The Ecology and Molecular Ecology of the New Zealand Lesser Short-tailed Bat *Mystacina tuberculata*

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Palmerston North, New Zealand.

Brian Donald Lloyd

2002
GENERAL ABSTRACT

The distribution, ecology, and molecular ecology of short-tailed bats *Mystacina tuberculata* were investigated in the central North Island, New Zealand. Special emphasis was given to providing information for conservation management of the species. Seven large populations containing between 2000 and 10 000 bats were found to persist in the area. Populations require numerous large cavities in the main trunk of mature trees for colonial roosts and are therefore restricted to extensive stands of tall old-growth forest. There was no evidence of predation by introduced mammals at roosts where the bats are most vulnerable. In summer, large group size, aggressive behaviour, and frequent movement between colonial roosts reduce the probability of predation. During winter, roosting bats remain in torpor for long periods and are vulnerable to predators, but the entrances to winter roosts are usually too small for predators to enter. Although field trials demonstrated that the bats may be at risk of secondary poisoning during pest control operations, close monitoring of a bat population during a control operation revealed no mortality. The species' intraspecific phylogeny was investigated using a 2878 bp sequence alignment from multiple mitochondrial genes. Six sympatric phylogroups were identified with estimated divergences of 0.93–0.68 My ago. The phylogroups do not correspond to the existing subspecific taxonomy. The phylogeographic structure and demographic history of the phylogroups were investigated using control region sequences modified by removing homoplasic sites. Phylogeographic structure was generally consistent with an isolation-by-distance dispersal model. The observed pattern is not typical of microbats, which generally exhibit low levels of genetic structure over continental ranges. Coalescent based analyses (mismatch distributions, skyline plots, lineage dispersal analysis, and nested clade analysis) indicated the three phylogroups found in central and southern North Island expanded before the last glacial maximum, presumably during interstadials when *Nothofagus* forest was most extensive. Genetic structure within a central North Island hybrid zone was consistent with range expansion from separate refugia following reforestation after catastrophic volcanic eruptions. Discrepancies between estimates of historic and current population size (> 12 million cf. 50 000) indicate the species has undergone a massive population decline.
ACKNOWLEDGMENTS

The study was carried out under Massey University Animal Ethics Approval 96/141 and was generously funded by the New Zealand Department of Conservation.

It is a pleasure to acknowledge the many people who contributed to this work. Firstly, I want to acknowledge the importance of each of my supervisors. Dr. Murray Potter, my chief supervisor, deserves special recognition for his unfailing encouragement and good counsel throughout the study. Other supervisors each played a crucial role. Dr. Rod Hay and Dr Claire Veltman provided essential support and encouragement during the early stages and Dr. Peter Lockhart provided the advice and expertise I needed during the final stages of the study.

The study would have been impossible without my field assistants: Shirley McQueen, Tom Whitford, and Rosemary Smith. I want to thank them unreservedly for every one of those too-heavy loads of equipment they carried and all the long cold hours they persevered at mist-net sites. At various times Department of Conservation field-staff from throughout New Zealand also assisted with the field work, sharing the heavy loads and long cold nights. The most enthusiastic amongst them, and the most important to me, are Bryan Williams, Nigel Holland, and John Heaphy. As well as providing assistance in the field, local offices of the Department of Conservation in many areas provided support and local knowledge. In particular, the project could not have succeeded without support from Tongariro-Taupo Conservancy staff: Harry Keys, Cam Speedy, and John Luff.

I treasure the time I spent flying with Elwin Greenwood, hunting for the elusive bats. His premature death saddened me and made the world a lesser place.

A number of people at the Department of Conservation head office contributed enormously to this work. My controlling officers, Don Newman and Rod Hay, ensured the project could proceed by providing funding and support. Murray Douglas and Herman Weenink kept the electronic equipment working. Chris Edkins drafted all of the best illustrations in this thesis.

I am extremely grateful to Professors David Penny and David Lambert, for their generosity in providing laboratory facilities, and to my mentors in molecular ecology: Trish McLennachan, Abby Harrison, Leon Huynen, Nickie Aitken and Peter Ritchie. Special thanks goes to the staff of the Waikato University DNA sequencing facilities for
their great service. Thanks also to Colin O’Donnell for providing tissue samples from the Eglinton Valley, and Alina Arkins for providing tissue samples from the Tararuas.

