated from the slope of graphs such as Figure 4.1.6. Error bars show 95% confidence intervals in the prediction of the slope through regression .. 133
Figure 4.1.11. Thermophilic spores released to the bulk milk from the THE per unit wetted surface contact area over time for Run 4. These values are calculated from the slope of graphs such as Figure 4.1.7. Error bars show 95% confidence intervals in the prediction of the slope through regression .. 133
Figure 4.1.12. Numbers of vegetative thermophilic bacteria at the surface of the pre-fouled and un-fouled stainless steel surfaces (MHE) during Run 5, as measured by impedance microbiology .. 134
Figure 4.1.13. Numbers of thermophilic spores at the surface of the pre-fouled and un-fouled stainless steel surfaces (MHE) during Run 5 as measured by impedance microbiology .. 135
Figure 4.1.14: Typical fouling structure seen on the stainless steel showing the rough topography of the surface .. 136
Figure 4.1.15. Confocal Laser Scanning Microscope (CLSM) image of bacteria on a milk fouling layer. This is a magnified view (300x – note 10μm scale bar) of how the structure shown in Figure 4.1.14 appears under CLSM .. 136
Figure 4.1.16. The development of thermophilic bacterial populations over time on the pre-fouled and initially clean stainless steel surfaces (MHE) during Run 3 as measured by CLSM where the surface temperature was 85 °C and the bulk milk was 55 °C. Error bars represent 95% confidence intervals on the mean.

Figure 4.1.17. UV photomicrographs of the fouling structures present on the mini HE plates over time in Run 3 (40x magnification). Shows that fouling started to build up on the initially clean surfaces after 7.5 hours from the start of the run. Also, it can be seen that the pre-fouling and new fouling formed over the 20 hour run have different structures.

Figure 4.2.1. Amount of fouling remaining on fouled surfaces after caustic cleaning treatments (65 °C, 2%) of increasing durations, from no treatment to 15 minutes (trial 1). The 10 and 30 second treatments show the initial swelling of the fouling layer. Samples exposed to cleaning from one minute to 15 minutes show gradual removal of the fouling layer.

Figure 4.2.2. Surface bacterial population of the fouled and un-fouled surfaces before and after 2% caustic cleaning treatments from 10 seconds to 20 minutes at 65 °C with no agitation. Population calculated from surface activity measured by impedance microbiology. Error bars show 95% confidence intervals (triplicate samples). Data from trial one (T1) and trial two (T2) are shown.

Figure 4.2.3. Surface spore population of the fouled and un-fouled surfaces before and after 2% caustic cleaning treatments from 10 seconds to 15 minutes at 65 °C with no agitation. Population calculated from surface activity measured by impedance microbiology. Samples were given a 100 °C heat treatment for 30 minutes prior to impedance measurement to differentiate between vegetative cells and spores. Error bars show 95% confidence intervals (triplicate samples). Data from trial one (T1) and trial two (T2) is shown.

Figure 4.2.4. Confocal laser scanning microscopy image (300x magnification – note scale bar of 10 μm) of un-fouled surfaces before and after 15 minutes of cleaning treatment. As can be seen, the biofilm structure is relatively unchanged, indicating that reduced surface thermophile activity is due to cell death rather than removal.

Figure 4.2.5. Confocal laser scanning microscopy image (300x magnification – note scale bar of 10 μm) of fouled surfaces before and after 15 minutes of cleaning treatment.

Figure 4.3.1. Bulk contamination across each side of the THE tube bank after 4 hours of operation against surface contact area (Run 5).

Figure 4.3.2. Bulk contamination across each side of the THE tube bank after 8 hours of operation showing the thermophile release as surface contact area increases (Run 5).

Figure 4.3.3. Bulk contamination across each side of the THE tube bank after 12 hours of operation showing the thermophile release as surface contact area increases (Run 5).

Figure 4.3.4. Bulk contamination across each side of the THE tube bank after 16 hours of operation showing the thermophile release as surface contact area increases (Run 5).

