Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
REPRODUCTIVE BEHAVIOUR OF
EPHESTIA KUEHNIELLA ZELLER
(LEPIDOPTERA: PYRALIDAE)

Jin Xu
2010
REPRODUCTIVE BEHAVIOUR OF

EPHESTIA KUEHNIELLA ZELLER

(LEPIDOPTERA: PYRALIDAE)

a thesis presented in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy in Entomology

at

Massey University

Palmerston North

New Zealand

Jin Xu

2010
Abstract

Ephesia kuehniella is a pest of stored grain products. It also is widely used to rear parasitoids and predators. Prior to this study, little information was available on its reproductive behaviour. The fitness of *E. kuehniella* decreases with the increase of rearing density; a density of 100 larvae/50g food is recommended to produce high quality insects. Females emerge earlier than males. Emergence peaks at dusk; calling, courtship and mating peak in the late part of the 1st scotophase following emergence; oviposition peaks in the early part of the 2nd scotophase following emergence. Newly emerged virgin females carry <5 mature eggs, and the egg load increase to ≈240 three days after emergence and remains unchanged thereafter. Male accessory gland secretions stimulate egg maturation; mated females produce ≈300 mature eggs. Males produce two types of sperm, eupyrene (nucleate) and apyrene (anucleate) sperm. After mating, it takes 11 h for most eupyrene and apyrene sperm to reach the spermatheca. The presence of eupyrene sperm in the spermatheca is the main factor that elicits oviposition. The highest fecundity can be achieved when both sexes are 1-d-old at mating compared to older insects; delaying mating for 7 d reduces female fecundity by 60%. There is no significant effect of parental age on offspring fitness. Virgin females live longer than mated ones because the former allocate less resource for egg production. Larger females have higher fecundity and larger males produce larger spermatophores. Larger parents have larger sons and daughters. Females prefer large and mid-aged males for mating. Males prefer large, young and virgin females for mating. Males strategically adjust ejaculate size according to the degree of sperm competition risks. Both sexes mate multiply where males can copulate up to 9 times and females up to 4 times in their lifetime. Larger and younger females are more likely to remate. Multiple mating does not increase female fecundity, fertility and longevity. Females discriminate against previous mates and strategically adjust oviposition to gain genetic benefit via increasing offspring genetic diversity. Using a chemosterilant, thiotepa, I determined that the last male to mate with a female sires most of her offspring. The last male sperm precedence may be due to sperm displacement at both sperm ejaculation and storage sites, where the 2nd male physically displaces the 1st male’s spermatophore with his own in the bursa copulatrix and triggers the female to dump ≈50% resident sperm in the spermatheca. Spermathecal contractions appear to be the mechanism for sperm ejection. The outcome of sperm displacement is the result of male×female interactions.
Acknowledgments

I am extremely grateful to my supervisor, Professor Qiao Wang, for his invaluable time, effort and unconditional support provided throughout this research. Qiao always challenged my explanations, fed my curiosity with more questions and had an open-door policy and a smile on his face. I am particularly impressed by his patience and talent on the revision of my writings and this thesis.

My gratitudes are also towards my co-supervisors, Dr. Russell Death and Professor Keqin Zhang, for their valuable advice and their time in the process of my PhD confirmation, six-monthly reports, thesis revision and job application.

I thank Kees (C.W.) van Epenhuijsen for his assistance on *E. kuehniella* colony establishment.

I appreciated very much Dr. Xiongzhao He for his valuable advice and statistical assistance throughout the research, and his family for their kind support during my studies.

I am grateful to Dr. Jianyu Chen and the staff of Massey University Institute of Natural Resources for their assistance and advice throughout my studies, and to the staff of Massey University Library and the IT service for their help with information access.

I am also thankful for the financial supports from the Massey University Doctoral Scholarship, Prof Ren Jizhou Scholarship, Johannes August Anderson PhD Scholarship, Chinese Government Award for Outstanding Self-Financed Students Abroad, and financial assistance in Massey University Institute of Natural Resources.

