Identification and characterisation of an exported immunogenic protein of *Mycobacterium avium* subspecies *paratuberculosis*

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at Massey University, Palmerston North, New Zealand

Christine Dupont

2002
Name of Candidate: Christine Dupont I.D. Number: 99119179
Degree: PhD Dept / Institute / School: IUBAS
Thesis Title: Identification and Characterisation of an Exported Immunogenic Protein of M. avium Subspecies paratuberculosis
Name of Chief Supervisor: Dr Alan Murray Telephone Ext: 7895

As author of the above named thesis, I request that my thesis be embargoed from public access until (date) 21st December 2003 for the following reasons:

☐ Thesis contains commercially sensitive information.
☐ Thesis contains information which is personal or private and / or which was given on the basis that it not be disclosed.
☐ Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.
☐ Other (specify): ________________________________

Please explain here why you think this request is justified:

A.I. Park patent lawyers have requested that the embargo be extended from Oct 2003 to Dec 2003 to facilitate a PCT (International Patent Application)

Signed (Candidate): ____________________________ Date:__________________________

Endorsed (Chief Supervisor): ______________________ Date: 11/6/2003

Approved / Not Approved (Representative of VC): __________________________ Date: 12/6/2003

Note: Copies of this form, once approved by the representative of the Vice Chancellor, must be bound into every copy of the thesis.
APPLICATION FOR APPROVAL OF REQUEST TO EMBARGO A THESIS
(Pursuant to AC98/168 (Revised 2), Approved by Academic Board 16.02.99)

Name of Candidate: CHRISTINE DUPONT I.D. Number: 99119179
Degree: PhD Dept / Institute / School: IV ABS
Thesis Title: Identification and characterisation of an exported immunogenic protein of Mycobacterium avium subspecies paratuberculosis
Name of Chief Supervisor: Dr Alan Murray Telephone Ext: 7895

As author of the above named thesis, I request that my thesis be embargoed from public access until (date) October 2003 for the following reasons:

☐ Thesis contains commercially sensitive information.
☐ Thesis contains information which is personal or private and/or which was given on the basis that it not be disclosed.
☐ Immediate disclosure of thesis contents would not allow the author a reasonable opportunity to publish all or part of the thesis.
☐ Other (specify): __

Please explain here why you think this request is justified:

Part of the work is being included in a patent application which is currently being prepared.

The patent applicants will be Massey University and the Pasteur Institute in Paris.

Signed (Candidate): _____________________________ Date: 22/03/02

Endorsed (Chief Supervisor): ___________________________ Date: 22/03/02

Approved / Not Approved (Representative of VC): ___________________________ Date: 22/03/02

Note: Copies of this form, once approved by the representative of the Vice Chancellor, must be bound into every copy of the thesis.

[MURET appl form Disk 15]
Abstract

Exported proteins of mycobacteria are available to interact with the immune system at an early stage of infection and are potent inducers of immune responses. Potentially exported proteins of Mycobacterium avium subspecies paratuberculosis were identified using alkaline phosphatase gene fusion technology. A library of partial gene fusions from a New Zealand clinical isolate of M. a. paratuberculosis was constructed in the shuttle vector pJEM11 and expressed in the surrogate hosts E. coli and M. smegmatis. The DNA inserts from a portion of the resulting clones expressing alkaline phosphatase-positive fusion proteins were partially sequenced to identify the proteins. Eleven proteins not previously described for M. a. paratuberculosis were identified as containing signal sequences for export. One of these, a putative lipoprotein named P22 was selected for further study. The full nucleic acid sequence of the p22 gene was determined and the open reading frame was cloned into the mycobacterial expression vector pMIP12. This enabled P22 to be produced as a polyhistidine-tagged protein in M. smegmatis and facilitated purification by chromatography. N-terminal sequencing of the recombinant protein confirmed cleavage of an N-terminal signal sequence. Native P22 was detected in culture supernatants and cell sonicates of M. a. paratuberculosis strain 316F using rabbit antibody raised to P22. Investigation of the presence of genes similar to p22 in other mycobacterial species, revealed p22 was present in Mycobacterium avium subspecies avium and similar genes existed in M. intracellulare (88.5% identity) and M. saofulaceum (87.7% identity). Database searches showed P22 belonged to the LppX/LprAFG family of mycobacterial lipoproteins also found in M. leprae and in members of the M. tuberculosis complex. P22 shared less than 75% identity to these proteins. Recombinant P22 was able to elicit significantly increased interferon-gamma secretion in blood from a group of eight sheep vaccinated with a live, attenuated strain of M. a. paratuberculosis (strain 316F) compared to a group of five unvaccinated sheep. Antibody to P22 was detected by Western blot analysis in 10 out of 11 vaccinated sheep, in two out of two clinically affected cows and in 11 out of 13 subclinically infected cows.
Acknowledgements

