Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Milk Segregation on Dairy Farms

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Agricultural Systems and Management at Massey University

Anne Elizabeth Dooley

2002
APPLICATION FOR APPROVAL OF REQUEST TO EMBARGO A THESIS
(Pursuant to AC98/168 (Revised 2), Approved by Academic Board 16.02.99)

Name of Candidate: Anne Elizabeth Dacley I.D. Number: 08013225
Degree: Ph.D in Ag Systems & Mgmt Dept / Institute / School: IWBIS
Thesis Title: Milk segregation on dairy farms

Name of Chief Supervisor: Prof. Hugh Blair Telephone Ext: 5122

As author of the above named thesis, I request that my thesis be embargoed from public access until (date) 30 June 2003 for the following reasons:

☐ Thesis contains commercially sensitive information.
☐ Thesis contains information which is personal or private and/or which was given on the basis that it not be disclosed.
☑ Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.
☐ Other (specify) :

Please explain here why you think this request is justified:
Nothing has been published from this work as yet.

Signed (Candidate): A.E. Dacley Date: 3/4/02
Endorsed (Chief Supervisor): J.H. Blair Date: 5/6/02
Approved / Not Approved (Representative of VC): N Date: 3/4/02

Note: Copies of this form, once approved by the representative of the Vice Chancellor, must be bound into every copy of the thesis.

[MURET appl form Disk 15]
ABSTRACT

Milk composition varies between herds, and between cows within herds. The opportunity therefore exists to segregate milk from cows with different milk composition on farm, based on its suitability for the manufacture of particular dairy products. Benefits can result from increased yields, reduced processing costs or the suitability of differentiated milk for the production of high value niche market products.

A model was developed to determine the break even premium required for farmers producing differentiated milk to be no worse off economically than under the status quo. This model incorporated breeding (quantitative and qualitative traits), cow requirements and feeding, transport, and economic sub-models. Cows were segregated within herd and milk composition was altered over time by breeding. Four quantitative trait ("white" milk colour) scenarios and two qualitative trait (BB β-lactoglobulin milk) scenarios were considered. Manipulation of milk composition by feeding was allowed for in the model, although an example was not modelled. The transport model was developed to calculate the increase in milk collection costs associated with differentiated milk and this extra cost was included in the milk volume charge. A cost-benefit analysis was run over 20 years using a partial budget approach. This timeframe allowed for the long transition time required to manipulate milk composition by breeding. The breakeven premium on the status quo milk solids price was calculated over 10 year, 20 year and infinity time periods at a 7% discount rate.

Milk selection on a "differentiated" trait can lead to lower genetic gain in other production traits compared to the status quo. Lower production per cow allows for higher stocking rates (and therefore increased costs), and lower production per hectare. The scenarios modelled also included initial setup costs e.g. vat, cow testing, cow purchase. Sensitivity analyses were conducted on transport costs, premiums, and discount rates. The possibility of redistributing premium payments so a higher price was paid in earlier years was also explored.

The premium required to break even for the quantitative scenarios was $1.11/kg of "white" milk fat over 20 years. The lower production of the "white" milk cows compared to their status quo counterparts had a considerable impact on the premium. The premium was lower ($0.46/kg milk fat) where a greater proportion of the cows produced "white" milk in year 1. The premium required for the qualitative scenarios was lower, requiring an extra 3.4% to 4.1% for differentiated milk fat and protein compared to the status quo to break even over 20 years. Production per cow was similar to the status quo for these scenarios, and transport costs contributed to a high proportion of the premium required. Risk associated with a discontinuance of a differentiated milk policy is high. The breakeven premium required was considerably greater when a premium was received for only a few years e.g. $0.92/kg milk fat for 20+ years compared to $9.66/kg milk fat if the premium was discontinued after 10 years.

The rate of technology adoption will be important to the success of a differentiated milk policy. The premium required for milk differentiation policies may need to be considerably greater than the breakeven value to compensate for risk and encourage technology adoption. Farmers already producing milk closer to the required specifications could initially be targeted. Companies may need to consider taking some of the risk e.g. through price redistribution. Effective strategies involving both industry and farmers will need to be developed to facilitate the uptake of milk segregation. This research model could be used by dairy companies and farmers considering milk segregation policies.

Keywords: milk segregation, modelling
Title: Milk segregation on dairy farms.
Author: Anne Elizabeth Dooley
Degree: PhD in Agricultural Systems and Management
ACKNOWLEDGEMENTS

Many people contributed towards the completion of this study, and I am very grateful for their input. While those who contributed are too many to mention, I would like to thank the following:

My supervisors, official and unofficial, for their editing of the script, advice and encouragement. I would particularly like to thank Dr Warren Parker at AgResearch for his enthusiasm and interest in this study; Professor Hugh Blair at Massey University for his good humour in debating thesis issues; and Ms Evelyn Hurley at MAF Policy for helping with information and contacts, and for showing me other ways of looking at things.

The many people who helped with information and advice, including: Dr Nicolás López-Villalobos at Massey University for explanations and breeding model inputs; Dr Ian Brookes at Massey University for the cow requirements model; Dr Chris Daké at AgResearch for assistance with modelling; Ms Nicola Shadbolt and Dr Dave Gray at Massey University for advice on economic model inputs; Mr Peter Spooner, Mr Bob Franks and Mr Colin Corney of New Zealand Dairy Group for the transport, milk production and farms distribution data; and Dr Lawrie Creamer, Dr Alastair MacGibbon, Dr Jeremy Hill and Dr Peter Wiles from the New Zealand Dairy Research Institute for information on milk.

