Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
CONTACT SYSTEMS AND CONTACT INTEGRATORS

A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy
in
Mathematics

at Massey University, Palmerston North
New Zealand.

Seung-Hee Joo
October 2003
Abstract

This thesis is concerned with the study of contact systems, which are ordinary differential equations whose flow preserves a contact structure. We study contact systems from both an analytical and numerical point of view. The traditional point of view is to study the Reeb vector field of a contact form. However, if the contact Hamiltonian vanishes then its contact vector field is not the Reeb vector field of any contact form equivalent to the given one. In this thesis we study exactly this case, when the contact Hamiltonian vanishes on some submanifold of phase space. This submanifold is invariant under the flow and we study the flow on it, including its stability and fixed points.

The natural numerical method for a contact system is a 'contact integrator', a map that preserves the contact structure, which is suitable for exploring the long-time dynamics of contact systems. These have not been studied very much in geometric integration. In order to formulate our results and some consequences for contact integrators, we give a thorough development of the symplectification of a contact system and have found the integrable contact systems related to integrable homogeneous Hamiltonian systems via symplectification. We develop contact integrators by the splitting method, leading to an explicit contact integrator for any polynomial contact vector field. We also study how symplectic integrators for Hamiltonian systems and volume-preserving integrators for divergence-free systems are related to contact integrators for contact systems.
Acknowledgements

Life is filled with journeys. In my life, the longest journey was my PhD study. I commenced PhD study (Bezout’s Theorem in Commutative Algebra and Algebraic Geometry) with Professor Wolfgang Vogel on June 1995. However, the sudden death of Professor Vogel during October 1996 changed my research topic. My research was suspended for 2 years, due to illness and to take care of my son. I was teaching at a NZ high School, Professor Robert McLachlan encouraged me to recommence my PhD study in Geometric Integration. I started work on this thesis in 2000. Before I could even organize this thesis, my father died, and I could not see him at the end due to the research.

I am happy to have achieved this milestone in my life. Even though it has brought me both joy and sorrow, it has become a part of my life.

This work was possible because of all the help from people around me, who encouraged me at all times. I thank everyone. Especially, I would like to thank my supervisor Professor McLachlan who has been unfailing in helping me get the resources and information I needed to complete this thesis. Dr. Kee Teo, Dr. Gillian Thornley and Dr. Tammy Smith have been most generous and helpful with their advice, recommendations and discussions and very kind in helping me over the past 8 years. Also I thank all the staff and graduate students in the Discipline of Mathematics. My warmest gratitude goes to my son Kyung-II, my husband Joong-Ki Min, and to my mother for so much love and support. I couldn’t have made it without them.

And last of all, I am really thankful to Professor Vogel who took care of my study until the last moment of his life. It was really sad that he was not able to see the end of my research. I dedicate this thesis to him and my father.

My PhD work was supported by a Doctoral Scholarship from Massey University.
Nomenclature

We list below standard notation of Differential Geometry (see, for instance, [66, 70]) used in this thesis. Entries are generally arranged in order of occurrence in the thesis.

\(C^\infty \) the set of infinitely differentiable functions
\(\wedge \) exterior product
\(T_x^*M \) the set of 1-forms at the point \(x \) of a manifold \(M \), dual to \(T_xM \)
\(T_xM \) the set of tangent vectors at the point \(x \) of a manifold \(M \)
\(T^*M \) the cotangent bundle of \(M \)
\(TM \) the tangent bundle of \(M \), dual to \(T^*M \)
\(d \) exterior derivative
\(f_* \) the push-forward map derived from \(f \)
\(f^* \) the pull-back map derived from \(f \)
\(dx \) the gradient of the \(x \) coordinate function
\(L_X\omega \) the Lie derivative of \(\omega \) by the vector field \(X \), \(\omega \) is a symplectic form
\(i_X\omega \) the interior product of the differential form \(\omega \) by the vector field \(X \)
\(\mathcal{X}(M) \) the set of vector fields on \(M \)
\(S^n \) the surface of the sphere in \((n + 1)\)-dimensional Euclidean space
\(\pi \) a projection map
\(\frac{\partial}{\partial z}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \varphi} \) a basis for the tangent space of \(\mathbb{R}^3 \)
\([X,Y] \) the Lie bracket of the vector fields \(X \) and \(Y \)
\(\{F,G\} \) the Poisson bracket of the functions \(F \) and \(G \)
\([f,g] \) the Jacobi bracket of the functions \(f \) and \(g \)
\(\text{div} \) the divergence operator, as in \(\text{div}_\Omega X \)
Contents