Figure 4.3.5. Thermophiles released into the bulk milk from the THE per unit wetted surface contact area over time for Run 5. These values are calculated from the slope of graphs such as Figure 4.3.1 and 4.3.2. Errors bars show 95% confidence intervals in the prediction of the slope through regression.
Figure 4.3.6. Graph of thermophile bulk contamination over time at the vat, THE inlet and THE outlet up to 16 hours (Run 5). ... 154
Figure 4.3.7. Graph comparing bulk concentration over time at the clean THE outlet between runs with different initial thermophile concentrations in the milk. 155
Figure 4.3.8. Bulk thermophile numbers in the lab scale rig at milk sample points downstream of initially contaminated surfaces and downstream of initially sterile coupons over 15 hours operation ... 156
Figure 4.3.9. Surface populations on initially contaminated (upstream) and initially sterile (downstream) surfaces in the lab scale rig over 15 hours. 157
Figure 4.4.1. Numbers of thermophiles adhered to whole milk and skim milk fouling layers at varying bulk cell concentrations. Error bars show the 95% confidence interval on the mean. Numbers assessed using CLSM. 160
Figure 4.4.2. Average thermophile numbers adhered to whole milk fouling layers with increasing run duration. Error bars show the 95% confidence interval on the mean. Numbers assessed using CLSM. 161
Figure 4.4.3. Numbers of thermophiles adhered to un-fouled stainless steel at varying bulk cell concentrations. Numbers were assessed using epi-fluorescence microscopy. 161
Figure 4.4.4. Adhesion data measured by impedance for whole milk foulant and stainless steel. Surface numbers assessed with impedance microbiology. 164
Figure 4.5.2. Change in the proportion of bacteria generated that are released from the surface (β) as the surface population increases. 174
Figure 4.5.3. Diagram of finite difference grid applied in the numerical solution of the un-steady state model. The grid consists of J number of nodes spaced over the length (L) of the pipe ... 176
Figure 4.5.4. Predicted profile of thermophile contamination of bulk milk with varying inlet bulk concentrations of bacteria (Cb 10, Cb 200, Cb 5000 and Cb 30000) compared with experimental data (exp 10, exp 200, exp 5000 and exp 30000). The solid lines show model predictions while experimental data are shown as the single data points. Inlet bacterial concentrations of 10, 200, 5000 and 30000 cfu.ml⁻¹ are shown (kₙ = 5E-6, a = 0.9, kᵣ = 8E-7 and g = 1000 s) ... 178
Figure 4.5.5. Predicted profile of thermophile contamination of bulk milk with an inlet bulk concentration of 10 cfu.ml⁻¹ bacteria (Cb 10) compared to experimental data (exp 10). The solid line shows model predictions with no bacteria initially present on the surface and the dotted line with 1 cfu.cm⁻² initially present on the surface (depicted as Cbi 10, nw1 1 cfu.cm⁻²). The experimental data are shown as the single data points (kₙ = 5E-6, a = 0.9, kᵣ = 8E-7 and g = 1000 s) ... 179
Figure 4.5.6. Experimental and predicted bulk milk contamination at the THE exit for a situation such as in Run 5 where the first tube on one side of the THE was initially contaminated with 4x10⁶ cfu.cm⁻². Also shown is the predicted contamination profile if the surface numbers were initially 4x10⁴ cfu.cm⁻² (depicted in legend as nw1 x 10). The inlet concentration of bacteria was 5000 cfu.ml⁻¹ (kₙ = 5E-6, a = 0.9, kᵣ = 8E-7 and g = 1000 s) ... 180
Figure 4.5.7. Model predictions of surface numbers (nw 100 and nw 5000) compared to experimental measurements from Runs 4 (exp 200) and 5 (exp 5000) where the initial bulk concentration of bacteria was 200 and 5000 cfu.ml⁻¹ respectively. The solid lines show model predictions while experimental data is shown as the single data points (kₙ = 5E-6, a = 0.9, kᵣ = 8E-7 and g = 1000 s) ... 181
Figure 4.5.8. Model predictions showing the variation in the bulk contamination profile as the adhesion constant is reduced from 5E-6 to 5E-9 cm.s⁻¹ (Cbi (initial bulk numbers) = 200 cfu.ml⁻¹, a = 0.9, kₐ = 8E-7 and g = 1000 s)............................. 182
Figure 4.5.9. Model predictions showing the variation in the surface numbers over time as the adhesion constant is reduced from 5E-6 to 5E-9 cm.s⁻¹ (Cbi (initial bulk numbers) = 200 cfu.ml⁻¹, a = 0.9, kₐ = 8E-7 and g = 1000 s)............................. 184
Figure 4.5.10. Model predictions showing the variation in the bulk contamination profile as generation time is increased (Cbi = 200 cfu.ml⁻¹, a = 0.9, kᵣ = 8E-7 and kₐ = 5E-6). ... 185
Figure A.1. Pilot plant piping and instrumentation drawing (P&ID) A-1
Figure A.2. Mini plate heat exchanger (MHE) rig piping and instrumentation drawing (P&ID) ... A-3
Figure A.3. Tubular heat exchanger (THE) rig piping and instrumentation drawing (P&ID) ... A-4
Figure A.4. Tubular heat exchanger (THE) dimensional drawing A-5
Figure A.5. Direct steam injector (DSI) dimensional drawing A-6