My sister, Judith Dooley, and friends George and Sharon Moss, for providing information for this thesis, and also for their interest and encouragement. Similarly, I would like to thank Professor Al Rae and Clare Callow for their encouragement during this study.

I wish to acknowledge the financial assistance provided by the Massey University PhD scholarship, and the funding provided by the Post-graduate Research Fund.

Finally, many thanks to those in the Agricultural and Horticultural Systems Management Group in the Institute of Natural Resources at Massey University for including me as part of the group, most especially Janet Reid, Ewen Cameron, Dave Gray and Denise Stewart for their friendship, support and encouragement during the highs and lows of thesis production and PhD study.
TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. xiii

LIST OF FIGURES .. xxvi

CHAPTER ONE ... 1
INTRODUCTION ... 1

PURPOSE AND SCOPE OF THE STUDY ... 3

AIM AND OBJECTIVES .. 3

OUTLINE OF THE THESIS .. 3

LITERATURE REVIEW .. 5
1.1 MILK COMPOSITION .. 5
 1.1.1 Composition of milk .. 5
 1.1.1.1 Fat .. 6
 1.1.1.2 Protein .. 8
 1.1.1.3 Carbohydrates ... 11
 1.1.1.4 Minerals, Vitamins and Other ... 12
 1.1.2 Why alter milk composition? .. 14
 1.1.2.1 Fat .. 17
 1.1.2.2 Protein .. 19
 1.1.2.3 Lactose .. 20
 1.1.3 Factors affecting milk composition and manipulation of milk composition 22
 1.1.3.1 Breed .. 22
 1.1.3.2 Selection .. 23
 1.1.3.3 Transgenics and cloning ... 27
 1.1.3.4 Feeding and nutrition ... 28
 1.1.3.5 Season .. 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3.6</td>
<td>Stage of lactation and calving spread</td>
<td>30</td>
</tr>
<tr>
<td>1.1.3.7</td>
<td>Milking frequency and interval</td>
<td>31</td>
</tr>
<tr>
<td>1.1.3.8</td>
<td>Age</td>
<td>32</td>
</tr>
<tr>
<td>1.1.3.9</td>
<td>Climate</td>
<td>33</td>
</tr>
<tr>
<td>1.1.3.10</td>
<td>Health, mastitis and somatic cell counts</td>
<td>33</td>
</tr>
<tr>
<td>1.1.3.11</td>
<td>Other</td>
<td>34</td>
</tr>
<tr>
<td>1.1.4</td>
<td>Two potentially useful milk traits</td>
<td>35</td>
</tr>
<tr>
<td>1.1.4.1</td>
<td>β-lactoglobulin protein variants</td>
<td>35</td>
</tr>
<tr>
<td>1.1.4.2</td>
<td>Milk colour</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Conclusion</td>
<td>36</td>
</tr>
<tr>
<td>1.2</td>
<td>THE NEW ZEALAND DAIRY INDUSTRY</td>
<td>37</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Dairy industry structure</td>
<td>37</td>
</tr>
<tr>
<td>1.2.1.1</td>
<td>Dairy industry structure – past and present</td>
<td>37</td>
</tr>
<tr>
<td>1.2.1.2</td>
<td>Structure of Fonterra</td>
<td>39</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Milk payment system</td>
<td>41</td>
</tr>
<tr>
<td>1.2.2.1</td>
<td>NZDB to the Dairy Company</td>
<td>41</td>
</tr>
<tr>
<td>1.2.2.2</td>
<td>Dairy Company to the farmer</td>
<td>42</td>
</tr>
<tr>
<td>1.2.2.3</td>
<td>Future milk valuation and payment possibilities</td>
<td>43</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Value-added systems and vertical integration</td>
<td>44</td>
</tr>
<tr>
<td>1.2.3.1</td>
<td>Value-added systems and vertical integration</td>
<td>44</td>
</tr>
<tr>
<td>1.2.3.2</td>
<td>Cooperatives</td>
<td>52</td>
</tr>
<tr>
<td>1.2.3.3</td>
<td>Vertical integration in the New Zealand dairy industry</td>
<td>53</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Conclusion</td>
<td>54</td>
</tr>
<tr>
<td>1.3</td>
<td>AGRICULTURAL SYSTEMS AND MODELLING</td>
<td>55</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Systems</td>
<td>55</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Models</td>
<td>57</td>
</tr>
<tr>
<td>1.3.2.1</td>
<td>Simulation models</td>
<td>59</td>
</tr>
<tr>
<td>1.3.2.2</td>
<td>Modelling process</td>
<td>60</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Conclusion</td>
<td>62</td>
</tr>
<tr>
<td>1.4</td>
<td>RISK</td>
<td>62</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Decision making and risk</td>
<td>63</td>
</tr>
<tr>
<td>1.4.1.1</td>
<td>Risk and uncertainty</td>
<td>63</td>
</tr>
<tr>
<td>1.4.1.2</td>
<td>Perceived riskiness of an action</td>
<td>63</td>
</tr>
<tr>
<td>1.4.1.3</td>
<td>Downside risk versus pure risk</td>
<td>64</td>
</tr>
</tbody>
</table>
Table of Contents