The most important acknowledgments of all are to the special people in my life, friends and family. My parents started me on this road many years ago with the best of childhoods, but sadly aren’t here to share this completion. My brothers, Peter and Derek, and sister Doreen are all on the other side of the world, but they remain close to my heart. My daughters Sri and Judith, now grown to wonderful women, have given me love and support that has kept me going through the hardest years. Friends like Duncan Cunningham, Rebecca Mason, Paddy O’Dea, John Brunsden, Charlotte Sunde, and many others, have given life its rich texture. Finally, I extend my love and appreciation to Lynne Huddleston who has bought so much joy to my life.
Table of Contents

GENERAL ABSTRACT ... II

ACKNOWLEDGMENTS .. III

TABLE OF CONTENTS ... V

LIST OF FIGURES ... XI

LIST OF TABLES ... XIII

LIST OF PLATES ... XV

Chapter 1: General introduction ... 1

STUDY BACKGROUND ... 2

INTER-POPULATION DISPERSAL .. 3

 Methods of measuring dispersal .. 4

THESIS FORMAT ... 5

REFERENCES .. 6

Chapter 2: Advances in New Zealand mammalogy 1990–2000: Short-tailed bats ... 9

SUPERFAMILY NOCTILIONOIDEA ... 10

FAMILY MYSTACINIDAE .. 11

GENUS MYSTACINA ... 11

 Description ... 11

 Colonisation ... 14

LESSER SHORT-TAILED BAT ... 15

 Field sign .. 16

 Daytime ... 16

 Night-time .. 17

 Measurements ... 18
Table of contents

Variation .. 18
Distribution .. 18
Habitat .. 21
Food .. 21
 Diet ... 21
 Foraging behaviour ... 25
Social organisation and behaviour ... 26
 Flight ... 26
 Echolocation calls ... 27
 Roosting ... 28
 Torpor and hibernation .. 32
 Reproduction and development .. 32
Population dynamics ... 34
Causes of decline ... 35
Threats .. 36
 Predators .. 36
 Impact of poison operations ... 37
Adaptations to the New Zealand environment .. 38
Significance to the New Zealand environment ... 39
Conservation Status ... 39
GREATER SHORT-TAILED BAT ... 40
 Measurements .. 40
 Variation ... 41
 Distribution .. 41
 Habitat ... 41
 Food .. 42
 Social organisation and behaviour .. 42
 Flight .. 42
 Echolocation calls ... 42
 Roosting .. 43
 Torpor and hibernation .. 43
 Threats ... 43
 Conservation status ... 43
REFERENCES ... 44
Chapter 4: The demographic history of the New Zealand short-tailed bat *Mystacina tuberculata* inferred from modified control region sequences ... 92

ABSTRACT .. 93

INTRODUCTION .. 94

METHODS ... 95

Samples and sequence analysis .. 95

Overview of phylogeographic analyses ... 96

Analysis of F_{ST} values .. 96

Phylogroup assignment ... 97

Genetic diversity and AMOVA .. 97

Limitations to coalescent methods .. 98

Estimating genealogies and parameters for coalescent analyses .. 98

Mismatch distribution and Fu’s F_{S} statistic .. 98

Skyline plots ... 99

Lineage dispersal analysis .. 100

Nested clade analysis ... 101

RESULTS ... 102

F_{ST} versus geographic distance .. 102

Phylogroup assignment .. 104

Geographic distribution of phylogroups .. 106

AMOVA .. 108

General parameter estimates for coalescent methods ... 109

Mismatch distribution and Fu’s F_{S} .. 109

Skyline plots ... 111

Comparing demographic inferences from mismatch distributions and skyline plots 113

Lineage dispersal analysis .. 114

Nested clade analysis .. 117

DISCUSSION ... 123

Phylogeography within central and southern North Island .. 123

Reliability of estimates for the timing and magnitude of population expansion 126
Table of contents

Phylogeography outside central and southern North Island ... 127
Population decline .. 128
Conservation ... 129

ACKNOWLEDGMENTS .. 130

REFERENCES ... 131

Appendix 1: An assessment of the probability of secondary poisoning of forest insectivores following an aerial 1080 possum control operation .. 135