Much of the work reported in this thesis was made possible by the assistance of many people and service providers. DNA sequencing was done by Lorraine Berry at the Massey DNA sequencing facility. N-terminal sequencing of P22 was done by Trevor Loo at Massey University Protein Sequencing Services. Faecal culture and ELISA tests for the cattle used, were carried out by AgResearch, Wallaceville. The serum samples from these cattle were generously donated by Dr. Cord Heuer and Solis Norton. *M. a. paratuberculosis* DNA samples used for PCR analysis of strain distribution were a gift from Dr. Desmond Collins. The experimental sheep were housed at Massey University Agricultural Services. I'd especially like to thank Margaret Brown and Geoff Warren for wrangling sheep and collecting blood samples and watching over the animals that were so important to this study. The mycobacterial shuttle vectors pJEM11 and pMIP12, were kindly supplied by Professor Brigitte Gicquel, Unite de Genetique Mycobacterienne, Pasteur Institute, Paris, France. Sue Copland assisted with the Southern blots used in this study and Dr. Jeremy Rae contributed in the preparation of *M. a. paratuberculosis* culture filtrates and isocitrate dehydrogenase assays. Support for this work was provided by Meat New Zealand, WoolPro and the IVABS post-graduate student support fund.

The people who have influenced me in the decision to embark on a career in scientific research deserve more thanks than I can mention here. My chief supervisor, Dr. Alan Murray has provided unconditional guidance and support over the years. He has a gift of always finding some positive aspect in every result and I could always count on him for encouragement through rough times. My second supervisor Dr. Keith Thompson always managed to find time for me (and my sheep). His wisdom and experience as a scientist and teacher has been greatly appreciated and admired. My third supervisor Dr. John Tweedie gave essential criticism and advice in regards to this thesis and was always willing to help and support me. Dr. Catherine Day introduced me to the wonderful world of protein expression and encouraged me in my decision to undertake PhD studies, even though it meant losing her only technician. My lab-mates Dr. Jane
Oliaro, Dr. Sandy Maclachlan, Miho Minamikawa and Dr. Becky Davies have been excellent company over the years.

Special thanks must be said to members of my family whose support has been a significant factor in my enjoyment of this work. Because of my insistence in pursuing this path, my family in Canada have suffered the (temporary) loss of their daughter and grand children. Despite this, they constantly offered their support. My husband Dr. John Lumsden who quietly encouraged me through this endeavour and always managed to help me keep things in perspective. Last but not least, my children Jamie and Genna who handled my "absence" with great maturity. I'm sure all the nights of take-aways for dinner contributed to their understanding.

I would also like to express my thanks to the sheep used in this study. Approval for the use of experimental animals was granted by the animal ethics committee of Massey University, protocols 99/155 and 00/87. Permission to carry out genetic manipulations of E. coli and M. smegmatis was granted by Massey University Genetic Technology Committee under Section 40 of the Hazardous Substances and New Organisms Act 1996, GTC application GM099/MU/179.