1.4.2 Farmer attitude to risk .. 64
1.4.3 Risk decisions and techniques ... 65
1.4.4 Types of risk .. 66
1.4.5 Strategies to avoid risk .. 67
1.4.6 Risk and technology adoption .. 69
1.4.7 Conclusion .. 69

1.5 TECHNOLOGY TRANSFER AND ADOPTION 71
1.5.1 The innovation-decision process .. 72
1.5.2 Time factors associated with technology adoption 72
1.5.3 Farmer factors affecting technology adoption 73
1.5.4 Technology factors affecting technology adoption 73
1.5.5 The effect of social factors and farmer attitudes on technology adoption ... 74
1.5.6 Communication and technology adoption 75
1.5.7 Identification of the decision makers 75
1.5.8 Technology transfer models and approaches 76
1.5.9 Conclusion .. 77

CHAPTER TWO ... 79
OVERVIEW OF THE MODEL .. 79

CHAPTER THREE ... 85
BREEDING FOR A QUALITATIVE TRAIT: B HOMOZYGOUS β-LAC
TOGLOBULIN COWS ... 85
3.1 INTRODUCTION .. 85

3.2 METHOD .. 87
3.2.1 Genotypic frequencies ... 88
3.2.2 Production ... 90
3.2.2.1 Calculation of base level of production and gain per year by genotype .. 90
3.2.2.2 Calculation of production by genotype 91
3.2.3 Breed Effect ... 93
3.2.4 Model Parameters ... 94

3.3 RESULTS .. 96
3.3.1 Genotypic and gene frequencies .. 96
3.3.2 Production ... 98
3.3.3 Herd Structure .. 101
3.3.4 Initial gene frequency .. 102
3.3.5 Using AB and BB β-lactoglobulin bulls .. 102
3.3.6 Breed and Regional Effects .. 103

3.4 DISCUSSION ... 105

CHAPTER FOUR .. 113
LOGISTICS OF TRANSPORTING TWO DIFFERENT MILK TYPES 113
4.1 INTRODUCTION .. 113
4.1.1 Transport issues .. 113
4.1.2 Transport routing problem ... 114
4.1.3 Genetic algorithms ... 114
4.1.3.1 Crossover .. 115
4.1.3.2 Mutation .. 116
4.1.3.3 Proportion of population replaced and individuals replaced 116
4.1.3.4 Population size .. 116
4.1.4 Description of Evolver: a genetic algorithm software package 116
4.1.5 Recommendations for genetic algorithm parameters .. 117

4.2 METHOD .. 118

4.3 RESULTS AND DISCUSSION ... 125
4.3.1 Model inputs used in the transport model scenarios .. 125
4.3.2 Average milk collection cost .. 126
4.3.2.1 Comparison with the SQ (0% of farms changing) .. 126
4.3.2.2 Stage of lactation comparison ... 126
4.3.2.3 Variation in average milk collection costs over the years 127
4.3.3 Technology adoption time frame ... 135
4.3.4 Average minimum load size .. 135
4.3.5 Farm and herd size .. 136
4.3.6 Time taken for milk collection and tanker requirements 136
4.3.7 Milk collection cost with type 1 milk collection at SQ cost 138
4.3.8 Discounted cost of milk collection ... 139
4.3.8.1 Type 1 milk at SQ cost ... 139
4.3.8.2 SQ cost constant over the years .. 142
Table of Contents

4.3.9 Average milk collection cost: one milk type per run and every second day collection ... 143

4.3.9.1 One milk type collected per run .. 144

4.3.9.2 Milk collected every second day .. 144

4.3.10 Extra costs to a farmer over the 20 years 144

4.3.11 Other factors .. 148

4.4 CONCLUSION .. 148

CHAPTER FIVE.. 151

DESCRIPTION OF THE MODELS ... 151

5.1 DESCRIPTION OF THE QUANTITATIVE BREEDING MODEL 151

5.1.1 Base level of production and change in genetic gain over time ... 152

5.1.2 Change in the selected trait and herd segregation 153

5.1.2.1 Calculations relating to the RHS of cut-off value on the normal distribution curve .. 154

5.1.2.2 Calculations relating to the LHS of cut-off value on the normal distribution curve ... 155

5.1.2.3 Average production in the selected trait for each of the herds ... 155

5.1.3 Production in the correlated and production traits for each herd ... 155

DESCRIPTION OF THE FEED MODELS 157

5.2 DESCRIPTION OF THE COW REQUIREMENTS MODEL 158

5.2.1 Allowance for younger cows growing out 158

5.2.2 Energy requirements for milk, allowing for changes in milk composition ... 158

5.2.3 Calculation of calving spread .. 162

5.2.4 Culling .. 163

5.2.5 Calculation of overall feed requirements and production over the year ... 163

5.2.6 Calculation of milk fat colour over the year 164

5.3 DESCRIPTION OF THE FEED BUDGET MODEL 166

5.3.1 Feed requirements ... 167

5.3.2 Calculation of stocking rate .. 168

5.3.3 Production per cow, herd and hectare 171

5.3.4 Model outputs ... 171
Table of Contents

DESCRIPTION OF THE ECONOMIC MODEL ... 171

5.4 DESCRIPTION OF FEED COMPONENT COSTS AND GRAZING OFF 172
 5.4.1 Hay ... 172
 5.4.2 Maize silage purchased .. 176
 5.4.3 Concentrates purchased .. 172
 5.4.4 Nitrogen ... 172
 5.4.5 Crop .. 173
 5.4.6 Grass silage .. 173
 5.4.7 Grazing ... 173

