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ABSTRACT
Spatiotemporal regression combining Theil-Sen median trend and
Man-Kendall tests was applied to MODIS time-series data to quan-
tify the trend and rate of change to forest cover in the Central
Highlands, Vietnam from 2001 to 2019. Several MODIS data prod-
ucts, including Percent Tree Cover (PTC), Evapotranspiration (ET),
Land Surface Temperature (LST), and Gross Primary Productivity
(GPP) were selected as indicators for forest cover and climate and
carbon cycle patterns. Emerging hot spot analysis was applied to
identify patterns of long-term deforestation. Spatial regression
analysis using Geographically Weighted Regression (GWR) was
performed to understand variations in the relationship between
vegetation changes and trends in LST, ET, and GPP. Our analysis
reveals that deforestation occurred significantly in the study area
with a total decrease of 14.5% in PTC and a total of 7314 defor-
estation hot spots were identified. Results indicate that forest
cover loss explains 72.9%, 67.7%, and 89.4% of the changes in ET,
GPP, and LST, respectively, and the levels of influence are heter-
ogenous across space and dependent on the types of deforest-
ation hot spots. The approach introduced in our study can be
performed worldwide to address complex research questions
about environmental challenges that emerge from deforestation.
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1. Introduction

Land cover change and deforestation resulting from economic development and popula-
tion growth in developing countries have significantly affected the environment (Peng
et al. 2015; Zoungrana et al. 2018). In tropical mountainous regions, deforestation for tim-
ber and agricultural development has been recognized as a common problem for several
decades (Lambin et al. 2003; Zeng et al. 2021). Changes to vegetation cover and quality
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have significantly degraded the structure and function of ecosystems in this region, and
have altered climatic patterns and the carbon cycle resulting in a wide range of other
environmental concerns (e.g., problems associated with water supply, soil erosion, bio-
diversity) (Hughes et al. 2000; Sweeney et al. 2004; Chakravarty et al. 2012). Studying for-
est degradation and its environmental impacts requires that the necessary information to
understand the human-environment interactions and their implications is obtained
(Latocha 2009; Kirleis et al. 2011). Such knowledge can be utilized to develop forest man-
agement strategies and solutions which promote sustainable development (Huber et al.
2013; Christensen and Jokar Arsanjani 2020).

Traditionally, land cover categories (i.e., land cover types) that are classified from satellite
images acquired every 5–10 years with common statistical analysis methods (e.g., overlaying
two LULC layers) have been widely applied to examine deforestation (Disperati and Virdis
2015; Paudel et al. 2016; Yin et al. 2018). These studies have provided useful information to
understand the forest change patterns (e.g., the area where deforestation occurs and the
type of land cover that replaces these deforested areas). However, post-classification change
analysis is typically limited in showing the trend of changes because performing spatiotem-
poral analysis in categorical LULC data requires complicated analytical procedures (Tang
et al. 2021). In addition, findings obtained from LULC change analysis may not be reliable
due to uncertainties in categorical LULC information (Li, Huang, et al. 2020).

The availability of high spatiotemporal resolution remotely sensed data and advanced
spatial analysis tools and methods enable the research community to effectively investigate
spatiotemporal patterns and trends of changes related to environmental problems (Wang
and Myint 2016; Ohana-Levi et al. 2019; Berlanga-Robles and Ruiz-Luna 2020). Google
Earth Engine (GEE), a cloud-based computing platform developed by Google, is an
innovative application for rapidly and accurately processing vast amounts of time-series
remotely sensed data (i.e., big data) (Gorelick et al. 2017). An application like GEE allows
processing high spatial resolution data with various temporal coverage (e.g., seasonal,
annual, or long-term time-series data) (Huntington et al. 2017). Methods of statistical
analysis developed over the last few decades are significantly empowered when integrated
with GIS tools and have been widely applied to Earth observation big data (i.e., time-
series data) to quantify long-term trends and patterns of environmental changes at the
pixel level (Comber and Wulder 2019; Li, Gui, et al. 2020).

Spatiotemporal analysis methods such as Mann-Kendal (MK) significance testing and
Theil-Sen (TS) slope estimation have been applied to spatial data to examine spatiotempo-
ral variations in vegetation dynamics that are associated with environmental problems
(Hu and Xia 2018; Cort�es et al. 2021). Geographically weighted regression (GWR), a spa-
tial regression model, has been effectively employed to examine spatial non-stationarity in
the relationship between environmental processes (Robinson et al. 2013; Mondal et al.
2015; Alibakhshi et al. 2020). Recently, emerging hot spot analysis has been utilized to
identify trends in the clustering of time-series data (Harris et al. 2017; Purwanto et al.
2021). Despite the availability of various spatiotemporal analysis tools, an analysis that
examines spatiotemporal patterns in forest cover change, spatial heterogeneity in the rela-
tionship between deforestation and its related environmental impacts, and time-series ana-
lysis of deforestation hot spots, has not been attempted. A comprehensive analysis
integrating these spatiotemporal analysis techniques could be an effective solution to pro-
vide a more extensive understanding of forest degradation and associated environmental
issues capable of delivering more knowledge around the practical implications of change
for land and environmental policy formulation and management.
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The primary goal of this study is to examine pressing environmental challenges asso-
ciated with forest cover change, taking advantage of spatiotemporal analysis techniques
and the availability of earth observation time-series data. The Central Highlands of
Vietnam (also named Tay Nguyen), a priority region for the National REDDþAction
Plan, was selected as the study area due to its essential role in the national environment
and global GHGs mitigation program (Kissinger 2020). From an area with a low level
of agricultural production, the Central Highlands has been intensively cultivated for the
last 20 years and has become a significant agricultural production hub for Vietnam
(Muller and Zeller 2002; Meyfroidt et al. 2013). The region has developed extensive
industrial crops, specializing in coffee, pepper, rubber, cashew, tea, maize, and cassava,
to respond to increasing demand in the international market (Kissinger et al. 2021).
Consequently, large-scale deforestation has occurred due to extensive transformation of
forested land to industrial cropland and other land uses. From 1975 to 2019, tree cover
decreased from 67% to 46%, and the forest area declined by about 1.55 million ha
(GFW 2020). Therefore, studying long-term changes in regional forests and the associ-
ated environmental parameters such as local climate and carbon cycle (i.e., land surface
temperature (LST), evapotranspiration (ET), and gross primary productivity (GPP)) to
determine where increasing or decreasing trends of environmental parameters occur and
how these trends are related to deforestation is important to help provide a scientific
basis for better forest management.

