Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Differential Geometry
of
Projectively Related
Finsler Spaces

A thesis presented in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Mathematics
at Massey University
Palmerston North
New Zealand.

Padma Senarath
2003
This Thesis is Dedicated to the Memory of
My Loving Mother
and
My Loving Father
Abstract

The aim of this thesis is to study the theory of Finsler spaces by considering the following main objectives.

(i) To present the basic concepts of Finsler geometry including connections, flag curvature, projective changes, Randers spaces and Finsler spaces with other types of \((\alpha, \beta)\)-metric, where \(\alpha\) is a Riemannian metric and \(\beta\) is a one-form.

(ii) To introduce a Riemannian space of non-zero constant sectional curvature by considering a locally projectively flat Finsler space. The requirement for the Riemannian connection to be metric compatible gives a system of partial differential equations. Further, we compute two standard Riemannian metrics of non-zero constant sectional curvature by choosing two solutions of this system of partial differential equations.

(iii) To give two examples of locally projectively flat Randers metrics of scalar curvature by using a Riemannian metric computed in (ii) to illustrate the fact that some locally projectively flat Randers metrics of scalar curvature do not have isotropic S-curvature. We also prove that the scalar curvature of a Randers metric is not necessarily a constant if the metric has isotropic S-curvature and closed one-form by using an example.

(iv) To find necessary and sufficient conditions for Finsler spaces with various types of \((\alpha, \beta)\)-metric to be locally projectively flat and determine whether the conditions, a Riemannian metric \(\alpha\) is locally projectively flat and a one-form \(\beta\) is closed, can occur at the same time in the locally projectively flat Finsler spaces with various types of \((\alpha, \beta)\)-metric.
Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisors, Dr. Gillian M. Thomely and Associate Professor Bruce van Brunt, for their guidance, valuable suggestions, excellent supervision, encouragement, and support throughout my study and giving their knowledge and experience freely from the beginning of my study until the final editing of my dissertation.

I am extremely thankful to Professor Zhongmin Shen, IUPUI, USA, for assisting me in my research work by sending valuable textbooks and reference materials. I am also grateful to Professor David Bao, University of Houston, USA and Dr. Colleen Robles, University of Rochester, USA, for sending me literature.

I am particularly thankful to Mathematics group at Massey University for providing facilities and creating a friendly environment to carry out my studies successfully.

I am most grateful to Massey University for the financial assistance given to me throughout my study.

Many thanks are also extended to the Harrison family; Phil, Sue, Paul, Elizabeth and Sarah for their close friendship.

Finally my heartiest thanks go to my beloved husband Asoka and my loving daughter Nadeesha for their patience, continuous encouragement, co-operation and love until the completion of my dissertation and made my stay in New Zealand very pleasant.
Table of Contents

Abstract ii
Acknowledgments iii
Table of Contents iv
Notation vi
1 Introduction 1
2 Preliminaries 7
 2.1 Finsler Spaces 7
 2.2 Connections 17
3 Curvature 31
 3.1 Riemann Curvature 31
 3.2 Flag Curvature 34
 3.3 Non-Riemannian Curvatures 39
4 Projective Finsler Geometry 52
 4.1 Projective Change 52
 4.2 Projectively Invariant Tensors 59
 4.3 Examples of Locally Projectively Flat Finsler Spaces 68
5 Randers Space 87
 5.1 Randers Metric 87
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Non-Riemannian Curvatures of Randers Metrics</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Projectively Flat Randers Metrics with Isotropic S-Curvature</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>Finsler Spaces with ((\alpha,\beta))-Metric</td>
<td>121</td>
</tr>
<tr>
<td>6.1</td>
<td>Geodesic Coefficients of Finsler Spaces with ((\alpha,\beta))-Metric</td>
<td>122</td>
</tr>
<tr>
<td>6.2</td>
<td>Locally Projectively Flat Finsler Spaces with ((\alpha,\beta))-Metric</td>
<td>126</td>
</tr>
<tr>
<td>6.3</td>
<td>Finsler Spaces with ((\alpha,\beta))-Metric of Douglas Type</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>Summary and Conclusions</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>
Throughout this dissertation the following notation is used.

M : - Differentiable manifold of dimension n.

p : - A point on M.

(x^1,\ldots,x^n) : - Local coordinates of p denoted by x.

T_pM : - Tangent space of M at p.

y : - A tangent vector at p.

(y^1,\ldots,y^n) : - Vector components of y.

$$\left\{ \frac{\partial}{\partial x^1}, \ldots, \frac{\partial}{\partial x^n} \right\} :$$ - A basis in T_pM.

$$y = y^1 \frac{\partial}{\partial x^1} + \ldots + y^n \frac{\partial}{\partial x^n} = y^i \frac{\partial}{\partial x^i} :$$ - The Einstein summation convention.

$TM = \bigcup_{p \in M} T_pM$: - Tangent bundle of M.

(x,y) : - Local coordinates of a point in TM.

$\mathfrak{F}^n = (M,F)$: - A Finsler space of dimension n.

$F = F(x,y)$: - Finsler metric on M.

$l = (l^1,\ldots,l^n)$: - Normalized supporting element of F, where $l^i = y^i / F$.

$l_i = \frac{\partial F}{\partial y^i} :$ - Partial derivative of F with respect to y^i.
\(g_{ij} = g_{ij}(x, y) \) : - Finsler metric tensor of \(F \) (page 9, chapter 2).

\(h_{ij} = h_{ij}(x, y) \) : - Angular metric tensor of \(F \) (page 15, chapter 2).

\(G^i = G^i(x, y) \) : - Geodesic coefficients of \(F \) (page 19, chapter 2).

\(G^i_{jk} = G^i_{jk}(x, y) = \frac{\partial^2 G^i}{\partial y^j \partial y^k} \) : - Coefficients of the Berwald connection (page 19, chapter 2).

\(\alpha = \alpha(x, y) \) : - Riemannian metric defined on \(M \).

\(\Gamma^i_{jk} = \Gamma^i_{jk}(x) \) : - Christoffel symbols of the Riemannian connection (page 17, chapter 2).

\(\beta = \beta(x, y) \) : - Differentiable one-form defined on \(M \).

\(R \) : - Riemann curvature (page 31, chapter 3).

\(K \) : - Scalar curvature (page 36, chapter 3).

\(\tau \) : - Distortion (page 40, chapter 3).

\(C \) : - Cartan torsion (page 40, chapter 3).

\(I \) : - Mean Cartan torsion (page 41, chapter 3).

\(S \) : - S-curvature (page 42, chapter 3).

\(E \) : - E-curvature (page 43, chapter 3).

\(L \) : - Landsberg curvature (page 48, chapter 3).

\(J \) : - Mean Landsberg curvature (page 49, chapter 3).

\(R^n \) : - \(n \)-dimensional real vector space.

All lower case Latin letters of the Einstein summation run from 1 to \(n \). That is, \(i, j, k, r, s... = 1, ..., n \).