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Abstract 

Historical land use in New Zealand led to the widespread destruction of indigenous forests, creating a 

complex landscape matrix within which forest fragments now survive. Legislative changes have 

effectively halted large-scale deforestation, yet small-scale fragmentation continues to occur. This 

negatively effects numerous ecological processes vital in maintaining healthy forest structure and 

function. To monitor fragmentation, state of the environment reports often quantify area and 

percentage of landscape change. While these metrics are important, they are poorly suited to 

quantifying the spatial configuration and distribution of forest fragments.  

To quantify the spatial arrangement of indigenous forest remnants, two case studies were undertaken 

at different spatial and temporal scales. The first employed low-resolution (246 m2), multispectral 

derived imagery from the Climate Change Initiative - Land Cover (CCI-LC) dataset to quantify regional 

fragmentation over a 28-year period. Landscape analysis was performed with FRAGSTATS and 

revealed both spatial and temporal variability in the arrangement of forest patches. This was 

evidenced by periods of fragmented growth and decline, along with periods of infilling in some regions. 

Despite several regions recording a net increase in forest area, the overall trend was towards greater 

disaggregation and fragmentation. However, it is essential to exercise caution when interpreting these 

findings as the coarse resolution of the CCI-LC dataset may not adequately describe fragmentation at 

the regional level.  

The second case study employed high-resolution (1 m2), hyperspectral imagery to quantify forest 

fragmentation on a rural property. Imagery was captured with the AISA FENIX hyperspectral camera 

and atmospherically corrected using a pixel-wise radiative transfer model. Land cover was classified 

with a one-dimensional convolutional neural network and landscape configuration was assessed with 

FRAGSTATS. The results were compared to the medium-resolution (1 ha nominal mapping unit) 

Landcover Database (LCDB) and the low-resolution CCI-LC. Greater accuracy in both land cover 

classification and definition were achieved with the hyperspectral imagery. Edge-perimeter and 

connectivity metrics were also substantially improved. Management strategies seeking to reduce 

fragmentation should consider the use of high-resolution, hyperspectral imagery in conjunction with 

landscape metrics to improve classification accuracy and precision. 
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1. Introduction 

Indigenous forests around the world are highly regarded for their unique biodiversity, provision of 

ecosystem services, and natural beauty, but are often threatened or vulnerable to various forms of 

degradation associated with human activities. New Zealand is no exception to the rule, as indigenous 

forests have been severely affected by historical land use and continued pressure from external 

processes. The large-scale clearance of indigenous forests following the arrival of humans along with 

the growth of urban areas, agriculture, forestry, transport networks, and other infrastructural 

developments has resulted in a highly fragmented mosaic of land cover types that have drastically 

reduced the area and connectivity of forested environments. Whilst legislation has been successful in 

halting large-scale deforestation, fragmentation of the forest edge, particularly in the fragmented 

lowlands, continues to occur, altering forest dynamics through increased penetration of edge effects 

into the forest core. Despite the continued degradation and fragmentation of indigenous forests 

remnants, state of the environment reports at all levels of government lack information on the spatial 

configuration and distribution of fragments throughout the landscape which could be used to improve 

the management and allocation of resources to the most at risk areas.  

Quantifying fragmentation into meaningful statistics can be achieved with remote sensing technology, 

land cover classifiers, and landscape analysis software. Multispectral and hyperspectral sensors can 

be used to derive land cover classes from the spectral profile of indigenous vegetation. Spectral 

samples can then be collected and used to train land cover classifiers which model land cover over the 

entire landscape based on features detected in the sampled spectra. This presents a more efficient 

and cost-effective methodology than traditional orthophotography captured with airborne and 

spaceborne cameras. Multi- and hyperspectral sensors can also capture data at a range of spatial and 

temporal scales, allowing for the development of time-series datasets for localised remnant 

monitoring to national and global scale forest inventories. These classified land cover datasets can 

then be analysed with landscape configuration software to derive fragmentation statistics related to 

underlying ecological processes. In doing so, indigenous forest fragmentation can be monitored and 

more appropriately managed to prevent further degradation of these highly valuable natural 

environments.  