This study aimed to characterize the temporal pattern and rate of changes in forest
cover across space, to determine how the long-term trends in deforestation have differed
across the study area, and to quantify the heterogeneous relationship between vegetation
change and related environmental impacts (i.e., LST, ET, and GPP). By demonstrating an
approach that effectively integrates time-series remotely sensed data and spatiotemporal
analysis methods, this paper describes an approach that can be applied in other regions
experiencing similar environmental problems. This approach is expected to be especially
useful in developing countries facing environmental challenges associated with negative
impacts of LULC change.

2. Materials and methods

2.1. Study area

The Central Highlands, with five provinces (i.e., Gia Lai, Kon Tum, Dak Lak, Dak
Nong, and Lam Dong), is one of seven economic regions in Vietnam (Figure 1). The
region covers approximately 54,700 km2 and has a total of 5.8 million people (GSO
2021). The study area is in the tropical equatorial monsoon region, but climatic condi-
tions have typical tropical highland wet climate characteristics due to altitude effects.
Mean annual temperature ranges from 21 �C to 27 �C and increases to the south. Yearly
rainfall fluctuates from 1500 to 3000mm per year, and over 90% of total precipitation
is concentrated in the rainy season. A large area of the region is covered by basalt soil
which is highly advantageous for cultivating perennial commercial crops such as coffee,
rubber, and pepper. The Central Highlands is one of the greenest regions in Vietnam,
with approximately 46% forest cover (GSO 2021), outstanding biodiversity, and unique
species (Do et al. 2017). The region is home to 23 national parks and nature reserves,
covering nearly 800,000 ha. Natural forest can be found in all districts, especially in the
mountainous region.
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2.2. Data used

MODIS data has been widely used in environmental research in applications such as
drought assessment (Boori et al. 2020), desertification monitoring (Tomasella et al. 2018),
forest cover change (Othman et al., 2018), and fire detection (Frantz et al., 2016). MODIS
data have also been used in many studies to examine the environmental issues at the local
scale (Rotem-Mindali et al. 2015; Sidiqui et al. 2016; Paltsyn et al. 2017; Zhang et al.
2017) because they provide information that relates to a wide range of environmental
parameters at a high temporal resolution.

In this study, MODIS Collection 6 products from 2001 to 2019, including Percent Tree
Cover (PTC), Gross Primary Productivity (GPP), Total Evapotranspiration (ET), and
Land Surface Temperatures (LST), obtained from Google Earth Engine (GEE) were used
as the main resources to investigate forest cover change and its associated impacts that
relate to environmental issues in the study area (Table 1). PTC is a direct indicator to
detect deforestation and forest degradation (Gao et al. 2016). GPP is a typical index for
studying the carbon cycle (Kotchenova et al. 2004). Long-term ET and LST can be used
to examine changes in climate patterns, drought risk, and water balance, and ecosystems
disturbances (Mu et al. 2013; Phan and Kappas 2018). A detailed description of PTC,
GPP, ET, and LST is referred to Didan (2015), Dimiceli (2015), Running et al. (2015,
2017), and Wan et al. (2015).

Figure 1. The pattern of land cover and location of the study area.
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2.3. Modis data assessment

An ordinary least squares (OLS) regression analysis between the MODIS data and in-
situ measurements and high-resolution data was performed to validate the use of
MODIS products in the study area (Figure 2). Climatological data, including air tem-
perature and evapotranspiration measured from 12 weather stations in the study area,
were used to evaluate the MODIS LST and ET. In addition, random samples from
Landsat tree cover data accessed from the Global Forest Change project (Hansen et al.
2013) were utilized to verify the MODIS PTC. The MODIS GPP was not assessed due
to the lack of suitable reference dataset. Results showed a high correlation between
MODIS ET and field-measured ET (r¼ 0.84, p< 0.001) as well as MODIS LST and air
temperature (r¼ 0.79, p< 0.002). In addition, the relationship between MODIS PTC
and Landsat PTC was exceptionally strong (r¼ 0.95, p< 0.001). Given the correlation
between MODIS data and referenced data in the study area is high, the MODIS data
were determined to be suitable and valid for examining deforestation and environmental
degradation.

Table 1. Earth observation data used in the study.

Dataset Description Units Products Pixel size Temporal resolution�
PTC Percent tree cover % MOD44B 250 m Annually
ET Total Evapotranspiration Kg/m2/yr MOD16A3 500 m Annually
LST Land surface temperature oC MOD11A1 1000 m Annually
GPP Gross primary productivity kgC/ha/yr MOD16A2H 500 m Annually
�Annual ET, LST, and GPP data are derived from the mean of the primary products (e.g., Daily, 8-Day, 16-Day) from
the given year. Data were processed using Google Earth Engine.