I am very thankful to my family for their unconditional support during my studies.

This thesis is dedicated
to my loving parents, particularly my mother, who is a farmer and illiterate
but showed me the beautiful nature with her own perspective
Contents

CHAPTER 1 GENERAL INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Importance and Relevance of This Study ... 2

1.2.1 Sexual Selection ... 2

1.2.2 Evolution of Ageing and Life Span ... 4

1.2.3 Insect Manipulation ... 5

1.3 Aim and Objectives of This Study .. 6

CHAPTER 2 LITERATURE REVIEW ... 7

2.1 Introduction .. 7

2.2 Classification of *Ephestia kuehniella* .. 7

2.3 General Biology .. 7

2.3.1 Eggs .. 7

2.3.2 Larvae ... 8

2.3.3 Pupae ... 9

2.3.4 Adults .. 9

2.4 Reproductive Biology of Pyralidae .. 10

2.4.1 Reproductive System ... 10

2.4.2 Mating Behaviour ... 11

2.4.3 Insemination and Fertilization .. 13

2.5 Factors Affecting Reproductive Fitness .. 14

2.5.1 Effect of Age at Mating on Reproductive Fitness ... 14

2.5.2 Effect of Body Weight on Reproductive Fitness .. 14

2.5.3 Female Multiple Mating ... 15

2.5.4 Male Multiple Mating .. 17

2.6 Sexual Selection .. 17

2.6.1 Introduction .. 17

2.6.2 Mechanisms and Models of Sexual Selection .. 18

2.6.3 Pre-copulation Sexual Selection ... 19

2.6.3.1 Mate Choice in Relation to Body Size, Age and Virginity 19
1.1 Introduction ... 4
1.2 General Methodology .. 5
1.2.1 Materials ... 5
1.2.2 Procedures .. 6
1.2.3 Environmental Conditions .. 6
1.2.4 Definitions .. 6
1.2.5 Statistical Analysis and Reported Values 7
1.3 Life Cycle of Ephesia kuehniella under Different Larval Densities ... 8
1.3.1 Introduction ... 8
1.3.2 Materials and Methods ... 8
1.3.2.1 Insects ... 8
1.3.2.2 Rearing Densities .. 8
1.3.2.3 Survival Rate and Reproductive Output 9
1.3.2.4 Statistics .. 9
1.3.3 Results ... 10
1.3.4 Discussion ... 11
1.4 Emergence, Sexual Maturation and Reproductive Rhythms of Ephesia kuehniella 12
1.4.1 Introduction ... 12
1.4.2 Materials and Methods ... 12
1.4.2.1 Adult Emergence .. 12
1.4.2.2 Adult Activity Patterns .. 13
1.4.2.3 Statistics .. 13
1.4.3 Results ... 14
1.4.3.1 Emergence .. 14
1.4.3.2 Activity ... 14
1.4.3.3 Statistics .. 15
2.1 Mate Choice by Females between Novel and Previous Mates ... 19
2.2 In-copulation Sexual Selection .. 20
2.3 Post-copulation Sexual Selection 22
2.4 Sexual Selection and Evolution of Ageing and Life Span ... 24

