Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
COORDINATION IN VEHICLE ROUTING

A THESIS PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
OPERATIONS RESEARCH
AT
MASSEY UNIVERSITY, PALMERSTON NORTH
NEW ZEALAND

CATHERINE MARGARET RIVERS
2002
ABSTRACT

Coordination involves the re-deployment of payload between depot and customer, and includes split deliveries, load transfers and load swapping, facilitated by the establishment of coordination sites at strategic locations. Real-world coordination includes mid-air refuelling, the use of temporary replenishment sites, trailers left for later uplift by their towing vehicles, bulk re-suppliers travelling to field operatives, fleet re-supply, and couriers swapping loads on the side of the road.

This thesis models the coordination process and investigates the basic types of coordination in single depot, pure delivery systems in both the Euclidean plane and the rectilinear grid network. Strategies are developed for dealing with dynamic situations in the rectilinear grid, which are based on the pre-processing of scenarios in order that dispatchers may select a suitable response from an existing selection at the time that dynamic values are revealed.

In addition, a procedure is suggested that reduces the number of edges and vertices of a rectilinear grid to those that may be useful within a coordination hull.
ACKNOWLEDGEMENTS

I am grateful to Lieutenant Colonel Janet L. Castell, MNZM, and Captain Greg Davies for early discussions on the application of logistics within the New Zealand Army.

Professor Don Barnes provided valuable advice about mobile coordination at sea.

Roading contractors, Higgins Contractors Ltd, gave me practical on-site experience of coordination in an industrial setting.

Mrs Marlene Gordon, and her team at Marton Coachlines Ltd, gave me the opportunity to investigate coordination in the passenger transport area, and I am grateful for the cooperation of their numerous passengers who participated with enthusiasm.

I thank the myriad courier drivers who were patient enough to listen to my theories and kind enough to make suggestions and to allow me to analyse their work practices.

Major Rio M. Thalieb, Indonesian Air Force, Wing Commander David Huang, Taiwanese Air Force, and Flight Lieutenant Meta Suntornsaratoon, Royal Thai Air Force, all attached to the Australian Defence Force Academy, gave continued support and critical appraisal, especially in comparing my procedures with evolutionary approaches.

I acknowledge with thanks the supervision of this research by Dr John W. Giffin, Massey University, and Dr Mahyar A. Amouzegar, Rand Corporation, USA.
Table of Contents

List of Figures xv

List of Tables xxiii

List of Procedures xxxi

Glossary xxxiii

1 Introduction 1

2 Literature Review 5
 2.1 The vehicle routing problem 5
 2.2 Coordination in vehicle routing problems 14
 2.2.1 Split deliveries 15
 2.2.2 Coordinated public transport 18
 2.2.3 Mid-air refuelling 19
 2.2.4 Pre-emptive routing 22
 2.2.5 Inventory routing with satellite facilities 22

3 Aspects of Coordination 23
 3.1 Predicted operational benefits 24
 3.2 Payload requirements 26
 3.2.1 Compatibility 27
 3.2.2 Volume 28
 3.2.3 Mass 28
 3.2.4 Divisibility 28
 3.2.5 Need to return to the depot 28
 3.2.6 Need for specific vehicle type 29
3.2.7 Social acceptability ... 29
3.2.8 Legal acceptability .. 29
3.2.9 Support vehicles .. 30
3.2.10 En route processing .. 30
3.2.11 Urgency .. 30
3.2.12 Commodity classes in this study 30

3.3 Coordination sites .. 31
3.3.1 Satellite facility .. 33
3.3.2 Node .. 34
 3.3.2.1 Sequential multiple vehicle 34
 3.3.2.2 Simultaneous multiple vehicle 36
 3.3.2.3 Single vehicle .. 37
3.3.3 Existing route ... 38
 3.3.3.1 Chance meeting on an existing route (serendipity) ... 38
 3.3.3.2 Pre-determined meeting on existing routes 38
 3.3.3.3 Post-determined meeting on existing routes 39
 3.3.3.4 Repair .. 39
3.3.4 Not on existing route ... 39
 3.3.4.1 Pre-determined meeting involving detour 39
 3.3.4.2 Post-determined meeting involving detour 40
3.3.5 Mobile ... 41
 3.3.5.1 Spatially mobile ... 41
 3.3.5.2 Temporally mobile .. 41
3.3.6 Driver-defined ... 41
 3.3.6.1 Single vehicle driver-defined 41
 3.3.6.2 Multiple vehicle driver-defined 42
3.3.7 Single vehicle ... 42
3.3.8 Direction of transfer ... 43
 3.3.8.1 One-way transfer ... 43
 3.3.8.2 Two-way transfer .. 43
 3.3.8.3 Many-way transfer ... 44
3.4 Classification .. 45
3.5 The coordination model ... 46
3.6 Performance indicators ... 47
3.7 Spatial and temporal inter-dependence 47
3.8 Route order and orientation .. 48
3.9 Existence and identity of a suitable node 53
 3.9.1 Node-based approach ... 53
4 Coordination in the Euclidean Plane