Construction of the M. a. paratuberculosis PhoA fusion library and characterisation of SodC from this study have been published (Dupont, C. & Murray, A. (2001). Identification, cloning and expression of sodC from an alkaline phosphatase gene fusion library of Mycobacterium avium subspecies paratuberculosis. Microbios 106 S1: 7-19).
Table of Contents

<table>
<thead>
<tr>
<th>Chapter 1 Literature review</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 History</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Prevalence and economic impact</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Host range</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Crohn’s disease</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Classification</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Clinical signs and transmission</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Control</td>
<td>8</td>
</tr>
<tr>
<td>1.6.1 Test and cull</td>
<td>8</td>
</tr>
<tr>
<td>1.6.2 Vaccination</td>
<td>8</td>
</tr>
<tr>
<td>1.6.3 Management</td>
<td>10</td>
</tr>
<tr>
<td>1.7 Detection</td>
<td>11</td>
</tr>
<tr>
<td>1.7.1 Culture</td>
<td>11</td>
</tr>
<tr>
<td>1.7.2 Detection of DNA</td>
<td>13</td>
</tr>
<tr>
<td>1.7.2.1 IS900 insertion element</td>
<td>13</td>
</tr>
<tr>
<td>1.7.3 Immunological tests</td>
<td>15</td>
</tr>
<tr>
<td>1.7.3.1 Tests for cellular responses</td>
<td>16</td>
</tr>
<tr>
<td>1.7.3.2 Tests for humoral responses</td>
<td>16</td>
</tr>
<tr>
<td>1.7.4 Histopathological detection</td>
<td>17</td>
</tr>
<tr>
<td>1.8 The mycobacterial envelope and its relationship to pathogenicity and immunology</td>
<td>18</td>
</tr>
<tr>
<td>1.8.1 Lipoarabinomannan</td>
<td>19</td>
</tr>
<tr>
<td>1.9 Export of proteins in mycobacteria</td>
<td>21</td>
</tr>
<tr>
<td>1.9.1 Export pathways and signal peptides</td>
<td>23</td>
</tr>
<tr>
<td>1.9.1.1 Cleavage of signal peptides</td>
<td>25</td>
</tr>
<tr>
<td>1.9.1.2 Lipidation</td>
<td>25</td>
</tr>
<tr>
<td>1.9.1.3 C-terminal anchoring</td>
<td>26</td>
</tr>
<tr>
<td>1.10 Searching for exported proteins of mycobacteria</td>
<td>27</td>
</tr>
<tr>
<td>1.11 Components isolated from M. a. paratuberculosis</td>
<td>29</td>
</tr>
</tbody>
</table>
1.12 Pathogenesis and immune responses ... 32
 1.12.1 Pathogenesis .. 32
 1.12.2 Immune responses .. 34
 1.12.2.1 T-cells .. 35
 1.12.2.2 B-cells .. 38
1.13 Summary and aims of the thesis ... 39

Chapter 2 General materials and methods
2.1 Bacterial strains and plasmids ... 41
 2.1.1 Bacterial strains ... 41
 2.1.2 Plasmids .. 42
2.2 Bacterial growth and storage conditions .. 43
 2.2.1 E. coli .. 43
 2.2.2 M. smegmatis ... 43
 2.2.3 M. a. paratuberculosis ... 44
2.3 DNA isolations .. 44
 2.3.1 Isolation of plasmid DNA from E. coli .. 44
 2.3.2 Isolation of genomic DNA from mycobacterial species 44
2.4 DNA manipulations and cloning procedures ... 45
 2.4.1 Restriction endonuclease digestions .. 45
 2.4.2 Electrophoresis .. 45
 2.4.3 Extraction from agarose gels ... 46
 2.4.4 Southern blotting and hybridisations .. 46
 2.4.4.1 DNA probe preparation ... 47
 2.4.4.2 Removal of probe from Southern blots .. 47
 2.4.5 Polymerase chain reactions .. 47
 2.4.5.1 Primer design .. 47
 2.4.5.2 PCR conditions .. 48
 2.4.6 DNA sequencing ... 49
 2.4.7 Ligations .. 49
2.5 Bacterial transformations .. 50
 2.5.1 Preparation of electrocompetent M. smegmatis 50
 2.5.2 Transformation of E. coli ... 50
 2.5.3 Transformation of M. smegmatis ... 51
2.6 Protein isolations ... 51
 2.6.1 Preparation of cell lysates ... 51
Chapter 3 Identification of M. a. paratuberculosis DNA sequences encoding exported proteins