CHAPTER 3 REPRODUCTIVE BIOLOGY OF
Ephesia kuehniella ... 29

3.1 General Introduction ... 29
3.2 General Methodology .. 29
3.2.1 Materials ... 29
3.2.2 Procedures .. 30
3.2.3 Environmental Conditions .. 30
3.2.4 Definitions .. 30
3.2.5 Statistical Analysis and Reported Values 31
3.3 Growth and Reproduction of Ephesia kuehniella under Different Larval Densities 32
3.3.1 Introduction ... 32
3.3.2 Materials and Methods ... 32
3.3.2.1 Insects ... 32
3.3.2.2 Rearing Densities .. 32
3.3.2.3 Survival Rate and Reproductive Output 33
3.3.2.4 Statistics .. 33
3.3.3 Results ... 34
3.3.4 Discussion ... 35
3.4 Emergence, Sexual Maturation and Reproductive Rhythms of Ephesia kuehniella 36
3.4.1 Introduction ... 36
3.4.2 Materials and Methods ... 36
3.4.2.1 Adult Emergence .. 36
3.4.2.2 Adult Activity Patterns .. 37
3.4.2.3 Statistics .. 37
3.4.3 Results ... 37
3.4.3.1 Emergence .. 37
3.4.3.2 Activity ... 37
3.4.3.3 Statistics .. 37
3.4.3.2 Activity patterns ... 39
3.4.4 Discussion .. 40
3.5 **Influence of Mating on Egg Maturation, Oviposition and Female Longevity** ... 41
 3.5.1 Introduction ... 41
 3.5.2 Materials and Methods ... 41
 3.5.2.1 Insects .. 41
 3.5.2.2 Relationship between Pupal and Adult Weight 41
 3.5.2.3 Influence of Mating on Female Egg Production and Longevity ... 41
 3.5.2.4 Influence of the Presence of Sperm in Spermathecae on Oviposition ... 42
 3.5.2.5 Process of Egg Maturation in Virgin and Mated Females ... 43
 3.5.2.6 Statistics ... 44
 3.5.3 Results .. 44
 3.5.3.1 Relationship between Pupal and Adult Weight 44
 3.5.3.2 Influence of Mating on Female Egg Production and Longevity ... 45
 3.5.3.3 Influence of the Presence of Sperm in Spermathecae on Oviposition ... 46
 3.5.3.4 Process of Egg Maturation and Resorption 46
 3.5.4 Discussion ... 48
3.6 **Ejaculation, Sperm Movement and Sperm Storage** 51
 3.6.1 Introduction ... 51
 3.6.2 Materials and Methods ... 51
 3.6.2.1 Insects .. 51
 3.6.2.2 Effect of Male Age and Bodyweight on Ejaculation ... 51
 3.6.2.3 Spermatophore Formation and Sperm Transfer during Copulation ... 52
 3.6.2.4 Sperm Migration and Dynamics of Sperm Storage ... 52
 3.6.2.5 Statistics ... 53
 3.6.3 Results .. 53
 3.6.3.1 Effect of Male Age and Bodyweight on Ejaculate Size ... 53
 3.6.3.2 Spermatophore Formation and Sperm Transfer during Mating ... 53
 3.6.3.3 Sperm Migration and Storage .. 55
 3.6.4 Discussion ... 59

CHAPTER 4 FACTORS AFFECTING REPRODUCTIVE FITNESS IN

EPHESTIA KUEHNIELLA ... 61
4.1 General Introduction ... 61

4.2 Effect of Age at Mating on Reproductive Fitness in E. kuehniella 61
 4.2.1 Introduction ... 61
 4.2.2 Materials and Methods ... 62
 4.2.2.1 Insects ... 62
 4.2.2.2 Influence of Age at Mating on Female Reproductive Performance and Offspring’s Fitness ... 63
 4.2.2.3 Statistics ... 64
 4.2.3 Results ... 65
 4.2.3.1 Effect of Age at Mating on Reproductive Fitness 65
 4.2.3.2 Effect of Mating Delay on Female Egg Production 65
 4.2.3.3 Effect of Age at Mating on Male and Female Longevity 69
 4.2.3.4 Effect of Parental Age on Performance of Offspring 70
 4.2.4 Discussion .. 71

4.3 Effect of Body Weight on Reproductive Fitness in E. kuehniella 74
 4.3.1 Introduction ... 74
 4.3.2 Materials and Methods ... 74
 4.3.2.1 Insects ... 74
 4.3.2.2 Effect of Body Weight of Both Sexes on Female Reproductive Output and Offspring Fitness .. 74
 4.3.2.3 Statistics ... 75
 4.3.3 Results ... 76
 4.3.4 Discussion .. 77