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Node location</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Euclidean distances</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Depot location</td>
<td>62</td>
</tr>
<tr>
<td>4.4</td>
<td>Customer demand</td>
<td>63</td>
</tr>
<tr>
<td>4.5</td>
<td>Delivery times</td>
<td>63</td>
</tr>
<tr>
<td>4.6</td>
<td>Coordination opportunities in the Euclidean plane</td>
<td>64</td>
</tr>
<tr>
<td>4.7</td>
<td>Model construction</td>
<td>66</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Initial data</td>
<td>67</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Route construction</td>
<td>67</td>
</tr>
<tr>
<td>4.7.2.1</td>
<td>Route improvement by intra-route 3-opt exchange</td>
<td>68</td>
</tr>
<tr>
<td>4.7.2.2</td>
<td>Route improvement by inter-route node transfer</td>
<td>69</td>
</tr>
<tr>
<td>4.7.2.3</td>
<td>Route improvement by inter-route node exchange</td>
<td>70</td>
</tr>
<tr>
<td>4.7.2.4</td>
<td>Route improvement by inter-route path exchange</td>
<td>72</td>
</tr>
<tr>
<td>4.7.2.5</td>
<td>Route improvement by split delivery</td>
<td>77</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Route scheduling</td>
<td>89</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Incorporation of coordination</td>
<td>89</td>
</tr>
<tr>
<td>4.8</td>
<td>Size of near radius</td>
<td>91</td>
</tr>
<tr>
<td>4.9</td>
<td>Orientation and route order</td>
<td>94</td>
</tr>
<tr>
<td>4.10</td>
<td>Number of nodes</td>
<td>97</td>
</tr>
<tr>
<td>4.11</td>
<td>Problem design</td>
<td>98</td>
</tr>
<tr>
<td>4.12</td>
<td>Load swapping</td>
<td>103</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Reduction in total distance</td>
<td>103</td>
</tr>
<tr>
<td>4.12.2</td>
<td>Reduction in fleet size</td>
<td>110</td>
</tr>
<tr>
<td>4.12.3</td>
<td>Transfer</td>
<td>115</td>
</tr>
<tr>
<td>4.13</td>
<td>Obviating return to depot</td>
<td>119</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Single-noded depot</td>
<td>119</td>
</tr>
<tr>
<td>4.14</td>
<td>Coordination site as interim step</td>
<td>125</td>
</tr>
<tr>
<td>4.14.1</td>
<td>Cascading interim steps</td>
<td>134</td>
</tr>
<tr>
<td>4.14.2</td>
<td>Stability of intersections</td>
<td>140</td>
</tr>
<tr>
<td>4.14.3</td>
<td>Limitations and advantages of coordination as an interim step</td>
<td>142</td>
</tr>
<tr>
<td>4.15</td>
<td>Appraisal of Euclidean coordination</td>
<td>143</td>
</tr>
</tbody>
</table>
5 Coordination in the Rectilinear Grid Network

5.1 Introduction ... 149
5.2 Grid construction and definition .. 150
5.3 Node location on the grid ... 151
5.4 Grid network distances .. 152
5.5 Depot location .. 161
5.6 Connectedness of the grid .. 163
5.7 Grid reduction ... 164
 5.7.1 Vertex classification ... 165
 5.7.2 Reduction procedures ... 168
 5.7.3 Effect on path proximity ... 180
 5.7.4 Uniqueness of reduction ... 181
 5.7.5 Effect of node location ... 183
5.8 Coordination opportunities .. 187
5.9 Solution construction .. 188
 5.9.1 Initial data ... 188
 5.9.2 Route construction ... 188
 5.9.2.1 Inter-route node transfer 191
 5.9.2.2 Inter-route node exchange 192
 5.9.2.3 Intra-route edge exchange 193
 5.9.2.4 Inter-route edge exchange 195
 5.9.3 Route scheduling .. 195
 5.9.4 Incorporation of coordination 198
5.10 Maximum distance constraint .. 202
5.11 Maximum vehicle capacity constraint 204
 5.11.1 Coordination by methods other than split delivery 204
 5.11.2 Coordination by split delivery 207
 5.11.3 Mixed systems with common demand 209
5.12 Problem design ... 211
5.13 Load swapping .. 212
5.14 Deferral of return to depot ... 219
5.15 Split delivery ... 221
 5.15.1 Reducing path duplication 221
 5.15.2 Fleet reduction .. 223
5.16 Alternative coordination sites 227
5.17 Grid density ... 232
 5.17.1 Medium grid .. 234
 5.17.1 Sparse grid ... 240
5.17.3 Dense grid

Comparison of splitting with other forms of coordination.

Order of application of coordination.

Quality of initial solution.

Appraisal of rectilinear coordination.

6 An Extension – Dynamic Coordination in the Rectilinear Grid Network

6.1 Introduction

Dynamic and stochastic vehicle routing.

6.1.1 Dynamic and stochastic vehicle routing

6.1.2 Dynamic coordination

6.2 Problem description

6.3 Nomenclature

6.4 DC1 Only time is known

- Time constraint
- Multiple placement
- Problem generation
- Incorporation of coordination
 - Routing scheme A
 - Routing scheme B
 - Routing scheme C
 - Routing scheme D
 - Routing scheme E
 - Routing scheme F
 - Routing strategy for DC1