5.5 DESCRIPTION OF THE STOCK RECONCILIATION ... 173
 5.5.1 Stock reconciliation calculations .. 173
 5.5.1.1 Opening and closing stock numbers .. 174
 5.5.1.2 Natural increase .. 175
 5.5.1.3 Numbers of specified sales and purchases .. 175
 5.5.1.4 Numbers of culls, and deads, killers and missings 176
 5.5.1.5 Numbers of sales and purchases .. 176
 5.5.1.6 Outputs ... 177
 5.5.2 Stock income and expenditure ... 177
 5.5.3 Capital value of stock on hand .. 177
 5.5.4 Grazing, calf rearing and stock freight costs .. 178

5.6 DESCRIPTION OF THE MILK INCOME MODEL .. 179

5.7 DESCRIPTION OF THE OVERALL ECONOMIC MODEL 181

5.8 MODEL INPUTS .. 183
 5.8.1 Quantitative Breeding Model ... 183
 5.8.2 Cow Requirements Model ... 184
 5.8.3 Feed Model ... 186
 5.8.4 Stock Reconciliation Model .. 187
 5.8.5 Economic Model .. 188
 5.8.5.1 Feed Model ... 188
 5.8.5.2 Stock Reconciliation Model ... 188
 5.8.5.3 Milk Model ... 189
 5.8.5.4 Economic Model ... 189
Table of Contents

5.8.6 Assumptions that differ in the with and without scenario .. 190
5.8.6.1 Quantitative breeding model .. 190
5.8.6.2 Qualitative breeding model .. 191
5.8.6.3 Economic model - Quantitative trait ... 191
5.8.6.4 Economic model - Qualitative trait ... 193

CHAPTER SIX

MODEL RESULTS .. 195
6.1 QUANTITATIVE TRAIT ... 195
6.2 QUALITATIVE TRAIT ... 201
6.3 SENSITIVITY ANALYSES ... 205
6.4 REDISTRIBUTION OF THE PREMIUM PAID ... 208

CHAPTER SEVEN

GENERAL DISCUSSION ... 213
7.1 QUANTITATIVE SCENARIOS ... 214
7.1.1 Factors affecting selection for, and production of, differentiated milk 214
7.1.2 Calculation to infinity ... 216
7.1.3 Initial milkfat colour in the base herd .. 216
7.1.4 Low initial volumes of white milk and associated risk .. 218
7.1.5 Stage of lactation .. 220
7.2 QUALITATIVE MODEL ... 222
7.2.1 Factors affecting selection for, and production of, differentiated milk 222
7.2.2 Breed distribution ... 223
7.2.3 Value of premium required ... 223
7.2.4 Strategies used to alter herd genotype .. 224
7.2.5 Comparisons with current industry applications .. 225
7.3 TECHNOLOGY UPTAKE .. 226
7.3.1 Industry perspective ... 226
7.3.2 Factors affecting technology uptake .. 228
7.3.3 Some experiences in extending proposed changes .. 230
7.4 RISK AND SENSITIVITY .. 232
7.4.1 Effect of altering the discount rate ... 232
7.4.2 Sensitivity to transport collection cost and premium ... 232
Table of Contents

7.5 PREMIUM REDISTRIBUTION .. 233

7.6 FACTORS AFFECTING THE PRICE RECEIVED PER KILOGRAM OF MILKSOLIDS: MILK CONCENTRATION, PROTEIN: MILKFAT RATIO AND COMPONENT PRICES .. 236

7.7 OTHER FINANCIAL CONSIDERATIONS ... 238

7.8 MILK SEGREGATION AND PAYMENT OPTIONS .. 240

7.9 INDUSTRY STRUCTURE, AND TRANSPORT AND PROCESSING ISSUES AND STRATEGIES .. 243

7.10 BREEDING TECHNOLOGIES ... 246

7.11 MODEL APPLICATION AND EVALUATION .. 248

7.12 SUMMARY .. 252

CHAPTER EIGHT .. 253

SUMMARY AND RECOMMENDATIONS .. 253

8.1 MODEL DEVELOPMENT, RESULTS AND GENERAL DISCUSSION 253

8.2 MODEL APPLICATION AND EVALUATION .. 258

8.3 RESEARCH RECOMMENDATIONS .. 259

REFERENCES ... 261

APPENDIX ONE .. 289

MODEL INPUTS AND OUTPUTS .. 289

QUANTITATIVE BREEDING MODEL .. 289

QUALITATIVE BREEDING MODEL .. 290

COW REQUIREMENTS MODEL .. 291

FEED MODEL ... 292

STOCK RECONCILIATION MODEL ... 293

MILK INCOME MODEL .. 294

ECONOMIC MODEL .. 295

APPENDIX TWO .. 297

QUALITATIVE BREEDING MODEL TABLES ... 297

APPENDIX THREE .. 303

TRANSPORT MODEL TABLES .. 303
Table of Contents

APPENDIX FOUR .. 315

- DESCRIPTION OF THE COW REQUIREMENTS MODEL DEVELOPED BY DR IAN BROOKES 315
- NOTE ON TRANSPORT RELATED COSTS ... 327

APPENDIX FIVE .. 329

- OVERALL MODEL OUTPUT TABLES .. 329
- QUANTITATIVE APPENDICES .. 331
- QUALITATIVE APPENDICES .. 358
- PREMIUM REDISTRIBUTION .. 370
- MILKSOLIDS AT STATUS QUO PRICES .. 372
List of Tables