Figure 2. MODIS data verification showing the relationship between (a) MODIS Evapotranspiration (ET) and in-situ
evapotranspiration (Observed ET), (b) MODIS Land Surface Temperature (LST) and air temperature (Tair), and (c)
MODIS Percent Tree Cover (MODIS PTC) and Landsat Percent Tree Cover (Landsat PTC). Observed ET and Tair were
obtained from 12 meteorological stations in the Central Highlands. The Landsat PTC data were obtained from Global
Forest Change data. All the regression equations are statistically significant (p< 0.01).
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2.4. Theil-Sen median trend and Mann-Kendall test approach

To conduct a spatiotemporal analysis of the deforestation and its related environmental
parameters, annual trend and the significance of each environmental indicator were exam-
ined by integrating the nonparametric Thiel-Sen (TS) slope estimator and Mann–Kendall
(MK) significance test. The TS slope estimate is the median of all the slopes calculated
between observation values at all pairwise time steps (Wilcox 2017). The MK test is a
nonparametric rank test that evaluates whether observation values tend to increase or
decrease over time (i.e., the sign of the difference between later-measured data and ear-
lier-measured data (Donald et al. 2011). This was applied to assess the statistical signifi-
cance of any non-zero slope identified by the Thiel–Sen test (Zhou et al. 2020). The TS
slope estimator can achieve reliable confidence intervals in the case of existing non-nor-
mal distribution data and is resistant to outliers (Carslaw and Ropkins 2012). The capabil-
ity to deal with these issues is advantageous as both are commonly found in time-series
environmental data. The MK trend test is also more flexible than other methods (e.g.,
OLS linear regression) as it takes the issues of seasonality, non-normality, missing values,
and serial dependence into account (Alcaraz-Segura et al. 2010). Because MODIS PTC
data is yearly product, it was not possible to assess seasonal deforestation. The MK signifi-
cance test and TS slope estimator approach were performed using the Earth Trend
Modeler, a tool integrated in Terrset Geospatial Monitoring and Modelling software
(Clark Labs 2020). This tool was applied in our study to examine the annual trend of
LST, PTC, ET, and GPP through the two following stages:

i. In the first stage, TS slope estimator was performed to calculate the rate of change in
PTC, GPP, ET, and LST from 2001 to 2019 in the study area. The result from this
step gives a slope map for each environmental parameter. Slope values greater than
zero in PTC, GPP, and ET and smaller than zero in LST imply restoration and vice
versa, negative slope values in PTC, GPP, and ET and positive slope values in LST
mean degradation in the environment.

ii. In the second stage, MK test was applied to assess the statistical significance of any
non-zero slope identified by the TS test. The resulting significance pixels show Z-
scores, expressing levels of significance (a): Z ¼ ±2.576 refers to a ¼ 0.01, Z ¼ ±
1.960 refers to a ¼ 0.05, and Z ¼ ± 1.645 refers to a ¼ 0.1.

2.5. Emerging hot spot analysis

Emerging hot spot analysis integrates the Getis-Ord Gi� statistic and the Mann-Kendall
trend test (ESRI 2021a) to determine spatiotemporal patterns within time-series data. In
our study, the Emerging Hot Spot Analysis tool in ArcGIS Pro (version 2.8) was used to
identify patterns of PTC loss (i.e., deforestation) across the study area in the period of
2001–2019. The processes associated with deforestation hot spot analysis involve the fol-
lowing steps: (i) Time-series data was generated from the MODIS PTC product, which is
in the form of a point dataset. The outcome is a spatiotemporal PTC dataset aggregating
annual PTC into a space-time cube (i.e., space-time bins); (ii) The pattern of PTC loss for
each bin is identified using Getis-Ord Gi� statistical analysis. This tool finds a statistically
significant hot spot across the dataset based on the assumption that requires ‘a feature
have a high value and is surrounded by other features with high values as well’ (ESRI
2021a); (iii) The nonparametric Mann-Kendall trend test evaluates the temporal trends in
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the hot spots calculated from the previous step. The result from this step is a map of the
deforestation hot spot that classifies the PTC loss hot spot into various types (Table 2).

2.6. Geographically weighted regression analysis

Spatial variation in the relationship between one spatial variable and another is referred
to as non-stationarity (Shaker et al. 2019). To gain insight into the relationship between
vegetation dynamics and environmental problems using spatial data it is important to
account for non-stationarity using methods that measure local variation between response
and explanatory variables (Zhou and Wang 2011). Geographically weighted regression
(GWR) is a nonparametric model of spatial drift that relies on a sequence of locally linear
regressions to produce estimates for every point in space using a subset of information
from nearby observations (Szymanowski and Kryza 2012). In this study, we applied
Geographically Weighted Regression (GWR) analysis to quantify the spatial relationship
between vegetation trend (PTC change) and trend in environmental indicators (GPP, ET,
and LST). A hexagon grid with a size of 10 km2 was used as the geographical unit of ana-
lysis for regression modelling instead of the commonly used square grid due to its better
performance in reducing spatial-auto correlation issues (Birch et al. 2007). The hexagon
grid has a greater number of the nearest pixels (i.e., neighbourhoods) than a rectangular
grid, and the distance between centroids is the same in all six directions. This advantage
makes it a more efficient spatial analysis method once conceptualization of spatial rela-
tionship is based on using a distance band or neighbours number (Birch et al. 2007).
Geographically Weighted Regression Analysis tool in ArcGIS Pro (version 2.8) (ESRI
2021 b) was employed to perform the regression. Three GWR models were created, one

Table 2. Categories of hot spot trends pattern (ESRI 2021a).

New Hot Spot
‘A location that is a statistically significant hot spot for the final time step and has

never been a statistically significant hot spot before’.

Consecutive Hot Spot ‘A location with a single uninterrupted run of statistically significant hot spot bins in
the final time-step intervals. The location has never been a statistically significant
hot spot prior to the final hot spot run and less than ninety percent of all bins are
statistically significant hot spots’.

Intensifying Hot Spot ‘A location that has been a statistically significant hot spot for ninety percent of the
time-step intervals, including the final time step. In addition, the intensity of
clustering of high counts in each time step is increasing overall and that increase is
statistically significant’.

Persistent Hot Spot ‘A location that has been a statistically significant hot spot for ninety percent of the
time-step intervals with no discernible trend indicating an increase or decrease in
the intensity of clustering over time’.

Diminishing Hot Spot ‘A location that has been a statistically significant hot spot for ninety percent of the
time-step intervals, including the final time step. In addition, the intensity of
clustering in each time step is decreasing overall and that decrease is
statistically significant’.