6.5 Conclusions

6.5.1 Problem generation

6.5.2 Problem solution

6.5.3 Demand estimation

6.5.4 Initial route construction

6.5.5 Coordination site location

6.5.6 Incorporation of coordination
 - Routing scheme A
 - Routing scheme B
 - Routing scheme C
 - Routing scheme D
 - Routing strategy for DC2
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.7</td>
<td>Limitations and accommodations</td>
<td>291</td>
</tr>
<tr>
<td>6.5.8</td>
<td>Conclusions</td>
<td>292</td>
</tr>
<tr>
<td>6.6</td>
<td>DC3 Only location is unknown</td>
<td>293</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Problem generation</td>
<td>294</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Problem solution</td>
<td>295</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Initial route construction</td>
<td>298</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Behaviour at $t = t_{rev}$</td>
<td>300</td>
</tr>
<tr>
<td>6.6.5</td>
<td>Incorporation of coordination</td>
<td>301</td>
</tr>
<tr>
<td>6.6.5.1</td>
<td>Routing scheme A</td>
<td>302</td>
</tr>
<tr>
<td>6.6.5.2</td>
<td>Routing scheme B</td>
<td>303</td>
</tr>
<tr>
<td>6.6.5.3</td>
<td>Routing scheme C</td>
<td>305</td>
</tr>
<tr>
<td>6.6.5.4</td>
<td>Routing strategy for DC3</td>
<td>305</td>
</tr>
<tr>
<td>6.6.6</td>
<td>Conclusions</td>
<td>306</td>
</tr>
<tr>
<td>6.7</td>
<td>DC4 Only location is known</td>
<td>308</td>
</tr>
<tr>
<td>6.7.1</td>
<td>Problem generation</td>
<td>309</td>
</tr>
<tr>
<td>6.7.2</td>
<td>Problem solution</td>
<td>309</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Demand estimation</td>
<td>310</td>
</tr>
<tr>
<td>6.7.4</td>
<td>Choosing time values</td>
<td>311</td>
</tr>
<tr>
<td>6.7.5</td>
<td>Initial route construction</td>
<td>311</td>
</tr>
<tr>
<td>6.7.6</td>
<td>Time $t=15$ scheme</td>
<td>311</td>
</tr>
<tr>
<td>6.7.7</td>
<td>Time $t=25$ scheme</td>
<td>311</td>
</tr>
<tr>
<td>6.7.7.1</td>
<td>Routing scheme E</td>
<td>312</td>
</tr>
<tr>
<td>6.7.7.2</td>
<td>Routing scheme F</td>
<td>313</td>
</tr>
<tr>
<td>6.7.7.3</td>
<td>Routing scheme G</td>
<td>313</td>
</tr>
<tr>
<td>6.7.7.4</td>
<td>Routing scheme H</td>
<td>314</td>
</tr>
<tr>
<td>6.7.7.5</td>
<td>Routing strategy $t=25$</td>
<td>314</td>
</tr>
<tr>
<td>6.7.8</td>
<td>Time $t=35$ scheme</td>
<td>315</td>
</tr>
<tr>
<td>6.7.8.1</td>
<td>Routing schemes</td>
<td>316</td>
</tr>
<tr>
<td>6.7.8.2</td>
<td>Routing strategy $t=35$</td>
<td>316</td>
</tr>
<tr>
<td>6.7.9</td>
<td>Routing strategy for DC4</td>
<td>316</td>
</tr>
<tr>
<td>6.7.10</td>
<td>Limitations and accommodations</td>
<td>318</td>
</tr>
<tr>
<td>6.7.11</td>
<td>Conclusions</td>
<td>318</td>
</tr>
<tr>
<td>6.8</td>
<td>DC5 Only demand is known</td>
<td>319</td>
</tr>
<tr>
<td>6.8.1</td>
<td>Problem generation</td>
<td>319</td>
</tr>
<tr>
<td>6.8.2</td>
<td>Problem solution</td>
<td>319</td>
</tr>
<tr>
<td>6.8.3</td>
<td>Initial route construction</td>
<td>320</td>
</tr>
<tr>
<td>6.8.4</td>
<td>$t_{rev}=10$</td>
<td>321</td>
</tr>
<tr>
<td>6.8.4.1</td>
<td>Routing scheme A</td>
<td>322</td>
</tr>
</tbody>
</table>
6.8.4.2 Routing scheme B .. 323
6.8.4.3 Routing strategy .. 324
6.8.5 t_{rev}=20 .. 324
 6.8.5.1 Routing scheme C .. 325
 6.8.5.2 Routing scheme D .. 326
 6.8.5.3 Routing scheme E .. 327
 6.8.5.4 Routing strategy .. 327
6.8.6 t_{rev}=30 .. 328
 6.8.6.1 Routing strategy .. 328
6.8.7 t_{rev}=40 .. 329
 6.8.7.1 Routing scheme F .. 330
 6.8.7.2 Routing scheme G .. 331
 6.8.7.3 Routing scheme H .. 331
 6.8.7.4 Routing strategy .. 332
6.8.8 Routing strategy for DC5 334
6.8.9 Limitations and accommodations 335
6.8.10 Conclusions .. 336
6.9 DC6 Only time is known ... 337
 6.9.1 Problem generation .. 337
 6.9.2 Problem solution .. 338
 6.9.3 Initial route construction 338
 6.9.4 Determining demand 339
 6.9.5 Routing strategy .. 339
 6.9.6 Conclusions .. 340
6.10 DC7 Nothing is known .. 341
 6.10.1 Problem generation 342
 6.10.2 Problem solution ... 343
 6.10.3 Determining time .. 343
 6.10.4 Conclusions .. 344
6.11 Multiple nodes with dynamic attributes 345
 6.11.1 Same category of dynamism 345
 6.11.2 Different categories of dynamism 346
6.12 Appraisal of dynamic coordination in the rectilinear grid network 348

7 Conclusions and Recommendations 351
7.1 Conclusions .. 351
7.2 Recommendations for future research 358
A Reduction of rectilinear grids 361
B Changing depot location 373
C Data for examples in Chapter 4 383
D Data and worked example for standard problem in Chapter 5 413
E Grid density comparison 427
F Data for examples in Chapter 6 491

Bibliography 493
LIST OF FIGURES

2.1 The optimal refuelling point is restricted to the spherically convex hull defined by the origin, destination and tanker base. 21