1.1 Objectives  

This thesis aims to assess indigenous forest fragmentation at varying scales through two 

complementary case-studies. The first involves quantifying fragmentation at national and regional 

level using a low-resolution (246 m2), multispectral derived, time-series dataset. The purpose of this 

approach is to perform an initial broad-scale assessment of forest fragmentation and identify 
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potentially vulnerable areas. The spatial configuration and connectivity of forest fragments will be 

quantified with the landscape analysis software FRAGSTATS and analysed from a regional perspective. 

Fragmentation patterns occurring over the 28-year period covered by the dataset will then be 

identified and described.  

The second case study will examine farm-scale fragmentation patterns while comparing the spectral 

and spatial resolution differences of three classified datasets. The aim of this study is to establish the 

need for high-resolution (1 m2), hyperspectral imagery in classification of land cover at local scale. This 

will first involve the classification of forest and non-forest vegetation on a rural property using imagery 

acquired with the high-resolution, AISA FENIX hyperspectral camera. Land cover classification will 

utilise a one-dimensional convolutional neural network (1D CNN) and landscape analysis will be 

performed with FRAGSTATS. The corresponding area from the low-resolution CCI-LC and medium-

resolution (1 ha nominal accuracy) Landcover Database v5 (LCDB) will be extracted in ArcGIS and 

analysed with FRAGSTATS as well. The results will then be compared and the benefits of utilising high-

resolution, hyperspectral imagery for localised land cover classification will be described.    
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2. Literature Review 

2.1 Introduction 

New Zealand’s indigenous forests are comprised of unique floral and faunal assemblages spread 

across a diverse range of environments. With high levels of endemism, these environments have 

global significance as many species are found nowhere else in the world (Brockerhoff et al., 2006; 

Dowding & Murphy, 2001; McGlone, 1985; Taylor-Smith et al., 2020). Since the arrival of humans,  

deforestation for agriculture, settlements, and infrastructure has drastically reduced the extent of 

indigenous forests, declining from a pre-human forest cover of 82 % to 23 % of the land surface – a 

loss of some 14,000,000 ha of forest in a period of 750 years (Allen et al., 2013; Ewers et al., 2006; 

Forbes et al., 2020). The largest remaining forests are now predominantly located in hill country areas 

situated along the axial ranges of the two main islands. Lowland forests were largely destroyed but 

many small, isolated remnants are still found scattered throughout the country, mostly in the North 

Island (Dodd et al., 2011; Ewers et al., 2006; Stevenson, 2004).  

The drastic loss of indigenous forest has resulted in various legislative and socio-economic changes 

that prioritise conservation and protection, yet forest degradation continues to occur (Brockerhoff et 

al., 2006; Hawes & Memon, 1998). In 2006, Ewers et al. (2006) found that of the 73 political districts 

in New Zealand, 55 had indigenous forest cover below the 30 % ‘extinction threshold’ level outlined 

by Andren (1994). Around 80 % of indigenous forests are owned and managed by the Department of 

Conservation who are required to protect and conserve them under the Conservation Act 1987 (Allen 

et al., 2013). However, the remaining 20 % (c. 1,500,000 ha) is in private ownership and is regulated 

by the Forests Act 1949 (Amended 1993) and Resource Management Act 1991 (RMA) which are 

administered by the Ministry for Primary Industries (MPI), regional councils, and other territorial 

authorities (Walker et al., 2021). Monks et al. (2019) argue that the continued decline in indigenous 

forests indicates the protection offered by the RMA has been inadequate in preventing further loss of 

indigenous vegetation, habitats, and biodiversity, while advances in technology have increased 

agricultural capabilities on marginal lands typically occupied by indigenous vegetation. Additionally, 

under the Forests Act, landowners can apply to MPI for a Sustainable Forest Management plan or 

permit that enables provisional logging of indigenous timbers on privately owned land.  