Sporadic Hot Spot ‘A location that is an on-again then off-again hot spot. Less than ninety percent of the
time-step intervals have been statistically significant hot spots and none of the
time-step intervals have been statistically significant cold spots’.

Oscillating Hot Spot ‘A statistically significant hot spot for the final time-step interval that has a history of
also being a statistically significant cold spot during a prior time step. Less than
ninety percent of the time-step intervals have been statistically significant
hot spots’.

Historical Hot Spot ‘The most recent time period is not hot, but at least ninety percent of the time-step
intervals have been statistically significant hot spots’.
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for each of the environmental indicators (i.e., LST, ET, and GPP) as the response variable,
with the trend in PTC as the explanatory variable.

3. Results

3.1. Long-term changes in PTC pattern

The spatiotemporal trends of Percent Tree Cover (PTC) in the Central Highlands are
shown in Figure 3. From 2001 to 2019, the region experienced both decreasing and
increasing trends in tree cover (i.e., negative and positive changes). However, the positive
trend was weaker than the negative trend, as indicated by the mean PTC slope value of
�0.76% per year. This rate of change indicates that tree cover decreased about 14.5% in
total from 2001 to 2019. Notably, when the PTC value decreased at a rate of 5.2% per
year, some areas lost approximately 99% of PTC over nineteen years. Such as change rate
can be considered severe deforestation because highly vegetated areas become effectively
non-vegetated. Figure 3 demonstrates a significant change in PTC in all provinces. A
remarkable decrease in PTC was concentrated in the north and southeast Dak Lak, wide-
spread across Gia Lai and Kon Tum, distributed in southeast and southwest parts of Dak
Nong, and prevalent in the north and northwest of Lam Dong. An increase in PTC was

Figure 3. Spatiotemporal pattern of significant changes in Percent Tree Cover (PTC) in the Central Highlands from
2001 to 2019. All pixels are statistical significance (p< 0.05).
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found in a large area from the northeast and southwest Dak Lak, south-central Gia Lai,
north-central and south of Dak Nong, south-central and southeast Kon Tum, and a large
strip spreading from northeast to southwest Lam Dong.

Overall negative trend in PTC is dominant in the study area, and areas of PTC loss
were found to be two times greater than PTC gain in all provinces (13,569 km2 versus
6257 km2, respectively) (Table 3). Kon Tum experienced the most significant forest cover
loss among five provinces, with the area of PTC decrease much higher than PTC increase
(e.g., a net change of �2602 km2 or 26.82% of the total land area of the province). Dak
Lak and Lam Dong showed the lowest rate of PTC loss compared to other provinces
(e.g., 6% of total land area). The results suggest that deforestation remains a crucial issue
in these provinces because total area of PTC loss was higher than PTC gain.

While the spatiotemporal pattern of significant changes in PTC (Figure 3) demon-
strates a spatial trend of deforestation, information associated with PTC change by differ-
ent groups of forest cover change provides an insight into the degree of deforestation that
has occurred in the study area (Figure 4). Overall, the area of PTC loss is greater than
that of PTC gain in all groups, and particularly dominant in groups which have forest
cover loss value higher than 25% (Figure 4f). At a provincial level, Gia Lai and Kon Tum
are two provinces that experienced the largest area of net PTC loss in the region, with
most of this change involving three groups of forest cover loss (10–25%, 25–40%, and
40–60%). Changes in these groups were observed in northwest, southwest, north-central,
and east-central Gia Lai (Figure 3b), and a large strip from northwest to southeast Kon
Tum (Figure 3d). Dak Nong experienced a prevalence of PTC decrement at high rates
(40–60% and greater than 60%). Given that ‘forest is an area covered by 25% or greater
canopy closure’ (Hansen et al. 2010), areas having PTC loss within these groups can be
considered highly severe deforestation due to extensive land cover conversion from forest
to non-forest. Despite some net gain of PTC increment in Gia Lai, Lam Dong, and Dak
Nong, benefits to the environment is not substantial because the increase of PTC in most
of these areas is in the low-value group (e.g., less than 10% in PTC).

3.2. Spatiotemporal analysis of deforestation hot spots

The pattern illustrating clusters of PTC loss demonstrated by different types of the emerg-
ing hot spots is presented in Figure 5 and Table 4. From 2001 to 2019, six categories of
hot spot trends are observed across the Central Highlands. These include the categories of
‘consecutive hot spots’, ‘diminishing hot spots’, ‘intensifying hot spots’, ‘new hot spots’,
‘oscillating hot spots’, and ‘sporadic hot spots’. This variation indicates the complexity of
deforestation in the region.

‘Intensifying hot spots’ are primarily clustered in the east of the study area, in areas
such as the central to southwest Gia Lai and northern Dak Lak (Figures 3a and 3b). This
trend means there is a high intensity of increasing deforestation in these areas.
Information from Table 3 demonstrates that the category of ‘intensifying hot spots’ are

Table 3. Change area in PTC by provinces (unit: km2).

Provinces PTC increase PTC decrease Net change

Dak Lak 1829 2618 –789
Dak Nong 1097 1932 –836
Gia Lai 1544 4012 –2468
Kon Tum 600 3202 –2602
Lam Dong 1187 1805 –618
Total 6257 13,569 –7313
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the most frequent of all hot spot categories, and the bulk of this is concentrated in Gia
Lai (1223 hot spots) and Dak Lak (957 hot spots) (i.e., 92% of the total intensifying hot
spots in the study area). ‘Sporadic hot spots’, indicating a fluctuating trend in deforest-
ation, accounts for 1625 hot spots. This type of hot spot was seen in north-central Dak
Lak (Figure 3a), southwest Gia Lai (Figure 3b), and spreads across other provinces.
‘Oscillating hot spots’ dominated in Dak Nong (879 hot spots), expanding from the east
to the west of the province (Figure 3c). Also, large clusters of this type of hot spot were
found in southeast Dak Lak and in the west of Gia Lai (Figures 3a-3b). The new cluster
of PTC loss (i.e., ‘new hot spots’) emerged in southeast central Dak Nong (Figure 3c),
central Kon Tum (Figure 3d), and southwest Lam Dong (Figure 3e). ‘Diminishing hot
spots’, the least severe type of hot spot which indicates a decreasing trend in deforest-
ation, occupied a very limited number (36 hot spots) compared to other kinds of
hot spot.