4.4 Female Multiple Mating in E. kuehniella .. 79
 4.4.1 Introduction ... 79
 4.4.2 Materials and Methods ... 79
 4.4.2.1 Insects ... 79
 4.4.2.2 Influence of Recopulation on Female Lifetime Reproductive Output and Daily Oviposition Patterns ... 79
 4.4.2.3 Remating Preference Between Novel and Previous Mates 80
 4.4.2.4 Influence of Female Recopulation Treatments on Offspring Fitness 81
 4.4.2.5 Statistics ... 81
 4.4.3 Results ... 82
 4.4.3.1 Female Remating Patterns ... 82
4.4.3.2 Influence of Recopulation on Female Lifetime Reproductive Output and Offspring Fitness ... 82
4.4.3.3 Influence of Recopulation on Daily Oviposition Patterns 82
4.4.3.4 Female Remating Preference Between Novel and Previous Partners 83
4.4.4 Discussion .. 85

4.5 Male Multiple Mating in Ephestia kuehniella 91
4.5.1 Introduction .. 91
4.5.2 Materials and Methods ... 91
4.5.2.1 Insects ... 91
4.5.2.2 Impact of Male Mating Experience on Ejaculate Size.................... 91
4.5.2.3 Impact of Male Mating Experience on Female Reproductive Fitness ... 92
4.5.2.4 Statistics .. 92
4.5.3 Results ... 92
4.5.4 Discussion .. 95

CHAPTER 5 SEXUAL SELECTION OF EPHESTIA KUEHNIELLA 97

5.1 General Introduction .. 97

5.2 Pre- and In-copulation Mate Choice of E. kuehniella 98
5.2.1 Introduction .. 98
5.2.2 Materials and Methods ... 99
5.2.2.1 Insects ... 99
5.2.2.2 Mate Choice in Relation to Age at Mating, Virginity and Body Size ... 99
5.2.2.3 Sperm Allocation in Relation to Female Age, Body Size and Mating Status ... 100
5.2.2.4 Effect of Sex Ratio on Male Ejaculates 100
5.2.2.5 Influence of Body Size of Both Sexes on Female Remating 101
5.2.2.6 Influence of Female Age at First Mating on Her Remating 101
5.2.2.7 Influence of Male Ejaculate Size on Female Remating 102
5.2.2.8 Statistics .. 102
5.2.3 Results ... 103
5.2.3.1 Mate Choice in Relation to Age at Mating, Virginity and Body Size ... 103
5.2.3.2 Sperm Allocation in Relation to Female Age, Body Size and Mating Status ... 104
5.2.3.3 Effect of Sex Ratio on Male Ejaculates ... 106
5.2.3.4 Influence of Bodyweight of Both Sexes on Female Remating 107
5.2.3.5 Influence of Female Age at Mating on Her Remating 107
5.2.3.6 Influence of Male Ejaculate Size on Female Remating 107
5.2.4 Discussion .. 108

5.3 Development of Method for Sperm Use Pattern Measurement 112
5.3.1 Introduction .. 112
5.3.2 Materials and Methods .. 113
5.3.2.1 Insects ... 113
5.3.2.2 Determination of Optimal Thiotepa Dose for Complete Sterilization of Males and Effect of Treatment on Male Copulation Ability and Female Fecundity ... 113
5.3.2.3 Effect of Thiopeta Treatment on Sperm Transfer and Motility 114
5.3.2.4 Measurement of Sperm Precedence .. 115
5.3.2.5 Statistics ... 115
5.3.3 Results .. 116
5.3.3.1 Determination of Optimal Thiotepa Dose for Complete Sterilization of Males and Effect of Treatment on Male Copulation Ability and Female Fecundity ... 116
5.3.3.2 Effect of Thiopeta Treatment on Sperm Transfer and Motility 116
5.3.3.3 Sperm Precedence Estimation ... 117
5.3.4 Discussion .. 118