Figure C.1. Un-fouled inner tube before Run 1 ... C-1
Figure C.2. Pre-fouled inner tube before Run 1 ... C-1
Figure C.3. Un-fouled inner tube after Run 1 ... C-1
Figure C.4. Pre-fouled inner tube after Run 1 ... C-1
Figure C.5. Un-fouled inner tubes before Run 2 (in order from first tube to last tube in THE). .. C-2
Figure C.6. Pre-fouled inner tubes before Run 2 (in order from first tube to last tube in THE). .. C-3
Figure C.7. Un-fouled inner tubes after Run 2 (in order from first tube to last tube in THE). .. C-4
Figure C.8. Pre-fouled inner tubes after Run 2 (in order from first tube to last tube in THE). .. C-5
Figure C.9. Pre-fouled inner tubes before Run 3 (in order from first tube to last tube in THE). .. C-6
Figure C.10. Originally clean inner tubes after Run 3 (in order from first tube to last tube in THE). .. C-7
Figure C.11. Pre-fouled inner tubes after Run 3 (in order from first tube to last tube in THE). .. C-7
Figure C.12. MHE plate surfaces 1-3 before and after Run 3 .. C-8
Figure C.13. MHE plate surfaces 4-6 before and after Run 3 .. C-9
Figure C.14. Pre-fouled inner THE tubes before Run 4 (in order from first tube to last tube in THE). .. C-10
Figure C.15. Un-fouled inner THE tubes after Run 4 (in order from first tube to last tube in THE). .. C-11
Figure C.16. Pre-fouled inner THE tubes after Run 4 (in order from first tube to last tube in THE). .. C-11
Figure C.17. MHE plate surface photographs after Run 4 ... C-12
Figure C.18. Pre-fouled inner THE tube before inoculation and Run 5 C-13
Figure C.19. Pre-fouled inner THE tube and the downstream un-fouled inner THE tubes (i.e. the initially contaminated side of the THE) after Run 5 C-13
Figure C.20. Un-fouled inner THE tubes (i.e. the initially clean side of the THE) after Run 5 .. C-14
Figure C.21. MHE plate surface photographs after Run 5 .. C-14
Figure D.1. Pilot plant data logged during experimental Run 1 .. D-1
Figure D.2. Pilot plant data logged during experimental Run 2 .. D-2
Figure D.3. Pilot plant data logged during experimental Run 3. Temperature data from THE inlet and outlet, DSI, and the hot water circuit are plotted .. D-3
Figure D.4. Pilot plant data logged during experimental Run 3. Temperature data from the MHE modules are plotted. Note the drop in temperature as each plate surface is removed .. D-3
Figure D.5. Pilot plant data logged during experimental Run 3. The flow rate and temperature data from the PHE and milk vat are plotted .. D-4
Figure D.6a. Key to tag names for temperature indicators (thermocouples) on the water jacket (outer tube) .. D-5
Figure D.6b. Key to tag names for temperature indicators (thermocouples) on the milk side (middle tube) .. D-5
Figure D.6c. Key to tag names for temperature indicators (thermocouples) on the inner tube .. D-6
Figure D.7. Temperatures logged from the milk vat, PHE, hot water tank and MHE rig during Run 4 .. D-6
Figure D.8. Temperature logged from the DSI during Run 4 .. D-7
Figure D.9. Milk flow rate logged from pilot plant during Run 4 .. D-7
Figure D.10. Temperatures logged from the THE water jackets (outer tubes) during Run 4. See key in Figure D.6a for locations .. D-8
Figure D.11. Temperatures logged from the milk side of the THE (middle tubes) during Run 4. See key in Figure D.6b for locations .. D-8
Figure D.12. Temperatures logged from the THE inner tubes during Run 4. See key in Figure D.6c for locations .. D-9
Figure D.13. Temperatures logged from the milk vat, PHE, hot water tank and MHE rig during Run 5 .. D-10
Figure D.14. Milk flow rate and DSI temperature logged from pilot plant during Run 5 .. D-10
Figure D.15. Temperatures logged from the THE water jackets (outer tubes) during Run 5. See key in Figure D.6a for locations .. D-11
Figure D.16. Temperatures logged from the milk side of the THE (middle tubes) during Run 5. See key in Figure D.6b for locations .. D-11
Figure D.17. Temperatures logged from the THE inner tubes during Run 5. See key in Figure D.6c for locations .. D-12
Figure E.1. Predictions of bulk thermophile numbers over time with varying values for the constant ‘a’ of 0.5 to 1.0 (Cbi = 200 cfu.ml⁻¹, k₈ = 5E-6, k₉ = 8E-7 and g = 1000 s) .. E-2
Figure E.2. Predictions of surface population over time with varying values for the constant ‘a’ of 0.5 to 1.0 (Cbi = 200 cfu.ml⁻¹, k₈ = 5E-6, k₉ = 8E-7 and g = 1000 s) .. E-3
Figure E.3. Predictions of bulk thermophile numbers over time with varying values for the constant ‘k₉’ of 8E-9 to 8E-5 (Cbi = 200 cfu.ml⁻¹, k₈ = 5E-6, a₈ = 0.9 and g = 1000 s) .. E-4
Figure E.4. Predictions of surface population over time with varying values for the constant ‘k₉’ of 8E-9 to 8E-5 (Cbi = 200 cfu.ml⁻¹, k₈ = 5E-6, a₈ = 0.9 and g = 1000 s) .. E-4
Figure E.5. Predictions of bulk thermophile numbers from 2D and 1D models using the same input parameters (g=1000 s, Cbi = 200 cfu.ml⁻¹, a = 0.9, kᵣ = 8E-7 and kₐ = 5E-6).