3.1 Abstract...62
3.2 Introduction ...63
3.3 Materials and methods ...65
 3.3.1 Construction of an M. a. paratuberculosis pJEM11 expression library......65
 3.3.1.1 Extraction of DNA from M. a. paratuberculosis..........................65
 3.3.1.2 Preparation of pJEM11 vector DNA..66
 3.3.1.3 Partial digestion with Sau3AI of M. a. paratuberculosis DNA........66
 3.3.1.4 Ligation of M. a. paratuberculosis DNA and pJEM11 and transformation into E. coli...66
 3.3.1.5 Plasmid isolation from the E. coli recombinant library..................67
 3.3.1.6 Transformation of the recombinant plasmids into M. smegmatis mc²155...67
 3.3.2 Sequencing of DNA inserts encoding putative exported proteins.........68
3.4 Results..69

3.4.1 Construction of an *M. a. paratuberculosis* pJEM11 expression library........69

3.4.1.1 Confirmation of *M. a. paratuberculosis* DNA for cloning..........................69

3.4.1.2 Subcloning of *M. a. paratuberculosis* DNA into the vector pJEM11 and expression of the library in *E. coli* ..69

3.4.1.3 Expression of the library in *M. smegmatis* ...70

3.4.2 Analysis of *M. a. paratuberculosis* *phoA* fusions ..71

3.4.2.1 Sequencing of DNA inserts encoding putative exported proteins71

3.4.2.2 Analysis of *phoA* fusions ...71

3.5 Discussion...77

Chapter 4 Cloning, heterologous expression and characterisation of an immunogenic 22 kDa protein from *M. a. paratuberculosis*

4.1 Abstract..83

4.2 Introduction ...84

4.3 Materials and methods..86

4.3.1 PCR amplification of the *p22* gene from *M. a. paratuberculosis*86

4.3.2 Cloning of the *p22* open reading frame...86

4.3.3 Expression and purification of P22 recombinant protein from *M. smegmatis* ...88

4.3.3.1 Western blot analyses of P22 recombinant protein..88

4.3.4 Preparation of rabbit antibody raised to P22 ..89

4.3.5 PCR amplification of the *p22* ORF from genomic DNA ...89

4.4 Results...90

4.4.1 Sequence analysis of plasmid pTB-16 and identification of the *p22* open reading frame ...90

4.4.1.1 Sequence analysis of pTB-16 ..90

4.4.1.2 Identification of the *p22* ORF..91

4.4.2 Sequence analysis of *p22* ...91

4.4.2.1 Sequence similarities between P22 and a family of mycobacterial lipoproteins ..91

4.4.3 Cloning and expression of the *p22* ORF ..93

4.4.4 Purification of recombinant P22 from cell lysates ...94

4.4.5 Analysis of *M. smegmatis* culture filtrates for the presence of recombinant P22 ...94

4.4.6 Immune responses to P22 ...94
4.4.6.1 Humoral immune responses to P22 ... 94
4.4.6.2 Cell-mediated immune responses to P22 ... 96

4.4.7 Localisation of P22 in M. a. paratuberculosis .. 97
4.4.7.1 Detection of P22 with serum from sheep vaccinated with M. a. paratuberculosis strain 316F culture filtrate 97
4.4.7.2 Production of rabbit antibody raised to P22 and detection of P22 in cellular fractions .. 98

4.4.8 Species distribution of the p22 gene .. 98
4.4.8.1 PCR amplification of the p22 gene from Mycobacterium species and strains ... 99
4.4.8.2 Southern blot detection of the p22 gene in Mycobacterium species and strains ... 100