3.3. Relationship between forest cover loss and associated environmental parameters

Regression analysis to investigate trends between PTC change and changes in GPP, ET,
and LST was carried out to understand how the long-term change in forest cover affects
regional climate and carbon cycle pattern status. Trends in PTC and associated

Figure 4. Change across provinces in sq. kilometres by different thresholds of tree cover change: very low (0–10%),
low (10–25%), moderate (25–40%), high (40–60%), and very high (over 60%).
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environmental variables (GPP, ET, LST) were obtained from the time-series trend analysis
using the MK-TS approach. Table 5 summarizes results from the GWR models and pro-
vides a general understanding of the relationship between forest cover change and its
related environmental impacts. Adjusted R2 values (0.733, 0.683, and 0.887) indicate that
PTC change explain 72.9%, 67.7%, and 89.4% of the total variation in GPP, ET, and LST
changes across the study area, respectively. Low values of Moran’s I index that are
�0.006, �0.009, and 0.007 concurrent with all p-values > 0.05 demonstrate that spatial
autocorrelation in three models is not significant. The mean slope coefficients (mean b
values) that are 3.043, 5.039, and �0.077 indicate a direct (i.e., positive) correlation

Figure 5. Emerging hot spot map of forest degradation in five provinces in Central Highlands: (a) Daklak, (b) Gia Lai,
(c) Dak Nong, (d) Kon Tum, and (e) Lam Dong. Hot spot trends and patterns are quantified from time-series PTC data
from 2001 to 2019. All pixels are statistically significant (p< 0.05). Grey areas are other changes such as cold spots or
no pattern detected and hot spots that are not statistically significant.

Table 4. Number of emerging hot spots by provinces (1 hot spot equals the size of 1 km2).

Types of hot spot Dak Lak Dak Nong Gia Lai Kon Tum Lam Dong Total

Consecutive Hot Spot 125 101 201 108 69 604
Diminishing Hot Spot 11 3 8 7 7 36
Intensifying Hot Spot 957 75 1223 83 32 2370
New Hot Spot 20 72 36 213 40 381
Oscillating Hot Spot 270 879 499 463 187 2298
Sporadic Hot Spot 412 71 852 179 111 1625
Total 1795 1201 2819 1053 446 7314
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between PTC changes and changes in GPP and ET, and an inverse relationship between
trends in PTC and LST. In other words, an increasing trend in tree cover will lead to an
upward trend in GPP and ET and a downward trend in LST and vice versa. For instance,
a 1% increase in PTC would lead to an increase of 3.043 kgC/ha in GPP, an increase of
5.039 kg/m2 in ET, and a decrease of 0.077 �C in LST.

The spatial variation (i.e., spatial non-stationarity) in the relationship between forest
cover change and change in environmental parameters across space is presented in Figure
6. The positive correlation between PTC change and a change in GPP in the south and
southwest Kon Tum, northwest and southwest Gia Lai, northwest and central Dak Lak,
and northeast Dak Nong was found to be 2–3 times stronger than other areas (Figure
6a). For the PTC-ET relationship, the strongest positive correlation was seen in the south-
west and central Kon Tum, northwest, and southwest Dak Lak (Figure 6b). In the inverse
correlation between PTC and LST, the most substantial impact of tree cover change on
LST change was found in the west and southwest parts of the Central Highlands (e.g.,
northwest Dak Lak, northeast and southwest Dak Nong) (Figure 6c). These coefficient
patterns that are closely aligned with the pattern of PTC slope map (Figure 3) illustrate
that change in the PTC can significantly affect the local climate pattern and carbon cycle
and that the relationships are varied subjected to trend and rate of PTC change. The
GWR coefficient maps, however, reveal some areas with an inverse correlation between
PTC and ET, particularly in the north and northeast Kon Tum, northeast and southeast
Gia Lai, the south of Dak Lak, and the north and southwest Lam Dong. As mentioned
previously, changes in PTC explains 67.7% of the total variations in ET, and an inverse
relationship observed in these areas may be due to the impacts of other factors (e.g., agri-
cultural practices, tree species, changes in other land use types). For instance, a conver-
sion from forest to cropland may lead to an increase in ET resulting from significant
evaporation which takes place after irrigation (Al-Kaisi et al. 2009).

Because the GWR model provides local coefficient values for the relationships between
PTC and environmental indicators, it enables a further examination of how these relation-
ships vary by types of deforestation hot spot (Table 6). The highest regression coefficients
are seen in the ‘intensifying hot spots’ category, suggesting that this type of deforestation
creates the most significant impact on the environmental changes. For instance, mean b
values of 9.933, 4.70, and 5.448 in the PTC-ET relationships (Table 6) demonstrate that a
decrease in ET due to the ‘intensifying hot spots’ deforestation may be 1.8� 2.1 times
higher than that of decrease in the ‘new hot spots’ and ‘diminishing hot spots’. Next to
this is ‘sporadic hot spots’ that substantially affects the environment because this type of
deforestation fluctuates over time (i.e., ‘an on-again then off-again hot spot’). Lower value

Table 5. Summary of parameter estimates and diagnostics for the relationship between PTC change and environ-
mental indicators using Geographically Weighted Regression.