ABSTRACT ... 136

INTRODUCTION .. 137

METHODS ... 138

- Study area ... 138
- Field methods .. 138
- Sodium monofluoracetate (1080) concentrations .. 140
- LD$_{50}$ estimates of 1080 contaminated arthropods for forest insectivores 140

RESULTS ... 142

- Arthropod collections and 1080 concentrations .. 142
- 1080 concentrations in baits .. 143

DISCUSSION ... 147

ACKNOWLEDGEMENTS ... 152

REFERENCES ... 152

Appendix 2: Measuring mortality in short-tailed bats (Mystacina tuberculata) as they return from foraging after an aerial 1080 possum control operation .. 158

ABSTRACT ... 159

INTRODUCTION .. 160

METHODS ... 161

- Study area and population ... 161
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field methods</td>
<td>162</td>
</tr>
<tr>
<td>Data analysis</td>
<td>166</td>
</tr>
<tr>
<td>RESULTS</td>
<td>166</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>170</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>172</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>173</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1 Distribution of Mystacina tuberculata as known in 2000 19

Figure 3.1 Location of known populations of M. tuberculata 56
Figure 3.2 NJ tree of one hundred and forty-seven 5'CR haplotypes with geographical
defined clades compressed ... 66
Figure 3.3 ML trees for the three partitions: CR, Ex-Cr, Ex-CRslow, and the combined
data, with bootstrap values for nodes defining the six major lineages 72
Figure 3.4 The results of spectral analyses of the three partitions CR, Ex-Cr, Ex-
CRslow, and combined data .. 73
Figure 3.5 Geographic distribution of M. tuberculata lineages 78
Figure 3.6 Forest cover in New Zealand during the last glacial maximum 20 000 years
ago (from McKinnon et al., 1997) .. 82

Figure 4.1 The relationship between F_{ST} and geographical distances among populations
of M. tuberculata .. 103
Figure 4.2 Distribution of phylogroups and marker sequences on NJ and MJ
genealogies calculated from modified 5'CR haplotypes 105
Figure 4.3 The geographic distribution of M. tuberculata phylogroups 107
Figure 4.4 ML phylograms of modified 5'CR haplotypes for CSN phylogroups of M.
tuberculata, with a molecular clock enforced .. 109
Figure 4.5 Mismatch distributions for phylogroups of M. tuberculata with expected
distributions under the sudden demographic expansion model fitted to the observed
distributions ... 110
Figure 4.6 Generalised skyline plots for CSN phylogroups of M. tuberculata, with
demographic models fitted to the data .. 112
Figure 4.7 Patterns of lineage dispersal and age for CSN phylogroups, separately and
together .. 115
Figure 4.8 Statistical parsimony cladogram of modified 5'CR haplotypes from CSN
showing nested clade structure .. 118
Figure 4.9 Results of nested clade analysis of modified 5'CR haplotypes from CSN .. 119
Figure 4.10 Geographic distribution of *M. tuberculata* clades within CSN 121
Figure 4.11 Evidence of secondary contact following allopatric fragmentation between CSN phylogroups .. 122
Figure 4.12 Hypothesised historical range expansion events for *M. tuberculata* overlaying post-glacial reforestation (9000 years ago) and areas affected by central North Island vulcanism .. 125

Figure 5.1 Changes in the mean percentage of 1080 in baits and cumulative rainfall with time... 147

Figure 6.1 Map of the study area, showing the extent of the aerial 1080 operation... 162
Figure 6.2 Modified catch-bag and holding-bag for a harp-trap, to allow continuous trapping at roost entrances.. 164
Figure 6.3a Minimum overnight forest temperatures during the 21 night exposure period following the poison operation ... 170
Figure 6.3b Short-tailed bat echolocation-calls per hour for the first 12 nights of the exposure period.. 170
Figure 6.3c Total overnight rainfall during the 21 night exposure period following the poison operation .. 170
LIST OF TABLES

Table 2.1 Forearm lengths of subspecies of *M. tuberculata* .. 18
Table 2.2 Arthropod taxa identified in droppings from *M. tuberculata* 22