3.1 These bitumen carriers are transferring part of the load from one vehicle to a second. 24

3.2 Mid-air refuelling is a form of mobile coordination. 32

3.3 Coordination can be categorised in many ways. 33

3.4 Sequential multiple vehicle at node. 35

3.5 Meeting on an existing route. 38

3.6 Detour. 40

3.7 Single vehicle coordination. 42

3.8 Single vehicle coordination involving detour. 43

3.9 Three-way transfer between courier vans. 44

3.10 Many-way transfer. 45

3.11 A single-depot, ten-node system in the Euclidean plane. 50

3.12 One snapshot of the system from Figure 3.11. 51

3.13 Another snapshot. 52

3.14 Node-based approach. 53

3.15 Route-based approach. 55

3.16 The situation prior to exchange. 56

3.17 Options C1 and C2. 57

3.18 Options C3 and C4. 57

3.19 Option C5. 58

3.20 Option C6. 58

3.21 Intersection-based approach. 59

3.22 Paths in the rectilinear grid. 60

4.1 Euclidean convex hull. 64

4.2 Zones of influence. 65

4.3 3-opt exchange. 68
4.4 Inter-route node transfer. ... 69
4.5 Inter-route node exchange. .. 70
4.6 Inter-route path exchange. .. 75
4.7 Split delivery. .. 81
4.8 Effect of split delivery during construction and improvement using eight different construction methods. 85
4.9 Sparse node density (10 nodes) without (upper) and with (lower) split deliveries... 86
4.10 Medium node density (30 nodes) without (upper) and with (lower) split deliveries... 87
4.11 Dense node density (75 nodes) without (upper) and with (lower) split deliveries... 88
4.12 The near radius... 91
4.13 Changing the value of the near radius.............................. 94
4.14 Overall view of feasible routes. 95
4.15 Snapshot of system in Figure 4.14 and Table 4.5. 97
4.16 Effect of order of application of load splitting and creation of interim step... 102
4.17 Before application of load swapping.................................. 104
4.18 Load swapping at node 9.. 106
4.19 The preferred exchange plan.. 108
4.20 Single-routed fleet before reduction in total distance by load swapping.. 109
4.21 Reduction in distance by load swapping at node 5. 109
4.22 Before coordination... 111
4.23 Load swapping reducing the fleet size............................... 114
4.24 Node 9 is distant from the other nodes serviced by the same vehicle .. 116
4.25 After servicing node 28, the red vehicle is able to continue to a coordination site at node 8, collect demand(9) and deliver it before returning to the depot... 118
4.26 Situation before coordination.. 120
4.27 Creation of coordination sites at nodes c and i has removed the requirement for an inter-route return to depot..................... 121
4.28 The multi-routed red vehicle services three single-noded routes. 122
4.29 One inter-route return to depot is removed for a vehicle servicing multiple single-noded routes............................. 123
4.30 Removal of inter-route return to depot between two multi-
noded routes.. 124
4.31 Investigation of the formation of an interim step. 125
4.32 Coordination as an interim step. ... 126
4.33 Structures resulting from dissolution of the interim step. 127
4.34 The two type (iii) dissolution structures. 128
4.35 Before coordination.. 129
4.36 The metastable state for intersection 1 in Table 4.21. 130
4.37 After the application of interim step. 133
4.38 During the investigation of coordination as an interim step, eight intersections will be investigated. 134
4.39 After a first application of coordination as an interim step in combination (a), three intersections have been eliminated and two have been changed... 137
4.40 A second interim step formation... 138
4.41 The result of cascading investigations of using coordination sites as interim nodes... 139
4.42 Stability of intersections.. 140
4.43 The number of intersections is unchanged. 141

5.1 Paths of equal length between nodes. 150
5.2 Different routes sharing common edges................................. 150
5.3 Rectilinear and staircase paths... 153
5.4 Grid section.. 155
5.5 Finding the shortest distance between two nodes................... 160
5.6 Slight changes in depot location can produce different outcomes. 162
5.7 Sparse grid network showing a modified coordination hull........ 164
5.8 Vertex classification... 166
5.9 Classification changes with edge removal............................... 167
5.10 A no-choice-string is removed if it is no shorter than another path between the same endpoints................................. 170
5.11 Of two no-choice-strings with the same endpoints, no more than one is retained in the reduced grid.......................... 170
5.12 No-choice-strings that include essential points.......................... 172
5.13 Node or depot at end of no-choice-string.............................. 173
5.14 Several nodes on a no-choice-string.. 174
5.15 Two nodes on a no-choice-string... 175
5.16 Edge between nodes is retained.. 176
5.17 In this reduced grid, the red edges are not part of any
shortest paths between nodes... 176
5.18 Grid before and after reduction. .. 177
5.19 Effect of number of nodes on grid reduction.......................... 178
5.20 Grid reduction is affected by node location and edge density..... 179
5.21 Equivalent paths. .. 180
5.22 Piecewise reduction of a grid section.................................. 182
5.23 Effect of node location on a complete grid. 183
5.24 Geographical features may be recognised in the structure of a rectilinear grid. ... 184
5.25 The effect of nodes on opposite sides of a stream is to retain some semblance of the stream in the reduced grid. 185
5.26 Before and after grid reduction. A compact result. 186
5.27 Before and after grid reduction. A spread result. 187
5.28 Inter-route node transfer. .. 191
5.29 Inter-route node exchange. .. 192
5.30 Inter-route node exchange requiring a different placement of a transferred node. ... 193
5.31 Intra-route edge exchange. .. 194
5.32 Intra-route edge exchange in which the exchanged edges share a common node... 194
5.33 Inter route edge exchange. Edges b and e are swapped between routes. .. 195
5.34 Scheduling vehicles using two different objectives. 197
5.35 A site can have more than one classification depending on how it is used. ... 201
5.36 Effect of maxVehDist on fleet size.. 203
5.37 Different values of maxVehCap may produce different schemes. 209
5.38 Effect of CD on R and minimum number of routes for a system with maxVehCap=235... 211
5.39 Three-vehicle swapping.. 212
5.40 Intersection at points and regions.. 213
5.41 Routes prior to swapping.. 214
5.42 Routes with load swapping. .. 215
5.43 Routes prior to detour and swapping...................................... 216
5.44 Routes with detour and load swapping.................................... 217
5.45 Multi-routed vehicle prior to coordination.............................. 218
5.46 No inter-route return to depot for red vehicle.......................... 219
5.47 Positioning a type 1 site. .. 220
5.48 Before coordination. Several stretches of overlap 221
5.49 Reduced overlap ... 223
5.50 Four vehicles service the routes before coordination 224
5.51 Routes after coordination, showing fleet reduction 226
5.52 Vertices acceptable to the red route as coordination sites 228
5.53 Vertices acceptable to the green route as coordination sites 228
5.54 Potential coordination sites .. 229
5.55 Distance reduction values at potential coordination sites 229
5.56 Green vehicle detours to upper left coordination site 230
5.57 Red vehicle detours to lower left coordination site 230
5.58 Red vehicle detours to lower right coordination site 231
5.59 Three equivalent paths for the green vehicle 232
5.60 Medium density grid .. 234
5.61 Arrows indicate the direction of shortest paths to the depot D1 235
5.62 Arrows indicate the direction of shortest paths to the depot D2 237
5.63 Limited access to a depot can increase the route density near it. 238
5.64 Variation of distance reduction with CD and depot location 238
5.65 Sequential and simultaneous coordination 239
5.66 Sparse grid ... 241
5.67 Dense grid ... 242
5.68 Grid density and relative effectiveness of coordination methods ... 244
5.69 Good (upper, distance 222) and poor (middle, distance 236) solutions can be improved by coordination (lower, distance 198) 249
5.70 Grid structure prevents coordination 250
5.71 Routing scheme prevents coordination 250
5.72 Coordination hulls of grid networks and Euclidean systems do not necessarily coincide .. 252