Variables GPP slope ET slope LST slope

Intercept 3.540 8.218 0.010
Mean b 3.043 5.039 –0.077
S.E. 0.760 1.703 0.017
Goodness of fit
AICc 21,240.27 30,554.36 –12,306.08
Adjusted R2 0.729 0.677 0.894
Spatial autocorrelation
Moran’s Index –0.006 –0.009 0.007
p-value 0.440 0.223 0.364

Mean b is the average local estimates; S.E. is the mean standard error of the local parameter estimates; AICc is the
corrected Akaike Information Criterion.
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of local regression coefficients in the ‘diminishing hot spots’ and ‘new hot spots’ indicate
a decreasing trend in deforestation would have the least impact on the environment.

4. Discussion

Our study found that there has been significant deforestation in the Central Highlands of
Vietnam, demonstrated by a net loss of approximately 14.5% in tree cover from 2001 to
2019. This decrease can be seen to negatively impact the carbon cycle and climate pattern,
through a decrease in GPP and ET, and an increase in LST. According to an investigation
from Global Forest Watch (GFW 2020), nearly half of the forest loss in the region in the
last twenty years is humid primary forest. Despite an increase in forest cover in some
areas, the study area experienced considerable land and environmental degradation
because most of new forest growth is monocultural plantation (e.g., exotic trees)
(Kissinger et al. 2021) which does not provide the same level of biodiversity, watershed
protection, and natural hazards mitigation (e.g., landslide) as primary forest (Liu et al.
2018). The general finding of deforestation and its negative impact on the environment
demonstrated in this research is consistent with previous studies in the Central Highland

Figure 6. Local coefficients map showing the relationship between Percent Tree Cover (PTC) and environmental indi-
cators: (a) Gross Primary Productivity (GPP), (b) Evapotranspiration (ET), and (c) Land Surface Temperature (LST).

Table 6. Mean coefficients for the relationship between forest cover change (PTC) and changes in environmental
indicators (GPP: Gross Primary Productivity, ET: Evapotranspiration, LST: Land Surface Temperature) by types of
hot spot.

Hot spot pattern PTC-GPP PTC-ET PTC-LST

Intensifying Hot Spot 4.212 9.933 –0.128
Sporadic Hot Spot 3.933 7.790 –0.091
Consecutive Hot Spot 3.899 6.569 –0.088
Oscillating Hot Spot 3.501 6.190 –0.079
New Hot Spot 3.034 4.701 –0.065
Diminishing Hot Spot 3.115 5.448 –0.098
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provinces (Meyfroidt et al. 2014; Son et al. 2015; Van Khuc et al. 2018) and other inter-
national case studies (Wang and Myint 2016; Silva-Ara�ujo et al. 2020; Gonz�alez-Gonz�alez
et al. 2021; Singh and Yan 2021; Zeng et al. 2021).

The contribution of this study is that it reveals that deforestation and environmental
degradation occurred in highly vulnerable areas. By integrating the PTC trend map with
topographic data, we observed that a substantial amount of the high rate of deforestation
was found on hill slope areas (e.g., a total of 852 km2 of PTC decrease with a rate of
greater than 25% tree cover loss on sites with a slope of 15� 25

�
and greater than 25

�
)

(Table 7). Located in a climatic regime associated with tropical monsoon conditions
which have high intensive rainfall in the wet season and a severe water deficit in the dry
season (Walsh and Lawler, 1981; Mohamadi and Kavian 2015; Chalise et al. 2019),

Table 7. Area of PTC loss by slope class.

Level of PTC loss

Degree of terrain slope

Below 8o 8o – 15o 15 – 25o Over 25o

< 10% 212 134 200 46
10-25% 1032 448 478 79
25-40% 1080 456 412 52
40-60% 700 310 275 28
> 60% 269 114 77 8
Total 3293 1462 1442 213

Figure 7. Significant decrease in Percent Tree Cover (PTC) within national conservation/protected areas in the Central
Highlands from 2001 to 2019. All pixels are statistically significant (p< 0.05).
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deforestation on steep-land areas in the Central Highlands will create a potential for more
severe impacts associated with environmental hazards than other regions (Forbes and
Broadhead 2013; Korup et al. 2019).

A high rate of PTC loss (10–35%) was also found in many nature conservation areas
(i.e., national parks and protected areas) (Figure 7). Our study demonstrates that deforest-
ation has been happening inside the national protected area differently from the common
way of deforestation in the rest of the study area which has primarily experienced clear-
cutting. Valuable big trees have been gradually cut down over a long time, even in
national parks, the most protected forest areas that produce substantial environmental
and biological benefits (Hung et al. 2010). This kind of deforestation not only changes the
forest cover but also can lead to a significant reduction in forest quality.

More significantly, this study provides insight into deforestation patterns and the spatial
non-stationary relationship between forest cover loss and environmental changes. Results
obtained from emerging hot spot analysis demonstrate that forest cover loss took place in
various forms, as indicated by different types of ‘deforestation hot spots’. Although all kinds
of deforestation hot spots have a negative effect on the environment, the impacts of deforest-
ation vary between them, depending on trends in each type through time. For instance, the
presence of ‘intensifying hot spots’ can significantly accelerate forest loss, whereas forest loss
is minimized with ‘diminishing hot spots’ (Figure 8). Considering that information derived
from emerging hotspot analysis can be used to determine priority areas in forest conservation,
this is a significant contribution of this study compared to previous studies that did not
examine spatiotemporal trends and patterns of deforestation (Sanchez-Cuervo and Aide 2013;
Reddy et al. 2016; Philippe and Karume 2019).

Figure 8. Environmental trend by different types of hotspots: (a) Percent Tree Cover (PTC) (b) Gross Primary
Productivity (GPP), (c) Evapotranspiration (ET), and (d) Land Surface Temperature (LST) in the Central Highlands from
2001 to 2019.
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Regarding the relationship between long-term trends in forest cover loss and environ-
mental degradation, this research has provided evidence that the impacts of deforestation
on the environment differ across the study area and are strongly affected by the types of
spatiotemporal deforestation (i.e., hot spot types). This achievement helps fill the gaps in
recent studies that have not integrated spatiotemporal analysis with deforestation-related
environmental issues and characterize the spatial variations in the relationship between
them (Ishtiaque et al. 2016; Wang and Myint 2016; Harris et al. 2017; Singh and Yan
2021). Using emerging hotspots to analyze the spatiotemporal change in deforestation
makes a significant contribution to better understanding this environmental problem, par-
ticularly when examining the long-term trend in deforestation and its impacts on envir-
onmental issues.