CHAPTER ONE: Introduction and Literature Review
Table 1.1: Components of cows’ milk per kilogram of milk (from Mulder and Walstra 1974, p. 21) .. 7
Table 1.2: Milk protein genetic variants (from Ng-Kwai-Hang and Grosclaude 1992) 11
Table 1.3: Percentage milk composition for various breeds of dairy cattle 22
Table 1.4: Predicting organisational forms of alternative business linkages (from Boehlje et al. 1999, p. 28) .. 49

CHAPTER THREE: Breeding for a Qualitative Trait
Table 3.1: Herd age structure and age adjustments used in the model example 91
Table 3.2: Gene and genotypic frequencies by breed ... 93
Table 3.3: Parameters used and first year production in selection for BB ß-lactoglobulin cows .. 95
Table 3.4: Cow gene and genotypic frequencies after 20 years of selection at 2 initial gene frequencies (0.2 and 0.3), using BB only or a combination of both AB and BB bulls (testing and no-testing for genotype, no yearling AB) ... 103
Table 3.5: Gene and genotype frequencies by region ... 104

CHAPTER FOUR: Transport Logistics
Table 4.1: Operational parameters recommended for genetic algorithms 117
Table 4.2: Transport model scenarios run ... 123
Table 4.3: Total milk volumes collected per day (litres) for each of the 20 years 125
Table 4.4: Percentage of the total milk supply that changed to Type 2 over the 20 years for different rates of farm adoption ... 126
Table 4.5: Total net present value of the extra cost incurred in transporting type 2 milk over 20 years (at a discount rate of 7%) at a day in either peak or late lactation 140
Table 4.6: Total net present value of the extra cost incurred in transporting type 2 milk over 20 years (at a discount rate of 10%) at a day in either peak or late lactation 141
Table 4.7: Total extra cost of transporting type 2 milk at a discount rate of 7% over 20 years with the status quo cost adjusted to a constant value over time ... 142
Table 4.8: The extra cost per year to a North Island and a South Island farmer for milk collection, and the proportional increase over a non-differentiated milk policy 147
CHAPTER FIVE: Description of the Models

Table 5.1: Stock reconciliation calculation table for years 1 and 2.............................. 175
Table 5.2: Traits and trait parameters used in the quantitative breeding model............. 184
Table 5.3: Condition score at four periods of the year... 185
Table 5.4: Wood equation parameter values ... 185
Table 5.5: The proportion of the day 1 fat colour value associated with the mid-day in each period. Period 1 is the beginning of the lactation... 186
Table 5.6: Pasture values used in the Feed Model... 187
Table 5.7: Herd structure, losses and culls percentages.. 188
Table 5.8: Milk component prices for 3 years.. 189
Table 5.9: Variable costs used in the Economic Model.. 190
Table 5.10: Weightings and genetic gains used in the quantitative breeding model........ 191

CHAPTER SIX: Model Results

Table 6.1: Premium required per kilogram of milkfat for each scenario for the NPV to equal zero over periods of 10, 20 and 20+ years. The total milkfat price and percentage increase in milkfat price required compared to the status quo (SQ) are also shown in row 2.. 195
Table 6.2: The discounted difference ($) between each quantitative trait scenario for milk colour and the status quo in milk income, sales and purchases income (S&P), farm working expenses (FWE), capital expenses (CE) and net income total for the period specified, where NPV for the period equals zero (or the closest premium value to 2 decimal places). ... 196
Table 6.3: Cow numbers, and milksolids and milkfat production per cow and per hectare for year 20, and the percentage change in these attributes over the 20 years and between the status quo (SQ) and the other scenarios... 199
Table 6.4: The net discounted salvage value of the stock, the percentage of salvage values required for the net discounted salvage value to be zero, and milksolids production of scenario cows as a percentage of status quo (SQ) cows, for the four scenarios at the end of 10 and 20 years.. 201
Table 6.5: Cow numbers, and milksolids production per cow and per hectare at year 20, and the percentage change in these attributes over the 20 years................................. 202
Table 6.6: The multiplier and milkfat, protein and milksolids values required for the differentiated milk in each scenario for the NPV to equal zero over periods of 10, 20 and 20+ years. Milksolids price inclusive of volume charges (above) and exclusive of volume charges (below) are given. The difference between the scenario and the status quo milksolids value is shown in brackets (in cents per kg)................................. 202
Table 6.7: The discounted difference ($) between the qualitative scenarios and the status quo in milk income, sales and purchases income (S&P), farm working expenses (FWE), investment expenses (IE) and net income total for the period specified, where NPV for the period equals zero (or the closest multiplier value to 3 decimal places) .. 204

Table 6.8: Milkfat premium ($/kg milkfat) required for two quantitative scenarios and the premium (cents/kg milksolids) required for two qualitative scenarios for the NPV to equal zero over periods of 10, 20 and 20+ years at 3 discount rates .. 206

Table 6.9: The change in the NPV over 10, 20 and 20+ years associated with a $0.10 increase in the milkfat premium for the desired milk type or a 0.1 cent per litre reduction in transport costs for two quantitative scenarios at three discount rates ... 207