6.1 Diversion from route ABC at location A' to route AA'DBC 259
6.2 New request occurs at time t but is not actioned until time t+δt 260
6.3 Example structure ... 266
6.4 Multiple placement in a route of a node with unknown time attribute ... 270
6.5 DC1 ... 271
6.6 Initial routes generated with an estimated demand for node 15 281
6.7 Progress at t=15 ... 282
6.8 Initial routes incorporating coordination points which may be used if the demand of node 15 exceeds 82 284
6.9 Routing scheme C. ... 287
6.10 Routing scheme D. ... 290
6.11 Upper: Red discs indicate the extent of 10 units from the depot.
Lower: Blue lines indicate the coverage of a coordination site
established at S at t=10; a site established at T at t=10 covers
all but the two indicated vertices. ... 298
6.12 Initial routes generated with geographic coordination sites, S
and T .. 300
6.13 Situation at t=t_{rev}. ... 301
6.14 Routing scheme A – the teal vehicle services node 15. 302
6.15 Routing scheme B – the violet vehicle services node 15............. 303
6.16 Routing scheme C1 – the blue vehicle services node 15 304
6.17 The scheme adopted depends on the location of node 15. 306
6.18 Deterministic routing scheme for a node at X with demand 50.. 308
6.19 Situation at t=25... 312
6.20 Situation at t=35.. 315
6.21 Initial routes .. 321
6.22 Vertices for which scheme A is effective at t=10......................... 322
6.23 Vertices for which scheme B is effective. 323
6.24 Vertices for which scheme C is effective at t=20...................... 326
6.25 Vehicle locations and serviced nodes at t=30. 328
6.26 Vehicle locations and serviced nodes at t=40. 330
6.27 Effective schemes for vertices at t=40. 332
6.28 The vehicle to service node 15, with non-zero demand less than
8, depends on the vertex at which the node is located. 340
6.29 Three types of dynamism exist in this structure. 347

A.1 Sparse density grid, 438 edges, 10 nodes, 1 depot..................... 361
A.2 Cul de sacs removed ... 362
A.3 NCS removed without considering NCS involving essential points 362
A.4 Cul de sacs removed ... 363
A.5 NCS removed without considering NCS involving essential points 363
A.6 Removed NCS with essential points ... 364
A.7 Removed NCS, thus creating other NCS 364
A.8 Final grid has 96 edges ... 365
A.9 Medium density grid, 1 depot, 30 nodes, 643 edges 366
A.10 Cul de sacs removed ... 366
A.11 First reduction by removal of NCS. .. 367
A.12 Second reduction by removal of NCS 367
A.13 Removal of remaining NCS not involving essential points 368
A.14 Removal of NCS involving nodes....................................... 368
A.15 Removal of NCS created in previous step 369
A.16 Removal of NCS created in previous step. Final grid 369
A.17 High density grid. 790 edges. 1 depot, 30 nodes 370
A.18 Removal of NCS not involving essential points 370
A.19 Removal of NCS.. 371
A.20 Removal of NCS .. 371
A.21 Removal of NCS .. 372
A.22 Removal of NCS, including loop 372
A.23 Final reduced high density grid. 451 edges 373
A.24 Initial full density grid. 840 edges 374
A.25 Removal of NCS not involving essential points 374
A.26 Removal of NCS involving essential points 375
A.27 Removal of NCS created in previous step 375
A.28 Removal of NCS created in previous step 376
A.29 Final grid. 475 edges. Each outside corner houses a node 376

B.1 Locations for type 1 sites .. 381
B.2 Final routes involving coordination, depot at [10,8] 381
B.3 Routes after coordination, depot at [12,12] 384

C.1 Without coordination ... 388
C.2 With coordination .. 389
C.3 Initial routes ... 391
C.4 Split deliveries at node ... 392
C.5 Initial routes ... 393
C.6 Routes including coordination ... 394
C.7 Initial routes ... 395
C.8 Near radius=2 .. 396
C.9 Near radius=5 .. 397
C.10 Near radius=10 ... 399
C.11 Near radius=15 ... 399
C.12 Near radius=20 ... 400
C.13 Near radius=25 ... 401
C.14 Near radius=30 ... 402
C.15 Initial routes ... 407
C.16 Interim step ... 407
C.17 Load splitting the interim step ... 409
C.18 Load splitting the non-coordinated routes 411
C.19 Metastable state configurations ... 414
C.20 Routes yielding greatest reductions .. 415

D.1 The standard layout for medium grid problems with depot located at D, (10,10) .. 417
D.2 Coordination sites are indicated by arrows. 428

E.1 Sparse grid layout .. 432
E.2 Medium density grid ... 441
E.3 Coordination site locations used in improvement by coordination for systems with depot at D1 ... 442
E.4 Coordination site locations used in improvement by coordination for systems with depot at D2 ... 463
E.5 Dense grid layout .. 484
E.6 Coordination site locations on the dense grid 485

F.1 Example structure ... 495
LIST OF TABLES

1.1 Scope of this study 2

3.1 Route order for a three-routed vehicle.. 48
3.2 Routing scheme for the system in Figure 3.12 51
3.3 Changes to the routes caused by using a different combination of route order and orientation. .. 52
3.4 Combination options. ... 56