Based on the results obtained from our study, we propose several recommendations
for environmental planning and management policy and practices. Firstly, time-series
data and spatial analysis tools and approaches are strongly recommended for environmen-
tal planning and management to obtain critical information for making decisions. By
applying these tools and techniques, planners/managers can have fast and contemporary
access to useful environmental information. They can employ an action plan and strategy
suited to the ‘right places’ based on more accurate and detailed information (e.g., pixel
level). Also, utilizing environmental data at high temporal resolution (e.g., monthly or
weekly frequency data) is fundamental for determining ‘right time’ management as the
environmental issues can be monitored and assessed frequently. It provides an option to
instigate timely intervention actions when the emergent environmental situation is
observed. Secondly, it is crucial to develop and apply more comprehensive environmental
indicators in management practices. For instance, different ecological parameters acquired
and processed from earth observation data reflect the forest health and should be inte-
grated with traditional primary indicators (e.g., forest types, area, and cover) in forest
management. The advantage provided by this approach offers an efficient means to gain
deeper insight into the forest cover and quality. From what this research demonstrates,
we suggest that the Central Highlands government needs to pay attention to the current
issues in forest loss and related environmental problems, especially in areas where the
deforestation pattern is categorized as having ‘intensifying hot spots’ or is occurring in
steep-lands and conservation zones. We recommend that the provincial-level decision-
makers apply appropriate policy and take proper actions to stop, or at least minimize
deforestation, and implement better agricultural land use practices. In addition, we sug-
gest that local government working on land use and forest inventory and management
consider both forest cover change and other criteria that present forest quality and related
environmental changes to evaluate deforestation and land degradation.

Although the current study provides significant contributions, some improvements are
needed in future studies. Considering that a wide range of long-term environmental data
can be obtained from remote sensing (e.g., drought severity, forest fire, air quality), it is
crucial that future research applies more environmental indicators to achieve more com-
prehensive findings. Given that examining seasonal variations in deforestation can help to
obtain more informative findings that provides better basis for developing forest manage-
ment strategies (e.g., deforestation may occur extensively in dry season), it is worth con-
sidering this type of analysis in future studies. In addition, an analysis of the causes of
deforestation, for example, how socio-economic drivers and structure of the landscape
affect the spatiotemporal trend and pattern of deforestation, is essential to understand the
deforestation dynamics and hence, develop more effective afforestation solutions.
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5. Conclusions

This study investigated the spatiotemporal trends of deforestation and the relationship
between tree cover loss and environmental degradation in the Central Highlands of
Vietnam. Results from our research revealed that deforestation occurred extensively in the
Central Highlands. For the period of 2001–2019, tree cover has decreased significantly at
a rate of 0.76% per year, making a total loss of 14.5% in PTC. A total of 7314 PTC loss
hot spots covering different types of deforestation patterns were identified, of which the
‘intensifying hot spots’, the most negative deforestation, occupies the largest number (i.e.,
2370 hot spots). It is notable that within an area of 13,569 km2 a significant decrease in
PTC was observed, substantial area of deforestation has occurred in steep-land (852 km2)
and conservation areas. Spatial regression analysis between forest cover change and other
environmental parameters (GPP, ET, and LST) demonstrated that forest loss is the leading
cause of environmental degradation, showing that PTC changes can explain 68–90% of
variations in the local environment. GWR results also demonstrate that the impacts of
forest loss on local climate pattern and carbon cycle are heterogenous across space and
strongly influenced by types of deforestation hot spots. We believe that applying complex
environmental indicators, including PTC, GPP, ET, and LST, brings more relevant find-
ings than analyzing a single parameter. Moreover, spatiotemporal analysis methods such
as MK-TS, time-series hot spot analysis, and spatial regression with GWR provide more
meaningful and informative results. The spatiotemporal statistical approach applied to
remotely time-series data can be used to solve complex questions (e.g., quantifying the
trend, pattern, and rate of vegetation dynamics and examining the spatial relationship
between vegetation and environmental changes). We anticipate that our analysis of defor-
estation, and the methods described, will help managers, planners, conservators, and pol-
icy makers provide better management options for a sustainable future and that our
analysis will assist in future research to reveal the nature and causes of deforestation and
environmental degradation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reason-
able request.

References

Alcaraz-Segura D, Liras E, Tabik S, Paruelo J, Cabello J. 2010. Evaluating the consistency of the 1982-
1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor:
LTDR, GIMMS, FASIR, and PAL-II . Sensors (Basel)). 10 (2):1291–1314.

Alibakhshi Z, Ahmadi M, Asl MF. 2020. Modeling biophysical variables and land surface temperature
using the GWR model: case study—Tehran and its satellite cities. J Indian Soc Remote Sens. 48 (1):
59–70.

Al-Kaisi MM, Broner I, Andales AA. 2009. Crop water use and growth stages [doctoral dissertation]. Fort
Collins (CO): Colorado State University: Libraries.

Berlanga-Robles CA, Ruiz-Luna A. 2020. Assessing seasonal and long-term mangrove canopy variations
in Sinaloa, northwest Mexico, based on time series of enhanced vegetation index (EVI) data. Wetlands
Ecol Manage. 28 (2):229–249.

GEOCARTO INTERNATIONAL 17



Birch CP, Oom SP, Beecham JA. 2007. Rectangular and hexagonal grids used for observation, experiment
and simulation in ecology. Ecol Modell. 206 (3-4):347–359.