4.5 Discussion .. 101

General discussion and conclusions ... 111

Appendix 1 Commonly used solutions .. 117
Appendix 2 Diagnosis of Johne's disease and results for "Limestone Downs" sheep. 119
Appendix 3 Most significant protein database alignments obtained using the translated DNA segments fused to phoA ... 120
Appendix 4 M. a. paratuberculosis p22 and M. bovis lpp-27 (lprG) alignment (Fasta 3) ... 129
Appendix 5 Raw data for IFN-γ assay Figure 4.13 ... 131
Appendix 6 Raw data for IFN-γ assay Figure 4.14 ... 132
Appendix 7 Alignment of DNA and protein sequences of M. a. paratuberculosis p22 with partial sequences of M. intracellulare and M. scrofulaceum 133

References ... 135
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1. Relationships between Mycobacterium species based on 16S rRNA sequence homology</td>
<td>6a</td>
</tr>
<tr>
<td>Figure 1.2. General relationship of tests and immune responses to infection with M. a. paratuberculosis over time</td>
<td>16a</td>
</tr>
<tr>
<td>Figure 1.3. Common features of a signal peptide</td>
<td>24a</td>
</tr>
<tr>
<td>Figure 3.1. Schematic of the E. coli/Mycobacterium shuttle vector pJEM11</td>
<td>64a</td>
</tr>
<tr>
<td>Figure 3.2. Schematic representation of the location of the oligonucleotide primers designed for sequencing the M. a. paratuberculosis inserts in the pJEM11 constructs</td>
<td>68a</td>
</tr>
<tr>
<td>Figure 3.3. Schematic representation of the construction of the PhoA fusion library</td>
<td>69a</td>
</tr>
<tr>
<td>Figure 3.4. PCR amplification of M. a. paratuberculosis genetic elements</td>
<td>69b</td>
</tr>
<tr>
<td>Figure 3.5. PhoA(^+) recombinant E. coli colonies from the M. a. paratuberculosis pJEM11 library</td>
<td>69c</td>
</tr>
<tr>
<td>Figure 3.6. PhoA(^+) recombinant M. smegmatis colonies from the M. a. paratuberculosis pJEM11 library</td>
<td>70a</td>
</tr>
<tr>
<td>Figure 3.7. Restriction endonuclease analysis of selected PhoA(^+) clones</td>
<td>71a</td>
</tr>
<tr>
<td>Figure 4.1. Schematic of the Mycobacterium expression vector pMIP12 for the production of histidine-tagged recombinant proteins in M. smegmatis</td>
<td>86a</td>
</tr>
<tr>
<td>Figure 4.2. Sequence analysis of the p22 ORF</td>
<td>91a</td>
</tr>
<tr>
<td>Figure 4.3. Amino acid sequence comparison between P22 of M. a. paratuberculosis and database search results</td>
<td>91b</td>
</tr>
<tr>
<td>Figure 4.4. Kyte-Doolittle plot (top) and signal sequence features (bottom) of the P22 precursor protein</td>
<td>92a</td>
</tr>
<tr>
<td>Figure 4.5. Comparison of the promoter regions of M. bovis lpp-27 and M. a. paratuberculosis p22</td>
<td>92b</td>
</tr>
<tr>
<td>Figure 4.6. Restriction endonuclease digest of plasmid pMIP-p22</td>
<td>93a</td>
</tr>
<tr>
<td>Figure 4.7. Expression of recombinant P22 from M. smegmatis</td>
<td>93b</td>
</tr>
</tbody>
</table>
Figure 4.8. Affinity chromatography of recombinant P22 ... 94a
Figure 4.9. Detection of recombinant P22 from *M. smegmatis* culture filtrates......... 94b
Figure 4.10. Detection of antibody to P22 in sheep vaccinated with Neoparasec......... 94c
Figure 4.11. Detection of antibody to P22 in individual sheep from a naturally
infected flock. ... 95a
Figure 4.12. Detection of antibody to P22 in naturally infected cattle. 95b
Figure 4.13. IFN-γ induction using Ni⁺²-affinity-enriched P22 in Neoparasec-
vaccinated sheep blood... 96a
Figure 4.14. IFN-γ induction by purified recombinant P22 in Neoparasec-
vaccinated sheep blood... 97a
Figure 4.15. Detection of antibody to P22 from sheep vaccinated with
M. a. paratuberculosis strain 316F culture filtrate... 97b
Figure 4.16. Western blot detection of rabbit antibody raised to P22............................. 98a
Figure 4.17. Detection of native P22 in Western blots of *M. a. paratuberculosis*
strain 316F cell fractions and comparison to recombinant P22 using
rabbit antibody raised to P22. .. 98b
Figure 4.18. PCR amplification of the p22 gene from 13 isolates of
M. a. paratuberculosis. ... 99a
Figure 4.19. PCR amplification from 22 mycobacterial strains using primers designed
to the *p22* ORF... 99b
Figure 4.20. Southern blot analyses using a *p22* probe from genomic DNA of 13
mycobacterial strains... 100a
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A summary of the clinical stages of paratuberculosis</td>
</tr>
<tr>
<td>1.2</td>
<td>Components isolated from M. a. paratuberculosis</td>
</tr>
<tr>
<td>2.1</td>
<td>Bacterial strains used in this study</td>
</tr>
<tr>
<td>2.2</td>
<td>Plasmids used in this study</td>
</tr>
<tr>
<td>2.3</td>
<td>Antibiotics and supplements used in microbiological media</td>
</tr>
<tr>
<td>2.4</td>
<td>Sheep treatment groups</td>
</tr>
<tr>
<td>3.1</td>
<td>Oligonucleotide primers designed for analysis of M. a. paratuberculosis DNA</td>
</tr>
<tr>
<td>3.2</td>
<td>Identification of selected M. a. paratuberculosis PhoA fusion proteins</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of results for detection of M. a. paratuberculosis by serum ELISA, faecal culture and P22 Western blot analysis</td>
</tr>
</tbody>
</table>
List of Abbreviations