Figure E.6. Predictions of thermophile surface population from 2D and 1D models using the same input parameters (g=1000 s, Cbi = 200 cfu.ml⁻¹, a = 0.9, kᵣ = 8E-7 and kₐ = 5E-6).

Figure E.7. First MATLAB output graph (surface population (cfu.cm⁻²) vs time (hrs)) from un-steady model using example input above.

Figure E.8. Second MATLAB output graph (bulk numbers (cfu.ml⁻¹) vs time (hrs)) from un-steady model using example input above.
List of Tables

Table 2.1. Common types of thermophiles found in food products .. 4
Table 2.2. Types of thermophilic spoilage and thermophiles that commonly produce them. ... 5
Table 2.5.1. Summary of locations in milk powder manufacturing where fouling and thermophile interactions could occur, + indicates potential presence, - indicates likely absence ... 71
Table 3.5.1. Agar composition used for thermophile counts .. 91
Table 3.6.1. The range of samples, adhesion times, bulk cell concentrations and measurement methods used in the adhesion studies ... 119
Table 4.5.1. Predicted and actual release of bacteria from THE tubes. A bacterial generation time of 1000 seconds was used in these calculations .. 170
Table A.1. List of commercial equipment details .. A-2
Table B.1. Example of direct steam injection design calculation .. B-1
Table B.2. Example dilution series for each bulk milk sample taken during Experimental Run 5 .. B-5
Table B.3. Thermophilic bacterial and spore release data for Run 2 as plotted on Figure 4.1.8 and 4.1.10. Taken from linear regression of the amount of thermophilic bacteria released across side of THE rig, assuming each THE tube has a surface contact area of 1200 cm². Confidence intervals were calculated by Excel linear regression at 95 % level of significance .. B-6
Table B.4. Thermophilic bacterial and spore release data for Run 4 as plotted on Figure 4.1.9 and 4.1.11. Taken from linear regression of the amount of thermophilic bacteria released across side of THE rig, assuming each THE tube has a surface contact area of 1200 cm². Confidence intervals were calculated by Excel linear regression at 95 % level of significance .. B-7
Table B.5. Thermophilic bacterial release data for Run 5 as plotted on Figure 4.3.4. Taken from linear regression of the amount of thermophilic bacteria released across side of THE rig, assuming each THE tube has a surface contact area of 1200 cm². Confidence intervals were calculated by Excel linear regression at 95 % level of significance .. B-7
Table E.1. Best fit estimates of unknown model parameters and overall averages used in model predictions .. E-1
Table E.2. Surface population and bulk thermophile predictions over time from the model with the MATLAB® solver tolerance set to 1E-3 and 1E-6 (predictions rounded to nearest whole number) ... E-5
Table E.3. Prediction of surface population and bulk thermophile numbers using 1, 6 and 20 nodes per THE tube (predictions rounded to nearest whole number) E-6
Table G.1. Index of information on enclosed compact disc .. G-1