5.4 Mechanisms of Last Male Precedence of Ephestia kuehniella 121
5.4.1 Introduction .. 121
5.4.2 Materials and Methods .. 122
5.4.2.1 Insects ... 122
5.4.2.2 Effect of Second Copulation on Sperm Storage in Spermathecae 122
5.4.2.3 P2 and Sperm Use Patterns .. 123
5.4.2.4 Statistics ... 123
5.4.3 Results .. 124
5.4.3.1 Effect of Second Copulation on Sperm Storage in Spermathecae 124
5.4.3.2 Sperm Use Patterns in Females Mated Twice in One Scotophase 124
5.4.4 Discussion .. 126
CHAPTER 6 GENERAL DISCUSSION AND CONCLUSION.................130

6.1 Introduction...130
6.2 General Reproductive Biology..130
6.3 Multiple Mating and Sexual Selection...131
6.4 Resource Allocation between Ova and Soma..134
6.5 Thiotepa-based Sterile Technique and Sperm Use Pattern Measurement...134
6.6 Conclusion ...135

References ..136

APPENDIX: Published Papers from PhD Study

List of Tables

Table 3.1 Process of spermatophore formation (n = 8 at each time point) 56
Table 4.1 Age combinations of pairs and sample size used to assess the effect of age on reproductive fitness in E. kuehniella 63
Table 4.2 Number of E. kuehniella breeding pairs in different bodyweight combinations 75
Table 4.3 Reproductive output of E. kuehniella females of different weights 76
Table 4.4 Influence of recopulation on female lifetime reproductive output, longevity and offspring performance in E. kuehniella 84
Table 5.1 Mate choice in relation to age in E. kuehniella 103
Table 5.2 Mate choice in relation to virginity in E. kuehniella 103
Table 5.3 Effect of body weight on mate selection by E. kuehniella females 104
Table 5.4 Effect of body weight on mate selection by E. kuehniella males 104
Table 5.5 Effect of thiotepa treatment on reproduction in E. kuehniella 116
Table 5.6 Fecundity, fertility and hatch rate of four treatments 118
List of Figures

Fig. 2.1 Life cycle of *E. kuehniella*. (a) adult moths in mating; (b) eggs; (c) mature (6th instar) larva and (d) mature (dark) and immature (brown) pupae. (Bars = 2 mm) ... 8

Fig. 2.2 A dorsal view of female reproductive organs of *E. kuehniella* (drawed based on Norris 1932). bc. Bursa copulatrix; ds. Ductus seminalis; ld. Lamina dentata; nbc. Neck of bursa copulatrix; ov. Ovary; ovp. Ovipositor; rc. Rectum; sc. Spermatheca; sd. Spermathecal duct; sg. Spermathecal gland; vlv. Vulva; vs. Vestibulum ... 11

Fig. 2.3 A dorsal view of male reproductive organs of *E. kuehniella* (from Norris 1932). ae. Aedeagus; ag. Accessory gland; h. Horns of the ductus ejaculatorius; pg. Paired gland; t. Testis; ug. Unpaired gland; vd. Vas deferens; vs. Vescicula seminalis ... 12

Fig. 3.1 Mean emergence, pupation and survival rates at four larval densities in *E. kuehniella*. For each parameter, columns with different letters are significantly different (P < 0.05) .. 34

Fig. 3.2 Mean number of eggs and fertile eggs laid per adult at four larval densities in *E. kuehniella*. For each parameter, columns with different letters are significantly different (P < 0.05) .. 35

Fig. 3.3 Daily emergence of female and male *E. kuehniella* adults 38

Fig. 3.4 Circadian adult emergence rhythms of *E. kuehniella* (lights on at 10:00 and off at 24:00) .. 38

Fig. 3.5 Circadian reproductive rhythms of *E. kuehniella* (lights on at 10:00 and off at 24:00). (a) female calling; (b) male courtship; (c) mating; (d) oviposition ... 39

Fig. 3.6 Relationship between pupal and adult weight in males (a) and females (b) of *E. kuehniella* ... 44