A$_{280}$nm absorbance at 280 nm
ATCC American type culture collection
Avian PPD Purified protein derivative from M. a. avium
BCG bacillus Calmette-Guerin
BCIP 5-bromo-4-chloro-3-indolyl phosphate
BLAST basic local alignment search tool
ConA concavalin A
dTTP deoxythymidine triphosphate
dUTP deoxyuridine triphosphate
DIG digoxigenin
DNA deoxyribonucleic acid
EDTA ethylenediamine tetraacetic acid
ELISA enzyme-linked immunosorbent assay
HPLC high pressure liquid chromatography
IFN-γ interferon-gamma
Johnin PPD purified protein derivative from M. a. paratuberculosis
kan kanamycin
kb kilobase pairs
kDa kilodalton(s)
LAM lipoarabinomannan
LB Luria-Bertani
OD optical density
ORF open reading frame
PBS phosphate-buffered saline
PCR polymerase chain reaction
PhoA alkaline phosphatase
POD peroxidase
PVDF polyvinylidene difluoride
RBS ribosome binding site
SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis
TAE Tris-acetate, EDTA
UV ultraviolet

Amino acids

<table>
<thead>
<tr>
<th>A</th>
<th>alanine</th>
<th>C</th>
<th>cysteine</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>aspartic acid</td>
<td>E</td>
<td>glutamic acid</td>
</tr>
<tr>
<td>F</td>
<td>phenylalanine</td>
<td>G</td>
<td>glycine</td>
</tr>
<tr>
<td>H</td>
<td>histidine</td>
<td>I</td>
<td>isoleucine</td>
</tr>
<tr>
<td>K</td>
<td>lysine</td>
<td>L</td>
<td>leucine</td>
</tr>
<tr>
<td>M</td>
<td>methionine</td>
<td>N</td>
<td>asparagine</td>
</tr>
<tr>
<td>P</td>
<td>proline</td>
<td>Q</td>
<td>glutamine</td>
</tr>
<tr>
<td>R</td>
<td>arginine</td>
<td>S</td>
<td>serine</td>
</tr>
<tr>
<td>T</td>
<td>threonine</td>
<td>W</td>
<td>tryptophan</td>
</tr>
<tr>
<td>V</td>
<td>valine</td>
<td>Y</td>
<td>tyrosine</td>
</tr>
<tr>
<td>Nucleic acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>adenosine</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>thymidine</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>cytidine</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>guanosine</td>
<td></td>
</tr>
</tbody>
</table>