2.2 Defining Forest Health 

The continued degradation of indigenous forest remnants on privately owned land threatens forest 

health in a variety of ways (Cocklin & Doorman, 1994; Dymond et al., 2013; Hawes & Memon, 1998). 

Defining the general term ‘forest health’ as an assessment of the condition and function of a forest 

over a range of spatial scales provides two key avenues from which forest degradation can be 
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assessed: condition and function (Cieraad et al., 2015; McGarigal & Marks, 1995; Noss, 1999; 

Trumbore et al., 2015; Young & Mitchell, 1994). Function is primarily associated with biological 

complexity and provision of ecological services (Cieraad et al., 2015). Functional degradation therefore 

describes a forest afflicted by pests and disease, heavily altered by the presence of exotics, or lacking 

associated plant and animal species typically found within the biosphere (Dodd et al., 2011; Eikaas, 

2004; Forbes et al., 2020; Hutchison, 2009; Monks et al., 2019). It may also describe changes in 

ecological systems due to soil and water contamination from anthropogenic activities, microclimatic 

changes associated with greater penetration of edge effects, loss of carbon sequestration capacity 

due to selective logging of mature trees, and many others (Davis et al., 2003; Eikaas, 2004; Stevenson, 

2004; Young & Mitchell, 1994).  

Conditional degradation refers to changes in structural attributes within a forest patch, as well as the 

configuration of patches throughout the landscape (Forbes et al., 2020; Noss, 1999). Within a forest 

patch, structural attributes refer to biomass, density of canopy cover, presence and complexity of 

structural layers (see Figure 1), as well as patch shape, degree of edge fragmentation, and patch size 

(Forbes et al., 2020; Pan et al., 2013). At landscape level, forest structure is primarily associated with 

areal extent but the degree of fragmentation, patch aggregation, spatial distribution, edge density, 

core area, number of patches, and other quantifiable metrics used to describe the spatial 

configuration and connectivity of patches within the landscape are also important (Ewers & Didham, 

2007; Golubiewski et al., 2020; Hutchison, 2009; LaGro, 1991; McGarigal & Marks, 1995; Neel et al., 

2004).  
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Figure 1. Example of Healthy Forest Structure in a New Zealand Forest. Note: A healthy indigenous 

forest remnant in New Zealand will contain multiple vegetative layers including an emergent, canopy, 

sub-canopy, understorey, and seedling/ground cover layers (Department of Conservation, n.d.).  

2.3 Quantifying Forest Health 

The myriad ways in which habitat function and condition can be altered make broad scale analyses 

challenging, but landscape indices can be a useful tool in quantifying the spatial aspects of 

fragmentation that affect biological and ecological functions vital to forest health (McGarigal & Marks, 

1995; Noss, 1999; Walker et al., 2021). The selection of landscape indices should be carefully 

considered with regards to the intended structural or functional component of forest health being 

examined (Rutledge, 2003). For example, Rutledge (2003) notes that in landscape ecology, pattern is 

often given priority over process, when the underlying ecological process should dictate metric 

selection and image scale. This is because results produced from landscape indices can vary widely 

depending on image resolution, classification, and spatial extent, making correlations between 

landscapes of different scales difficult and interpretation of ecological functions ambiguous (Richard 

& Armstrong, 2010; Rutledge, 2003). However, the ecological processes associated with 

fragmentation are now well represented in the literature at patch level but there is a surprising lack 

of fragmentation data available to extrapolate these findings to landscape level (Dymond et al., 2017; 

Kozak et al., 2018; Riutta et al., 2014; van den Belt & Blake, 2014). This presents an opportunity to 

contribute to the growing body of work focussed on understanding and improving indigenous forest 

health. 
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2.4 The Research Gap 

In New Zealand, landscape level analyses of forest fragmentation are generally reduced to percentage 

of land cover and change in area (Ewers et al., 2006; Lafortezza et al., 2010). For example, New 

Zealand’s national state of the environment report, Environment Aotearoa 2022, describes forest 

fragmentation and overall health only in terms of area and percentage of land cover (Ministry for the 

Environment & Stats NZ, 2022). Area is a key landscape statistic employed in analyses of forest health, 

but it is not well suited to describing the degree of fragmentation occurring within a landscape 

(Didham & Ewers, 2012; Ewers & Didham, 2007). This is because fragmentation can increase while 

total forest area remains static or rises (Kozak et al., 2018; McGarigal & Marks, 1995; Monks et al., 

2019).   