4.1 Effect of depot location on routes for a single depot system of 25 nodes located randomly across the plane. 62
4.2 Effect of route construction technique on average values for fleet size and total distance... 84
4.3 Effect of varying the size of the near radius. 92
4.4 Close List... 96
4.5 Relationship between environment and coordination type in the Euclidean plane... 99
4.6 Effect of order of application of coordination type. 100
4.7 Without coordination.. 104
4.8 Progressive lading at node 9. ... 106
4.9 Results of coordination to reduce distance travelled. 107
4.10 Single-routed fleet before reduction in total distance by load swapping... 109
4.11 Distance reduction by load swapping at node 5. 110
4.12 Before coordination.. 111
4.13 Possible combinations for investigation of load swapping at node b. ... 112
4.14 After coordination at node b.. 113
4.15 Routing scheme prior to transfer. .. 116
4.16 A coordination site is established at node 8................................. 118
4.17 Without coordination.. 121
4.18 After coordination... 122
4.19 Multi-routed vehicle servicing only single-noded routes. 122
4.20 Route data for the scheme shown in Figure 4.35. 129
4.21 Interim step investigation.. 130
4.22 Fixed links from the dissolution of the metastable state shown in Figure 4.36. ... 130
4.23 Routes resulting from the dissolution of intersection 1 in Figure 4.35. .. 132
4.24 Using coordination point as interim step. 132
4.25 Route structure before coordination for the routes in Figure 4.38. 135
4.26 Options... 136
4.27 Interim step investigation of the results of combination (a)...... 137

5.1 Slight differences in depot location can have large differences in outcomes. ... 163
5.2 Classification of vertices with respect to the number of edges attached to them.. 165
5.3 Route generation using different clustering methods.................. 190
5.4 Surplus table for a system with p vehicles......................... 190
5.5 Effect of maximum distance constraint on fleet size............. 203
5.6 Typical effect of maxVehCap on total distance and fleet size. .. 205
5.7 Effect of changing maxVehCap from 240 to 245. 206
5.8 Effect of individual route distances on total distance and fleet size (maxVehDist=50)... 207
5.9 Effect of changing maxVehCap from 235 to 250............... 208
5.10 Effect of maxVehCap on total distance and fleet size for the standard problem in Appendix D.......................... 209
5.11 Activity at the coordination site in three-way swapping........ 213
5.12 Prior to swapping... 214
5.13 Load swapping at coordination site, x................................ 215
5.14 Prior to detour and swapping.. 215
5.15 Detour and load swapping... 217
5.16 Prior to coordination... 218
5.17 No inter-route return to depot for red vehicle.................... 219
5.18 Positioning a type 1 site.. 220
5.19 Before coordination... 222
5.20 Reduced overlap... 222
5.21 Without coordination... 225
5.22 Fleet reduction after coordination.. 225
5.23 Comparison of solutions. .. 231
5.24 Reductions in distance and fleet size using splitting and other forms of coordination in grids of different density when all nodes have the same demand (CD=150). ... 233
5.25 Reductions in distance (%) and fleet size using splitting and other forms of coordination in the medium grid. 236
5.26 Routing schemes for the system with depot at D1 and high demand nodes 13 and 23, differing only in the value of CD. 239
5.27 Reductions in distance (%) and fleet size using splitting and other forms of coordination in the sparse and dense grids. 242
5.28 Generic examples of possible outcomes after reducing the number of multi-routed vehicles. ... 247

6.1 Dynamic coordination classification.. 266
6.2 Routing scheme A for DC1 example. ... 272
6.3 Routing scheme B for DC1 example. ... 273
6.4 Routing scheme C for DC1 example. ... 274
6.5 Routing scheme D for DC1 example. ... 274
6.6 Routing scheme E for DC1 example. ... 275
6.7 Routing scheme F for DC1 example. ... 275
6.8 Routing scheme for static DC1 example without coordination. 276
6.9 Initial routes using an estimated value for Demand(15) without coordination... 281
6.10 Progress at t=15. .. 282
6.11 Routing scheme A. .. 285
6.12 Routing scheme B. .. 286
6.13 Routing scheme C. .. 287
6.14 Routing scheme D. .. 289
6.15 Routing strategy for DC2 example. .. 290
6.16 Routing strategy based on limitations of node 6. 291
6.17 Assignments for nodes with known location. 296
6.18 Initial routes using coordination sites at S and T but otherwise without coordination. .. 299
6.19 Teal vehicle services node 15... 302
6.20 Violet vehicle services node 15. ... 303
6.21 Blue vehicle services node 15. Scheme C1. 304
6.22 Black vehicle services node 15. Scheme C2............................... 305
6.23 Deterministic routing for system with node 15 at vertex X
(in Figure 6.18) and demand 50................................. 308
6.24 Routing scheme E... 313
6.25 Routing scheme F... 313
6.26 Routing scheme G... 314
6.27 Routing scheme H... 314
6.28 Routing strategy for trev=25................................. 315
6.29 Routing strategy for trev=35................................. 316
6.30 Rendering schemes consistent............................ 316
6.31 Consistent schemes... 317
6.32 Routing strategy for DC4 example.......................... 318
6.33 Initial routes for DC5 example............................... 320
6.34 Routing scheme A for DC5 example......................... 322
6.35 Routing scheme B for DC5 example......................... 323
6.36 Routing scheme C for DC5 example......................... 325
6.37 Routing scheme D for DC5 example......................... 326
6.38 Routing scheme E for DC5 example......................... 327
6.39 Routing scheme F for DC5 example......................... 330
6.40 Routing scheme G for DC5 example......................... 331
6.41 Routing scheme H for DC5 example......................... 331
6.42 Surplus table for DC6 example.............................. 339
6.43 Assignments for nodes with known location and demand.... 346

B.1 Demands and node locations 377
B.2 Route structure without coordination, depot at [10,8]........ 378
B.3 Surplus table for depot at [10,8]............................... 379
B.4 Route structure with coordination, depot at [10,8]............ 380
B.5 Route structure before coordination, depot at [12,12]........ 382
B.6 Surplus table, depot at [12,12]................................. 383
B.7 Route structure after coordination, depot at [12,12].......... 384
B.8 Effect of depot location.. 385

C.1 Without coordination... 387
C.2 Split deliveries to nodes 1, 2 and 6............................ 388
C.3 Initial routes.. 390
C.4 Split deliveries... 391
C.5 Without coordination... 393
C.6 Coordination.. 394
C.7 Initial routes.. 395
C.8 Near radius=2. ... 396
C.9 Near radius=5. ... 397
C.10 Near radius=10. ... 398
C.11 Near radius=15. ... 399
C.12 Near radius=20. ... 400
C.13 Near radius=25. ... 401
C.14 Near radius=30. ... 402
C.15 Initial routes. .. 403
C.16 Orientation and route order. 404
C.17 Locations and demands. ... 405
C.18 Initial routes. .. 406
C.19 Interim step... 408
C.20 Edges broken and created .. 409
C.21 Load splitting after interim step. 410
C.22 Load splitting the non-coordinated routes. 412
C.23 Locations and demands. ... 415
C.24 Options. ... 416