Boori MS, Choudhary K, Kupriyanov A. 2020. Detecting vegetation drought dynamics in European
Russia. Geocarto Int. 1–16.DOI:10.1080/10106049.2020.1750063

Carslaw DC, Ropkins K. 2012. Openair—an R package for air quality data analysis. Environ Modell
Softw. 27-28:52–61.

Chakravarty S, Ghosh SK, Suresh CP, Dey AN, Shukla G. 2012. Deforestation: causes, effects and control
strategies. Global Pers Sustain Forest Manage. 1:1–26.

Chalise D, Kumar L, Kristiansen P. 2019. Land degradation by soil erosion in Nepal: A review. Soil Syst.
3 (1):12.

Christensen M, Jokar Arsanjani J. 2020. Stimulating implementation of sustainable development goals and
conservation action: predicting future land use/cover change in Virunga National Park, Congo.
Sustainability. 12 (4):1570.

Clark Labs. 2020. TerrSet 2020 geospatial monitoring and modeling system, Worcester (MA): Clark
University. https://clarklabs.org/wp-content/uploads/2020/05/TerrSet_2020_Brochure-FINAL27163334.pdf.

Comber A, Wulder M. 2019. Considering spatiotemporal processes in big data analysis: Insights from
remote sensing of land cover and land use. Trans GIS. 23 (5):879–891.

Cort�es J, Mahecha MD, Reichstein M, Myneni RB, Chen C, Brenning A. 2021. Where are Global
Vegetation Greening and Browning Trends Significant? Geophys Res Lett. 48 (6):e2020GL091496.

Didan K. 2015. MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006
[Data set]. NASA EOSDIS LP DAAC.

Dimiceli C. 2015. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN
Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC.

Disperati L, Virdis SGP. 2015. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam
Giang-Cau Hai Lagoon, central Vietnam. Appl Geogr. 58:48–64.

Do HTT, Grant JC, Trinh BN, Zimmer HC, Nichols JD. 2017. Diversity depends on scale in the forests
of the Central Highlands of Vietnam. J Asia-Pac Biodivers. 10 (4):472–488.

Donald WM, Jean S, Steven AD, Jon BH. 2011. Statistical analysis for monotonic trends. Tetra Tech, Inc.,
Fairfax (VA): Developed for U.S. Environmental Protection Agency.

ESRI, 2021a. How emerging hot spot analysis works [online]. ArcGIS Pro. Available from: https://pro.arc-
gis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm. [Accessed
25 Jul 2021].

ESRI, 2021b. How geographically weighted regression (GWR) works [online]. ArcGIS Pro. Available from:
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/geographicallyweightedregres-
sion.htm.

Forbes K, Broadhead J. 2013. Forests and landslides: The role of trees and forests in the prevention of
landslides and rehabilitation of landslide-affected areas in Asia. Second edition. Rap Publication (2013/
02). Bangkok, Thailand: FAO Regional Office for Asia and the Pacific.

Frantz D, Stellmes M, R€oder A, Hill J. 2016. Fire spread from MODIS burned area data: obtaining fire
dynamics information for every single fire. Int J Wildland Fire. 25 (12):1228–1237.

Gao Y, Ghilardi A, Paneque-Galvez J, Skutsch M, Mas JF. 2016. Validation of MODIS Vegetation
Continuous Fields for monitoring deforestation and forest degradation: two cases in Mexico. Geocarto
Int. 31 (9):1019–1031.

GFW (Global Forest Watch)., 2020. Forest Monitoring Designed for Action [online]. World Resource
Institute. Available from: https://www.globalforestwatch.org/. [Accessed 25 Jul 2021].

Gonz�alez-Gonz�alez A, Villegas JC, Clerici N, Salazar JF. 2021. Spatial-temporal dynamics of deforestation
and its drivers indicate need for locally-adapted environmental governance in Colombia. Ecol Indic.
126:107695.

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27.

GSO. (General Statistics Office of Vietnam 2021. Viet Nam statistical yearbook of 2020. Hanoi City,
Vietnam: Statistical Publishing House.

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV,
Goetz SJ, Loveland TR, et al. 2013. High-resolution global maps of 21st-century forest cover change.
Science. 342 (6160):850–853.

Hansen MC, Stehman SV, Potapov PV. 2010. Quantification of global gross forest cover loss. Proc Natl
Acad Sci USA. 107 (19):8650–8655.

18 D. X. TRAN ET AL.

https://doi.org/10.1080/10106049.2020.1750063
https://clarklabs.org/wp-content/uploads/2020/05/TerrSet_2020_Brochure-FINAL27163334.pdf
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/geographicallyweightedregression.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/geographicallyweightedregression.htm
https://www.globalforestwatch.org/


Harris NL, Goldman E, Gabris C, Nordling J, Minnemeyer S, Ansari S, Lippmann M, Bennett L, Raad M,
Hansen M, et al. 2017. Using spatial statistics to identify emerging hot spots of forest loss. Environ Res
Lett. 12 (2):024012.

Hu M, Xia B. 2018. A significant increase in the normalized difference vegetation index (NDVI) during
the rapid economic development in the Pearl River Delta of China. Land Degrad Dev. 30 (4):359–370.

Huber R, Rigling A, Bebi P, Brand FS, Briner S, Buttler A, Elkin C, Gillet F, Grêt-Regamey A, Hirschi C,
et al. 2013. Sustainable land use in mountain regions under global change: Synthesis across scales and
disciplines. E&S. 18 (3):37.

Hughes RF, Kauffman JB, Jaramillo VJ. 2000. Ecosystem-scale impacts of deforestation and land use in a
humid tropical region of Mexico. Ecol Appl. 10 (2):515–527.2.0.CO;2]

Hung QP, Dung HN, Thanh DL, Tuan ML, Hung MN, Ho VT, Hang TN. 2010. -Di�̂eu tra d-�anh gi�a t�ınh
tra: ng baœo t�̂on c�ac lo�ai thực vật rừng nguy c�̂ap, qu�y hi�̂em thuô: c danh mục nghị d-ịnh 32/2006/N-D-CP
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