The lack of fragmentation data extends to other land cover types in New Zealand as well. Curran-

Cournane et al. (2023), discussing agricultural land fragmentation, note there is no nationally 

established system to monitor landscape fragmentation and data consistency varies across regions. In 

a similar vein, a 2020 report prepared by Manaaki Whenua - Landcare Research (2020) suggests 

quantifying the effects of fragmentation to support state of the environment reporting is a key area 

in which consistency can be improved across all levels of government (local, regional, and national). 

While these studies both come from an urban and agricultural perspective, they serve to highlight the 

growing awareness and demand for land cover fragmentation data in New Zealand that is also missing 

from assessments of indigenous forest health. 

To improve the present fragmentation dataset, additional landscape metrics that quantify other 

spatial aspects associated with patch configuration and arrangement could be employed. For example, 

Bhatia and Cumming (2020) analysed meso-scale deforestation patterns on 23 oceanic islands using 

classified global land cover data and the landscape analysis software FRAGSTATS (McGarigal & Marks, 

1995). Their analysis included landscape metrics designed to quantify the spatial configuration and 

composition of forest cover, such as aggregation and clumpiness indices, shape complexity, edge 

density, and patch-to-patch distance. Bhatia and Cumming (2020) conclude that landscape metrics 

applied at meso-scale were suitable for detecting subtle differences in forest configuration and could 

be used to link local and global deforestation processes.  

In another study, Lafortezza et al. (2010) examined the relationship between fragmentation and 

species composition in New Zealand podocarp-broadleaved forests. Landscape metrics were derived 

from a heavily fragmented hill country forest and an unfragmented lowland forest. The authors, who 

also employed FRAGSTATS in their analysis, quantified various landscape metrics, including fractal 

dimension indices, distance to nearest forest edge, number of patches, edge density nearest 
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neighbour distance, and total edge length. From their results, Lafortezza et al. (2010) found 

fragmentation patterns could be correlated to species composition in New Zealand forests.  

2.5 Edge Effects 

These studies demonstrate the application of fragmentation indices in quantifying different aspects 

of forest health. As the ongoing structural degradation of forest remnants is a considerable threat to 

forest health in New Zealand, fragmentation indices provide a means by which to assess forest 

configuration patterns. In particular, they provide the opportunity to assess the degree of 

fragmentation with regards to the extent and prevalence of edge effects in forest fragments. This is 

because edge effects, which alter forest function and structure, can be associated with the area-

perimeter ratio of forest patches (Didham & Ewers, 2012; Ewers & Didham, 2007; Hutchison, 2009; 

Lafortezza et al., 2010; Norton, 2002; Richard & Armstrong, 2010; Walker et al., 2021; Young & 

Mitchell, 1994).  

Based on numerous global studies, Laurance (2000) explains how edge effects alter forest function 

and structure up to a distance of 150 m from the forest edge. Within this edge zone, changing light 

levels and microclimatic conditions alter environmental and ecological processes that maintain air and 

soil temperature, affecting species interactions, composition, and abundance (Norton, 2002). Similarly, 

Laurance and Yensen (1991) describe changes in seed germination rates, loss of shade tolerant plants, 

increased turbulence and treefall, altered predation dynamics, and proliferation of invasives. In a New 

Zealand study, Young and Mitchell (1994) found evidence of edge effects occurring up to 50 m from 

the forest edge in fragmented podocarp-broadleaf forests. This included differences in species 

composition, biomass, microclimate, tree mortality, and population dynamics within the edge zone. 