Table 3.1 Primers used for amplification and sequencing of mtDNA from *M. tuberculata* ... 59
Table 3.2 Distribution of samples and haplotypes among populations 65
Table 3.3 Summary of mtDNA variation among functional partitions and data partitions used during analysis of the multiple gene sequences 68
Table 3.4 Symmetric-difference tree comparison metrics for topologies estimated from CR, Ex-Cr, and combined data using different methods 70
Table 3.5 Bootstrap support values for the six principal monophyletic clades 71
Table 3.6 Measures of homplasy for the partitions and combined data 74
Table 3.7 Divergence times (My) for lineages of *M. tuberculata* 76

Table 4.1 Diversity of modified 5'CR sequences in phylogroups of *M. tuberculata* ... 104
Table 4.2 Results of AMOVA showing percentage of variation at different hierarchical levels for five different partitions of modified 5'CR sequences from CSN 108
Table 4.3 Sample size and probability values for tests of the hypothesis of recent demographic expansion for phylogroups of *M. tuberculata* 111
Table 4.4 Expansion parameters and estimated demographic parameters with 95% confidence intervals for mismatch distribution of the CSN phylogroups 111
Table 4.5 Correlations of lineage age versus σ_H^2 and lineage age versus σ_F for CSN phylogroups .. 116
Table 4.6 Inference chain for nested clade analysis .. 120
Table 5.1 The numbers of arthropods collected from toxic baits and pitfall traps during a 1080 operation in Rangataua Forest, August–September 1997, and the mean body masses of some forest arthropods found feeding on non-toxic baits 144

Table 5.2 A comparison of the composition of arthropod collections from toxic baits and pitfall traps ... 145

Table 5.3 The 1080 concentrations of the eight samples of arthropods found feeding on baits .. 145

Table 5.4 Estimated amounts of 1080-contaminated arthropods required to provide a LD₅₀ of 1080 for seven forest-dwelling insectivorous species at three different concentrations of 1080 contamination .. 146

Table 6.1 Numbers of short-tailed bats caught during 11 days after the 1080 operation ... 168

Table 6.2 Estimates of the detectable mortality rate and detectable overall mortality for actual (269) and target (500) sample sizes when the power of the trial is 0.95 169
LIST OF PLATES

Plate 1.1 Lesser short-tailed bat *Mystacina tuberculata* .. 1

Plate 2.1 Dentary fragments of fossil mystacinids, *Icarops* spp., from Miocene deposits in northern Australia (from Hand *et al.* 1998) ... 11

Plate 2.2 Close up of short-tailed bat’s face showing the tuberculate nostrils and the conspicuous array of whiskers ... 12

Plate 2.3 Short-tailed bat roosting with the delicate flight membranes folded under thickened proximal membranes for protection ... 12

Plate 2.4 Trans-illuminated wing showing a fully developed adult finger joint......... 13

Plate 2.5 Short-tailed bat’s co-mensal bat-fly *Mystacinobia zeelandica* 15

Plate 2.6 Short-tailed bats feeding on weta from the forest leaf litter and flowers of New Zealand flax *Phormium tenax* ... 23

Plate 2.7 Short-tailed bat in flight (photograph Stephen Barker) 26

Plate 2.8 Typical colonial roosts found in different regions: kauri *Agathis australis* in mainland Northland, red beech *Nothofagus fuscus* in beech forest throughout mainland New Zealand, and Hall’s totara *Podocarpus hallii* on Codfish Island 29

Plate 2.9 Inside colonial roosts short-tailed bats form tight clusters of hundreds or thousands of bats to reduce the energetic costs of thermoregulation 31

Plate 2.10 Greater short-tailed bat, *Mystacina robusta*, July 1965 Big South Cape Island (photograph Don Merton) .. 40

Plate 3.1 Taking a biopsy sample from the extended wing membrane 57

Plate 4.1 Old growth *Nothofagus* forest interior, including a mature *Nothofagus fuscus* with a short-tailed bat colonial roost inside the cavity on the main trunk 124

Plate 5.1 Cave weta, *Gymnoplectra tuarti*, feeding on pollard bait 142

Plate 6.1 Short tailed bat caught in a mist net .. 167

Plate 6.2 Short-tailed bat being inspected for unusual behaviour during the 48 h captive period .. 167