D.1 Node locations and demands..................................... 418
D.2 Initial load plan. ... 419
D.3 Surplus table for initial plan improved with split deliveries. 419
D.4 Surplus table.. 420
D.5 Surplus table with total distance 306............................. 421
D.6 Surplus table with total distance 298............................. 422
D.7 Surplus table with total distance 316............................. 423
D.8 Surplus table for vehicles.. 423
D.9 Surplus table.. 424
D.10 Surplus table.. 424
D.11 Surplus table with total distance 288............................. 425
D.12 Comparison with original. 425
D.13 Surplus table for re-constructed routes....................... 426
D.14 Surplus table.. 428
D.15 Final routes and their surplus table, with total distance 288..... 429

E.1 Sparse grid. All demands=150. No coordination 433
E.2 Improvement by coordination 434
E.3 All other demands=100. No coordination 435
E.4 All other demands=100. Coordination 435
E.5	All other demands=90. No coordination	436
E.6	All other demands=90. Coordination	436
E.7	All other demands=80. No coordination	437
E.8	All other demands=80. Coordination	437
E.9	All other demands=70. No coordination	438
E.10	All other demands=70. Coordination	438
E.11	All other demands=60. No coordination	439
E.12	All other demands=60. Coordination	439
E.13	All other demands=50. No coordination	440
E.14	All other demands=50. Coordination	440
E.15	Medium grid. D1. All demands=150. No coordination	443
E.16	Improvement by coordination	444
E.17	All other demands=100. No coordination	445
E.18	All other demands=100. Coordination	445
E.19	All other demands=90. No coordination	446
E.20	All other demands=90. Coordination	446
E.21	All other demands=80. No coordination	447
E.22	All other demands=80. Coordination	447
E.23	All other demands=70. No coordination	448
E.24	All other demands=70. Coordination	448
E.25	All other demands=60. No coordination	449
E.26	All other demands=60. Coordination	449
E.27	All other demands=50. No coordination	450
E.28	All other demands=50. Coordination	450
E.29	All other demands=100. No coordination	451
E.30	All other demands=100. Coordination	451
E.31	All other demands=90. No coordination	452
E.32	All other demands=90. Coordination	452
E.33	All other demands=80. No coordination	453
E.34	All other demands=80. Coordination	453
E.35	All other demands=70. No coordination	454
E.36	All other demands=70. Coordination	454
E.37	All other demands=60. No coordination	455
E.38	All other demands=60. Coordination	455
E.39	All other demands=50. No coordination	456
E.40	All other demands=50. Coordination	456
E.41	All other demands=100. No coordination	457
E.42	All other demands=100. Coordination	457
E.43	All other demands = 90. No coordination	458
E.44	All other demands = 90. Coordination	458
E.45	All other demands = 80. No coordination	459
E.46	All other demands = 80. Coordination	459
E.47	All other demands = 70. No coordination	460
E.48	All other demands = 70. Coordination	460
E.49	All other demands = 60. No coordination	461
E.50	All other demands = 60. Coordination	461
E.51	All other demands = 50. No coordination	462
E.52	All other demands = 50. Coordination	462
E.53	Medium grid. D2. All demands = 150. No coordination	464
E.54	Improvement by coordination	465
E.55	All other demands = 100. No coordination	466
E.56	All other demands = 100. Coordination	466
E.57	All other demands = 90. No coordination	467
E.58	All other demands = 90. Coordination	467
E.59	All other demands = 80. No coordination	468
E.60	All other demands = 80. Coordination	468
E.61	All other demands = 70. No coordination	469
E.62	All other demands = 70. Coordination	469
E.63	All other demands = 60. No coordination	470
E.64	All other demands = 60. Coordination	470
E.65	All other demands = 50. No coordination	471
E.66	All other demands = 50. Coordination	471
E.67	All other demands = 100. No coordination	472
E.68	All other demands = 100. Coordination	472
E.69	All other demands = 90. No coordination	473
E.70	All other demands = 90. Coordination	473
E.71	All other demands = 80. No coordination	474
E.72	All other demands = 80. Coordination	474
E.73	All other demands = 70. No coordination	475
E.74	All other demands = 70. Coordination	475
E.75	All other demands = 60. No coordination	476
E.76	All other demands = 60. Coordination	476
E.77	All other demands = 50. No coordination	477
E.78	All other demands = 50. Coordination	477
E.79	All other demands = 100. No coordination	478
E.80	All other demands = 100. Coordination	478
E.81 All other demands=90. No coordination 479
E.82 All other demands=90. Coordination 479
E.83 All other demands=80. No coordination 480
E.84 All other demands=80. Coordination 480
E.85 All other demands=70. No coordination 481
E.86 All other demands=70. Coordination 481
E.87 All other demands=60. No coordination 482
E.88 All other demands=60. Coordination 482
E.89 All other demands=50. No coordination 483
E.90 All other demands=50. Coordination 483
E.91 Dense grid. All demands=150. No coordination 486
E.92 Improvement by coordination ... 487
E.93 All other demands=100. No coordination 488
E.94 All other demands=100. Coordination 488
E.94 All other demands=90. No coordination 488
E.95 All other demands=90. Coordination 489
E.97 All other demands=80. No coordination 490
E.98 All other demands=80. Coordination 490
E.99 All other demands=70. No coordination 491
E.100 All other demands=70. Coordination 491
E.101 All other demands=60. No coordination 492
E.102 All other demands=60. Coordination 492
E.103 All other demands=50. No coordination 493
E.104 All other demands=50. Coordination 493
List of Procedures

3.1 Node-based approach for determining a coordination site at a node ... 54
3.2 Route-based approach for determining a coordination site at a node ... 55