Table 6.10: The change in the NPV over 10, 20 and 20+ years associated with a 1% (of the status quo price) increase in milkfat and protein (i.e. 4.37c/kg milksolids) for the desired milk type or a 0.1 cent per litre reduction in transport costs for two qualitative scenarios at three discount rates ... 207

Table 6.11: The premium required on white milkfat in quantitative scenario 1 for the NPV to equal zero at a 7% discount rate over three time periods, with the premium either evenly or unevenly distributed over the time period. The year value in brackets is the proportion of the year 1 value. The data value in brackets is the difference between that value and its associated even distribution value in cents .. 209

Table 6.12: The payment required on BB milksolids (before transport cost deduction) in qualitative scenario 2 for the NPV to equal zero at a 7% discount rate over three time periods, with the premium either evenly or unevenly distributed over the time period. The year value in brackets is the proportion of the year 1 value. The data value in brackets is the difference between that value and its associated even distribution value in cents .. 209

CHAPTER EIGHT: Summary and Recommendations

Table 8.1: The premium required per kilogram of protein and milkfat for each scenario, for the NPV to equal zero over 20 years. The total component value is shown in the first row and the increase over the status quo is shown in the second row .. 254

APPENDIX TWO: Qualitative Breeding Model Tables

Table A2.1: Selection for BB β-lactoglobulin cows at a .684 gene frequency for the B allele with no heifer AI ... 297

Table A2.2: Selection for BB β-lactoglobulin cows at a .684 gene frequency for the B allele with heifer AI ... 298
Table A2.3: Parameters used and first year production in selection for BB β-lactoglobulin cows at a 0.5 gene frequency for the B allele .. 299
Table A2.4: Selection for BB β-lactoglobulin cows at a 0.5 gene frequency for the B allele with no heifer AI .. 300
Table A2.5: Selection for BB β-lactoglobulin cows at a 0.5 gene frequency for the B allele with heifer AI .. 301
Table A2.6: Year in which proportion of BB cows is over the stated amount with and without yearling mating to AI at 0.5 gene frequency ... 302

APPENDIX THREE: Transport Model Tables
Table A3.1: Transport information for the North Island, at peak lactation and able to collect two milk types in the same run ... 305
Table A3.2: Transport information for the North Island, in late lactation and able to collect two milk types in the same run ... 306
Table A3.3: Transport information for the South Island, at peak lactation and able to collect two milk types in the same run ... 307
Table A3.4: Transport information for the North Island, at peak lactation, able to collect two milk types in the same run and collected every second day. Transport information for the South Island, at peak lactation and able to collect only one milk type per run .. 308
Table A3.5: Average cost of milk collection ($/kilolitre), and the increased cost compared to the status quo cost in that year (%) .. 309
Table A3.6: Cost of collection of Type 2 milk ($/kilolitre) assuming Type 1 milk collection cost is equal to the status quo cost, and the increased cost compared to the status quo cost in that year (%) .. 310
Table A3.7: The extra collection cost to the farmer in dollars per annum and percentage above the status quo (herd not changing) for a North Island farm for 25% of farms changing. Costs used are those for peak lactation, late lactation and an average of the two. Three different ways of calculating costs have been used .. 311
Table A3.8: The extra collection cost to the farmer in dollars per annum and percentage above the status quo (herd not changing) for a North Island farm, for 50% of farms changing. Costs used are those for peak lactation, late lactation and an average of the two. Three different ways of calculating costs have been used .. 312
Table A3.9: The extra collection cost to the farmer in dollars per annum and percentage above the status quo (herd not changing) for a South Island farm where 25% and 50% of farms are changing. Costs used are those for peak lactation. Three different ways of calculating costs have been used .. 313
Table A3.10: Time taken to collect the milk (hours) .. 314
APPENDIX FOUR: Note on Transport Related Costs

Table A4.1: Premium required for two quantitative and two qualitative scenarios at different increases in volume charges for differentiated milk (over 20+ years) 328
Table A4.2: Premium required for quantitative scenario 1 over three time periods with different increases in volume charges for differentiated milk 328

APPENDIX FIVE: Overall Model Output Tables

Table A5.1: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years under the status quo scenario ... 331
Table A5.2: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with all selection on fat colour and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 332
Table A5.3: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with selection on milkfat production and fat colour with an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 333
Table A5.4: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with all selection on fat colour and an initial milkfat colour of 6.0 mg beta-carotene/kg milkfat ... 334
Table A5.5: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with all selection on fat colour for 10 years, and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 335
Table A5.6: The proportion of cows in each herd, and the production per farm over the 20 years under the status quo scenario ... 336
Table A5.7: The proportion of cows in herd 1, and the production per farm over the 20 years with all selection on fat colour and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 337
Table A5.8: The proportion of cows in herd 1, and the production per farm over the 20 years with selection on milkfat production and fat colour with an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 338
Table A5.9: The proportion of cows in herd 1, and the production per farm over the 20 years with all selection on fat colour and an initial milkfat colour of 6.0 mg beta-carotene/kg milkfat ... 339
Table A5.10: The proportion of cows in herd 1, and the production per farm over the 20 years with all selection on fat colour for 10 years, and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat ... 340
Table A5.11: The proportion of cows in herd 1, and the production per hectare over the 20 years under the status quo scenario ... 341
Table A5.12: The proportion of cows in herd 1, and the production per hectare over the 20 years with all selection on fat colour and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat. ... 342