Abstract iii
Acknowledgements v
Nomenclature vii

1 Introduction 1
 1.1 Brief History ... 1
 1.2 General Summary of the Thesis 3
 1.2.1 Main Achievements 6

2 Symplectic Preliminaries 8
 2.1 Symplectic Structures 8
 2.1.1 Symplectic Manifolds 9
 2.1.2 Symplectic Forms 10
 2.2 Symplectic Diffeomorphisms 12
 2.3 Hamiltonian Systems 13
 2.3.1 Hamiltonian Vector Fields 13
 2.3.2 Hamiltonian Flows 16

3 Contact Preliminaries 18
 3.1 Contact Structures 19
 3.1.1 Contact Manifolds 19
 3.1.2 Contact Forms 20
 3.2 Contact Diffeomorphisms 22
3.3 Contact Systems

3.3.1 Reeb Vector Fields 23
3.3.2 Contact Vector Fields 27
3.3.3 Relationship between Contact and Homogeneous Hamiltonian Vector Fields 32

4 Contact Dynamical Systems

4.1 Dynamics On the Contact Manifold 41
4.2 Dynamics On the Zero Section of K 46
 4.2.1 The Case $\lambda \in C^\infty(M)$ 46
 4.2.2 The Case $\lambda \neq 0$ 49
4.3 Stability in Contact Systems 53
 4.3.1 Stability On \mathbb{R}^3 53
 4.3.2 Stability On the Contact Manifold 58
 4.3.3 Examples 63

5 Integrable Hamiltonian and Contact Systems

5.1 Integrals and Integrable Systems of DEs 70
 5.1.1 What is an Integral? 70
 5.1.2 What is an Integrable Systems of DEs? 71
5.2 Poisson Bracket and Jacobi Bracket 73
 5.2.1 Poisson Bracket and Integrals for Hamiltonian Systems 73
 5.2.2 Jacobi Bracket and Integrals for Contact Systems 76
5.3 Integrable Hamiltonian and Contact Systems 84
 5.3.1 Integrability for Hamiltonian and Contact Systems in the Liouville Sense 84
 5.3.2 Examples 87
 5.3.3 Relationship between the Integrable Homogeneous and Contact Systems 89

6 Contact Integrators

6.1 Feng's Methods 101
List of Figures

4.1 Stability of the Fixed Points at the North Pole on the Sphere S^2 for $K = x^2 + y^2 + z^2 - 1$.. 64
4.2 Stability of the Fixed Point at the South Pole .. 64
4.3 Stability of the Fixed Point on the Paraboloid for $K = x^2 + y^2 - z$. 66
4.4 Phase Portrait of the Contact System with $K = x^2 + y^2 - z^2$ 68

5.1 Phase-Space Plot of the Simple Harmonic Oscillator 71

6.1 Feng’s Method \tilde{P} for the Contact System with $K = \frac{1}{2}(x^2 + y^2)$ 117
6.2 Euler’s Method for the Contact System with $K = \frac{1}{2}(x^2 + y^2)$ 117

7.1 Conservation of Volume in Hamiltonian Systems 138
7.2 Volume-Preserving Integrator $(x, y$ axis$)$ for the Source-Free System
with $K = \frac{1}{2}(x^2 + y^2 + z^2) + 1$.. 148
7.3 Volume-Preserving Integrator $(x, z$ axis$)$ 148
7.4 Contact Integrator \tilde{P} $(x, y$ axis$)$ for the Contact System with $K = \frac{1}{2}(x^2 + y^2 + z^2) + 1$ 151
7.5 Leapfrog Splitting Method $(x, y$ axis$)$.. 151
7.6 MATLAB ODE45 $(x, y$ axis$)$.. 152
7.7 Contact Integrator \tilde{P} $(x, z$ axis$)$.. 152
7.8 Leapfrog Splitting Method $(x, z$ axis$)$.. 153
7.9 MATLAB ODE45 $(x, z$ axis$)$.. 153