Fig. 3.7 Influence of male ejaculates on female longevity and oviposition and total mature eggs in *E. kuehniella*. Treatment ‘vf’ refers to virgin females; ‘vf×vm’ and ‘vf×cm’ to virgin females mated once to virgin males and to males that had copulated once in the same scotophase, respectively; ‘sal’ and ‘spm’ to virgin females injected with saline and spermatophore extract, respectively. For each parameter, bars with different letters are significantly different (P < 0.05) .. 45

Fig. 3.8 Oviposition pattern of virgin females (a) and females that mated once with virgin males (b) in *E. kuehniella* .. 47

Fig. 3.9 Influence of the presence of sperm in spermathecae on oviposition in *E. kuehniella*. Treatments A+E+, A+E− and A−E− refer to females that had both apyrene and eupyrene sperm, only had apyrene sperm and had no sperm in spermathecae after mated with thiotepa-treated males, respectively. Treatment vf-1 refers to virgin females. Bars with different letters are significantly different (P < 0.05) .. 47

Fig. 3.10 Egg maturation process in mated and virgin females in *E. kuehniella*. Bars with different letters are significantly different (P < 0.05) 48
Fig. 3.11 (a): spermatophore in formation; (b): bursa copulatrix with one spermatophore; (c): bursa copulatrix with two spermatophores; (d): spermatheca and spermathecal gland; (e): eupyrene sperm bundles and dissociated apyrene sperm; (f): apyrene (shorter) and eupyrene (longer) sperm. ae. Aedeagus; apy. Apyrene sperm. bc. Bursa copulatrix; ds. Ductus seminalis; ds0. Opening of ductus seminalis; eupy. Eupyrene sperm bundle. h. Horns of the ductus ejaculatorius; hs. Horns of the spermatophore; ld. Lamina dentata; nbc. Neck of bursa copulatrix; o1. Opening of spermatophore from the 1st male; o2. Opening of spermatophore from the 2nd male; pn. Penis; s1. Sac of the spermatophore from the 1st male; s2. Sac of spermatophore from the 2nd male; sc. Spermatheca; sg. Spermathecal gland; ug. Unpaired gland. Bars = 0.2 mm. .. 54

Fig. 3.12 Apyrene (a) and eupyrene (b) sperm ejaculated by males of different age. For each parameter, bars with different letters are significantly different ($P < 0.05$). ... 55

Fig. 3.13 The number of sperm ejaculated in the spermatophore in relation to male bodyweight in his first mating. For each parameter, bars with different letters are significantly different ($P < 0.05$). ... 56

Fig. 3.14 Apyrene (a) and eupyrene (b) sperm transferred during mating in *E. kuehniella*. ... 57

Fig. 3.15 Changes in the number of apyrene (a) and eupyrene (b) sperm in the spermatophore after the end of copulation.. 57

Fig. 3.16 Changes in the number of apyrene (a) and eupyrene (b) sperm in the spermatheca after copulation... 58

Fig. 3.17 Changes in the number of apyrene and eupyrene sperm in the spermathecal accessory gland after copulation. (a). 14:10 (light:dark); (b). 24:0 (light:dark). .. 58

Fig. 4.1 Effect of mating delay on the number of copulations females achieved in *E. kuehniella*: (a) Mean number of spermatophores found in females in pairs of different age combinations, and (b) predicted sex and age effect on the number of spermatophores found in females........ 66

Fig. 4.2 Effect of mating delay on fecundity: (a) Mean number of eggs laid by females in pairs of different age combinations, and (b) predicted sex and age effect on the number of eggs laid.. 67

Fig. 4.3 Effect of mating delay on fertility: (a) Mean number of fertile eggs laid by females in pairs of different age combinations, and (b) predicted sex and age effect on the number of fertile eggs laid.. 68

Fig. 4.4 Effect of mating delay on fertility rate. ... 69

Fig. 4.5 Influence of mating delay on female egg production. For each parameter, bars with different letters are significantly different ($P < 0.05$). ... 69