Table A5.13: The proportion of cows in herd 1, and the production per hectare over the 20 years with selection on milkfat production and fat colour with an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat... 343

Table A5.14: The proportion of cows in herd 1, and the production per hectare over the 20 years with all selection on fat colour and an initial milkfat colour of 6.0 mg beta-carotene/kg milkfat. ... 344

Table A5.15: The proportion of cows in herd 1, and the production per hectare over the 20 years with all selection on fat colour for 10 years, and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat. ... 345

Table A5.16: Milkfat production per farm over the 20 years with all selection on fat colour and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat. ... 346

Table A5.17: Milkfat production per farm over the 20 years with selection on milkfat production and fat colour with an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat. ... 347

Table A5.18: Milkfat production per farm over the 20 years with all selection on fat colour and an initial milkfat colour of 6.0 mg beta-carotene/kg milkfat. ... 348

Table A5.19: Milkfat production per farm over the 20 years with all selection on fat colour for 10 years, and an initial milkfat colour of 8.0 mg beta-carotene/kg milkfat. ... 349

Table A5.20: The proportion of milksolids attracting a premium and the proportion of the income from this milk for the four quantitative scenarios and the first qualitative scenario. The proportion of income is based on the return at which the NPV = 0 over 20 years... 350

Table A5.21: A comparison of milk colour and the amount of milk that meets the colour criteria over the lactation in year 20 for scenarios 1 and 3. Both these scenarios put all selection pressure on colour, however the initial colour between the herds is different (8.0 in scenario 1 and 6.0 in scenario 2). ... 351

Table A5.22: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 1 and 2) over 20 years. Note: stock income differences are not shown but are included in the total value. NPV over 20 years equals 0. ... 352
Table A5.23: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 3 and 4) over 20 years. Note: stock income differences are not shown but are included in the total value. NPV over 20 years equals 0... 353

Table A5.24: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 1 and 2) over 20+ years. Note: stock income differences are not shown but are included in the total value. NPV over 20+ years equals 0... 354

Table A5.25: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 3 and 4) over 20+ years. Note: stock income differences are not shown but are included in the total value. NPV over 20+ years equals 0... 355

Table A5.26: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 1 and 2) over 10 years. Note: stock income differences are not shown but are included in the total value. NPV over 10 years equals 0... 356

Table A5.27: Difference in income, expenses, nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the quantitative comparisons (Scenarios 3 and 4) over 10 years. Note: stock income differences are not shown but are included in the total value. NPV over 10 years equals 0... 357

Table A5.28: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years under the status quo scenario... 358

Table A5.29: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with cows tested and BB cows' milk segregated from the remaining milk... 359

Table A5.30: The proportion of cows in each herd, the number of cows, and the production per cow over the 20 years with the whole herd BB genotype from year 1... 360

Table A5.31: The proportion of cows in herd 1 and the production per farm over the 20 years under the status quo scenario... 361

Table A5.32: The proportion of cows in herd 1 and the production per farm over the 20 years with cows tested and BB cows' milk segregated from the remaining milk... 362

Table A5.33: The proportion of cows in herd 1 and the production per farm over the 20 years with the whole herd BB genotype from year 1... 363
Table A5.34: The proportion of cows in herd 1 and the production per hectare over the 20 years under the status quo scenario... 364

Table A5.35: The proportion of cows in herd 1 and the production per hectare over the 20 years with cows tested and BB cows' milk segregated from the remaining milk........... 365

Table A5.36: The proportion of cows in herd 1 and the production per hectare over the 20 years with the whole herd BB genotype from year 1... 366

Table A5.37: Difference in income, expenses, and nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the qualitative comparisons (Scenarios 1 and 2) over the 20 years. Note: stock income value differences are not shown but are included in the total value. NPV over 20 years equals 0... 367

Table A5.38: Difference in income, expenses, and nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the qualitative comparisons (Scenarios 1 and 2) over 20+ years. Note: stock income value differences are not shown but are included in the total value. NPV over 20+ years equals 0... 368

Table A5.39: Difference in income, expenses, and nett income ("with" minus "without" cost-benefit analysis unadjusted figures) and the present value at a discount rate of 7% for the qualitative comparisons (Scenarios 1 and 2) over 10 years. Note: stock income value differences are not shown but are included in the total value. NPV over 10 years equals 0... 369

Table A5.40: The effect of redistributing the premium paid for the desired milk type in quantitative scenario 1 over 3 time periods at a 7% discount rate. The premium value specified is that for year 1. Distribution over the years is given in the table, relative to the year 1 value... 370

Table A5.41: The effect of redistributing the premium paid for the desired milk type in qualitative scenario 2 over 3 time periods at a 7% discount rate. The multiplier value and dollar value specified is that for year 1. Distribution over the years is given in the table, relative to the year 1 value... 371

Table A5.42: The difference in milk composition in year 20 between the scenarios, and the effect this has on the price received per kilogram milksolids (MS) using status quo prices. The difference in milk income is also shown, but it should be noted that this is affected by milk production as well as milk composition... 372
List of Figures

CHAPTER ONE: Introduction and Literature Review
Figure 1.1: The s-shaped curve of technology adoption (from Rogers 1983, p. 11) 72

CHAPTER TWO: Overview of the Model
Figure 2.1: The segregated milk value-added chain ... 80
Figure 2.2: Some non-economic factors impacting on the milk production on-farm 81
Figure 2.3: Factors that affect farm profitability, particularly milk income, and milk yield and composition .. 82
Figure 2.4: Model design and information flow ... 83