4.1 Inter-route node transfer procedure ... 70
4.2 Inter-route node exchange procedure ... 72
4.3 Inter-route path exchange .. 77
4.4 Split delivery during route construction .. 79
4.5 Split delivery during route improvement .. 83
4.6 Route scheduling .. 90

5.1 Finding the length of shortest paths between nodes 156
5.2 Creating a path between two points ... 159

6.1 Parallel tabu search approach .. 261
6.2 The inventory routing problem with satellite facilities 263
6.3 Conservative DC1 .. 269
6.4 DC2 .. 280
6.5 Co-locating a geographic coordination site and a node 297
6.6 Combination approach for DC3 .. 297
6.7 Routing strategy DC3 example ... 306
6.8 DC4. Only the location is known ... 310
6.9 DC5. Only the demand is known ... 320
6.10 Routing strategy based on the location of node 15 at $t=10$ 324
6.11 Routing strategy based on the location of node 15 at $t=20$ 327
6.12 Routing strategy based on the location of node 15 at $t=30$ 329
6.13 Routing strategy based on the location of node 15 at $t=40$ 333
6.14 Routing strategy for DC5 example ... 334
6.15 DC6 solution .. 338
6.16 DC7 solution .. 343
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centroid</td>
<td>Geographical centre, weighted by population.</td>
</tr>
<tr>
<td>Close list</td>
<td>List of vehicles that approach within the near radius of each other, and the time step at which this happens.</td>
</tr>
<tr>
<td>Commodity class</td>
<td>Type of payload.</td>
</tr>
<tr>
<td>Coordinated system</td>
<td>A routing and scheduling system to which coordination has been applied.</td>
</tr>
<tr>
<td>Coordination</td>
<td>A relaxation of the standard VRP in which the load for a customer is allowed to vary its integrity or carriage before arrival at that customer.</td>
</tr>
<tr>
<td>Coordination hull</td>
<td>Area of a graph within which lie all nodes and depots and the region in which coordination can occur.</td>
</tr>
<tr>
<td>Coordination point</td>
<td>Location at which coordination may occur.</td>
</tr>
<tr>
<td>Coordination site</td>
<td>Location at which coordination does occur.</td>
</tr>
<tr>
<td>Cul de sac</td>
<td>A section of path that has an intersection at only one end.</td>
</tr>
<tr>
<td>Delivery time</td>
<td>The time required to deliver a customer's demand - a linear function of the demand and the distance travelled to reach the customer's node.</td>
</tr>
<tr>
<td>Demand</td>
<td>The requirement by a node of goods.</td>
</tr>
</tbody>
</table>
Edge
A link between two vertices in a graph.

Essential point
Node or depot. Such a point must not be eliminated from a graph.

Existing route
A route that has been identified without recourse to a change mechanism, e.g. load swapping, that may be applied.

Goods
Items that are delivered to customers. May be divided into different types.

Graph
A combination of nodes, vertices and edges representing a system of customers, depots and vehicle routes.

Grid reduction
Removal of non-essential edges and vertices from a rectilinear grid.

Horizon
Temporal limitation.

Load plan
Result of routing and scheduling. The final assignment of nodes to routes and to vehicles.

Made edge
An edge that has been created, i.e. incorporated into a tour, usually after other edges.

maxVehCap
Variable representing maximum vehicle capacity.

maxVehDist
Variable representing maximum vehicle distance.

Maximum vehicle capacity
The maximum amount of payload that can be carried at any one time by a vehicle.

Maximum vehicle distance
The maximum distance permissible by law (or by other means) that any one vehicle may travel during one work cycle.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastable state</td>
<td>A transition state between two stable states.</td>
</tr>
<tr>
<td>Multi-routed vehicle</td>
<td>A vehicle that services more than one route.</td>
</tr>
<tr>
<td>Node</td>
<td>Customer, represented as a location on a two-dimensional graph.</td>
</tr>
<tr>
<td>Orientation</td>
<td>An indication of the direction of travel of a vehicle around a route.</td>
</tr>
<tr>
<td>Path</td>
<td>The actual locus of a vehicle, including nodes visited and all intervening points.</td>
</tr>
<tr>
<td>Phase space</td>
<td>The phase space of a system is the space of all possible states or behaviours.</td>
</tr>
<tr>
<td>Pre-determined</td>
<td>Decided in advance.</td>
</tr>
<tr>
<td>Near radius</td>
<td>Distance from node or path that is investigated for coordination possibilities. [§4.8]</td>
</tr>
<tr>
<td>No Choice String</td>
<td>A section of a path the has no intersections except at the ends.</td>
</tr>
<tr>
<td>Nodal zone of influence</td>
<td>The area defined by a minimum distance from a node within which coordination has no significant effect.</td>
</tr>
<tr>
<td>Non-coordinated</td>
<td>Something to which coordination has not been applied.</td>
</tr>
<tr>
<td>Payload</td>
<td>A generic term for anything carried by a vehicle that can be collected and/or delivered.</td>
</tr>
<tr>
<td>Rectilinear grid</td>
<td>A mesh that consists only of straight lines intersecting at right angles.</td>
</tr>
<tr>
<td>Routing scheme</td>
<td>Result of routing and scheduling for a system of nodes, depots, demands and vehicles.</td>
</tr>
</tbody>
</table>
Route structure The actual nodes attended (even if not serviced) by each vehicle, in the order in which they are visited.

Service To satisfy the demand (of a node).

Spatial Concerned with distance and physical location.

Split delivery The demand of a node is delivered in batches, possibly by more than one vehicle (at the same or different times) or by the same vehicle at different times. Where split deliveries are permitted, the demand for a particular node could even be split en route, carried by different vehicles, re-combined and delivered intact to the node.

Surplus table Table indicating the differences between actual payloads and/or distances and potential (capacity) values.

Temporal Concerned with time.

Threshold Spatial limitation.

Transfer The movement of goods from one location to another.

Uplift Collection by a vehicle, e.g. of goods.

Vehicle Any object capable of carrying payload, e.g. truck, plane, bus, van.

Work cycle The length of time in which vehicles may be away from the depot. At the beginning of the work cycle, vehicles leave the depot to service nodes; at the end of the work cycle, all vehicles must have been returned to the depot. Normally has the value of one working day.