Fig. 4.6 Influence of mating delay on female longevity. ... 70

Fig. 4.7 Influence of mating delay on male longevity. .. 70
Fig. 4.8 Effect of parental age on offspring survival rate in *E. kuehniella*. 71
Fig. 4.9 Effect of parental age on offspring pupae weight in *E. kuehniella*. 71
Fig. 4.10 Effect of parental body weight on offspring weight in *E. kuehniella*. For each parameter, bars with different letters are significantly different (*P* < 0.05) .. 76
Fig. 4.11 Effect of parental body weight on offspring survival rate in *E. kuehniella*. For each parameter, bars with different letters are significantly different (*P* < 0.05) .. 77
Fig. 4.12 Copulation states in female *E. kuehniella* over time: (a) permanently paired (SM-P) and (b) exposed to a virgin male each day (DMV-P). 83
Fig. 4.13 Daily (a) fecundity and (b) fertility patterns in relation to copulation treatments in *E. kuehniella*. Within the same oviposition scotophase, different letters above bars denote significant differences between treatments (*P* < 0.05). .. 85
Fig. 4.14 Recopulation preference in *E. kuehniella*. In each experiment, different letters above bars denote significant difference between treatments (*P* < 0.05). .. 85
Fig. 4.15 Mating duration under different insemination status of male *E. kuehniella*. Bars with different letters are significantly different (*P* < 0.05). ... 93
Fig. 4.16 Number of apyrene (a) and eupyrene (b) sperm ejaculated by males with different mating history in *E. kuehniella*. For each parameter, bars with different letters are significantly different (*P* < 0.05). 94
Fig. 4.17 Number of apyrene (a) and eupyrene (b) sperm in spermathecae of females inseminated by males with different mating history in *E. kuehniella*. For each parameter, bars with different letters are significantly different (*P* < 0.05). ... 94
Fig. 4.18 Number of eggs and number of fertile eggs laid by female *E. kuehniella* under different insemination status. ... 95
Fig. 5.1 Number of apyrene (a) and eupyrene (b) sperm ejaculated by male *E. kuehniella* to 1-, 4- or 7-d-old females. For each parameter, bars with different letters are significantly different (*P* < 0.05). 105
Fig. 5.2 Effect of female pupal weight on the number of apyrene (a) and eupyrene (b) sperm ejaculated by male *E. kuehniella*. For each parameter, bars with different letters are significantly different (*P* < 0.05). ... 105
Fig. 5.3 Number of apyrene (a) and eupyrene (b) sperm transferred by virgin males to virgin or once mated females. For each parameter, bars with different letters are significantly different (*P* < 0.05). 106
Fig. 5.4 Number of apyrene (a) and eupyrene (b) sperm ejaculated by male *E. kuehniella* under different sex ratios. For each parameter, bars with different letters are significantly different (*P* < 0.05). 106
Fig. 5.5 Predicted female remating probability in response to female bodyweight and bodyweight difference between males (2nd male –
Fig. 5.6 Percentage of females that mated the second time in relation to their age at first mating in *E. kuehniella*. Bars with different letters are significantly different (*P* < 0.05). 108

Fig. 5.7 Effect of thiotepa treatment on the number of sperm in spermatophores in *E. kuehniella* .. 117

Fig. 5.8 Effect of thiotepa treatment on the number of sperm in spermathecae 14 h after copulation in *E. kuehniella*. ... 118

Fig. 5.9 Effect of the second copulation on sperm numbers in the spermatheca. For each parameter, columns with different letters are significantly different (*P* < 0.05). .. 125

Fig. 5.10 Spermatheca in action of constriction (from (a) to (d) is a constriction cycle). sg. Spermathecal gland; ah. Anterior half of spermatheca (near ductus seminalis); ph. Posterior half of spermatheca (near spermathecal accessory gland); sc. Spermatheca. (Bars = 0.2 mm). 125

Fig. 5.11 Effect of intermating duration on *P*₂. ... 125