CHAPTER THREE: Breeding for a Qualitative Trait
Figure 3.1: Proportion of BB cows over time using different selection policies (gene frequency of B = 0.684 in Year 1, i.e. BB = 0.468 in Year 1). YM = yearling mating with AI. CULL = culling on genotype ... 96
Figure 3.2: Frequency of the B allele over the 20 years for the three breeding scenarios (gene frequency of B = 0.684 in Year 1, No yearling AI) ... 97
Figure 3.3: Frequency of the B allele over the 20 years for the three breeding scenarios (gene frequency of B = 0.684 in Year 1, Yearling AI) ... 98
Figure 3.4: Average protein production per cow per herd per year over 20 years (gene frequency of B = 0.684 in Year 1) .. 99
Figure 3.5: Average protein production per cow by the different genotypes over the 20 years (gene frequency of B = 0.684 in Year 1) ... 100
Figure 3.6: Frequency of the B allele over 20 years at initial frequencies of 0.1, 0.3, 0.5, and 0.7 (testing for genotype, no yearling AB) ... 102
Figure 3.7: Proportion of BB cows by breed over time (testing scenario) 104
Figure 3.8: Proportion of BB cows by breed over time (no testing scenario) 105

CHAPTER FOUR: Transport Logistics
Figure 4.1: Average milk collection cost for the North Island farm set at peak lactation, with two types of milk able to be collected per run for 0, 25%, 50% and 100% of farms changing to type 2 milk ... 129
Figure 4.2: Cost of status quo (equals type 1) and type 2 milk collection for the North Island farm set at peak lactation, with two types of milk able to be collected per run for 25%, 50% and 100% of farms changing to type 2 milk .. 129
Figure 4.3: Average cost of milk collection for the North Island farm set in late lactation, with two types of milk able to be collected per run for 0%, 25% and 50% of farms changing to type 2 milk.

Figure 4.4: Cost of status quo (equals type 1) and type 2 milk collection for the North Island farm set in late lactation, with two types of milk able to be collected per run for 25% and 50% of farms changing to type 2 milk.

Figure 4.5: Average cost of milk collection for the South Island farm set at peak lactation, with two types of milk able to be collected per run for 0%, 25% and 50% of farms changing to type 2 milk.

Figure 4.6: Cost of status quo (equals type 1) and type 2 milk collection for the South Island farm set at peak lactation, with two types of milk able to be collected per run for 25% and 50% of farms changing to type 2 milk.

Figure 4.7: Average cost of milk collection for the North Island farm set at peak lactation, with two types of milk able to be collected per run for 0, 25%, 50% and 100% of farms changing to type 2 milk.

Figure 4.8: Average cost of milk collection for the North Island farm set in late lactation, with two types of milk able to be collected per run for 0, 25% and 50% of farms changing to type 2 milk.

Figure 4.9: Average cost of milk collection for the South Island farm set at peak lactation, with two types of milk able to be collected per run for 25%, and 50% of farms changing to type 2 milk.

Figure 4.10: Average milk collection cost, number of tanker runs and volume of milk collected for the North Island farm set at peak lactation, with two types of milk collected per run and 25% of farms changing to type 2 milk.

Figure 4.11: Average milk collection cost, number of tanker runs and volume of milk collected for the North Island farm set at peak lactation, with two types of milk collected per run and 50% of farms changing to type 2 milk.

Figure 4.12: Average cost of milk collection for the South Island farm set at peak lactation, with both (2T) or only one (1T) type of milk able to be collected per run, and 25% and 50% of farms changing to type 2 milk.

Figure 4.13: Average cost of milk collection for the North Island farm set at peak lactation, with two types of milk able to be collected per run, and milk collected daily (D) or every second day (2D), for 25%, and 50% of farms changing to type 2 milk.
CHAPTER FIVE: Description of the Models

Figure 5.1: Average of selected records, i_p, from a standardised normal distribution
 (average = 0, and variance of 1) when a fraction p of the best records are selected
 (from Van Vleck et al. 1987 p. 298) ... 154

Figure 5.2: Regression line showing the relationship between T1 and T2 156

Figure 5.3: Change in fat colour, β-carotene yield and fat yield over lactation for a
 Friesian cow .. 165

Figure 5.4: Change in fat colour, β-carotene yield and fat yield over lactation for a
 Jersey cow .. 165

CHAPTER SIX: Model Results

Figure 6.1: Net present value at a range of milkfat premium values for three scenarios
 (1, 2 or 3) over 20 (20), 20+ (20+) and 10 (10) years at a discount rate of 7% 197

Figure 6.2: The percentage of milk attracting a premium over the 20 years for 3
 quantitative scenarios and the first qualitative scenario .. 198

Figure 6.3: Net present value at a range of multiplier values for the two scenarios
 (1 or 2) over 20 (20), 20+ (20+) and 10 (10) years at a discount rate of 7% 205

Figure 6.4: The cumulative present values over the 20 years for all scenarios, including
 the two redistributed premium scenarios, at the premium for each of these where
 NPV=0 ... 210

Figure 6.5: The cumulative present values over the 20 years for qualitative scenarios
 1 and 2, and qualitative scenario 2 with the premium redistributed so years 2 to 20
 are 0.90 and 0.95 of the year 1 value. The premium is for milkfat and protein is 6.1%
 of the status quo value ... 211