Of concern, is that as forest margins are further fragmented, the edge zone extends deeper into the 

interior until the entire patch is dominated by edge dynamics (Young & Mitchell, 1994). When a forest 

patch is dominated by edge effects, indigenous species dependent on interior forest conditions can 

no longer survive in that environment (Barbaro et al., 2012; Harris & Burns, 2000; Lövei & Cartellieri, 

2000). This has been quantified in New Zealand podocarp-broadleaved forests by Young and Mitchell 

(1994) who describe forest patches <1 ha in size as incapable of supporting interior forest conditions 

and fragments up to 9 ha as dominated by edge effects. These findings led the authors to conclude 

that edge effects were likely now a significant feature of forest dynamics in fragmented indigenous 

remnants.   

2.6 Application of Landscape Metrics 

To quantify edge effects with landscape metrics, the perimeter length and patch area are compared 

to determine the degree of edge fragmentation. The area-perimeter relationship can be described 
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from a number of metrics, including total edge (TE), edge density (ED), and the mean fractal dimension 

index (MFDI). Total edge represents the combined perimeter length of each patch in the landscape 

and is used in conjunction with class area to derive ED, measured in units per hectare (McGarigal et 

al., 2002). Total edge can also be used to determine shape complexity which relates to penetration 

depth of edge effects, particularly if the forest margin is highly convoluted (Ewers & Didham, 2007). 

Shape complexity can be computed using a fractal dimension index (Imre & Bogaert, 2004). The 

advantage in using a fractal dimension index, as with ED, is that it facilitates comparisons between 

landscapes of varying size and scale (McGarigal & Marks, 1995; Zeide, 1991). 

Edge fragmentation studies demonstrate the application of landscape metrics in forested 

environments. For example, Riutta et al. (2014) quantified edge fragmentation in England and found 

75 % of surveyed forest area was within 100 m of the nearest edge. This led the authors to conclude 

that a large proportion of forested habitats in England are likely affected by edge dynamics. In a similar 

study conducted in the United States, Riitters et al. (2002) examined forest fragmentation at a range 

of spatial scales. Their findings indicated 62 % of forests were within 150 m of the forest edge, noting 

that edge effects likely influenced ecological processes in most forested areas.   

Along with edge fragmentation, the distribution of forest fragments throughout the landscape is also 

vital to forest health. The spatial pattern and distance between patches can be used to describe the 

degree of connectivity between habitats (Lafortezza et al., 2010; Noss, 1999). As mentioned above, 

small, isolated forest fragments have limited core area in which certain plant and animal species can 

survive, making them especially vulnerable to edge effects (Laurance & Yensen, 1991; Norton, 2002; 

Ohlemüller et al., 2006). In such landscapes, the degree of connectivity between patches becomes 

increasingly important in sustaining metapopulations through the provision of genetic diversity, 

resources, migratory pathways, and resource supply (Ehlers Smith et al., 2019; Keyghobadi, 2007). 

Quantifying the spatial arrangement and connectivity of forest patches can provide the information 

required to identify and monitor at risk areas and plan for improvements in habitat connectivity.  

As with quantification of edge effects, there are numerous landscape metrics that can be employed 

to measure connectivity and spatial distribution. Connectivity, for example, can be described from the 

Euclidean nearest-Neighbour (ENN) distance, a metric that quantifies the mean distance to the 

nearest neighbouring patch (McGarigal et al., 2002). This can be a useful indicator in time-series 

analysis as a declining ENN distance is typically associated with increasing fragmentation (McGarigal 

& Marks, 1995). Another indicator of connectivity is the spatial distribution of patches within the 

landscape which can be described from aggregation indices, such as the Clumpiness Index (CI). The CI 
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is a measure of patch aggregation, or contagion, in a normal distribution which allow for comparisons 

between landscapes of varying size (McGarigal et al., 2002).  

The assessment of forest habitat connectivity with these landscape metrics is well represented in the 

literature. For example, Galicia et al. (2008) used patch density, number of patches, and patch size to 

assess connectivity of dry tropical forest remnants in the lower Papagayo River basin, Mexico. In the 

Montérégie region in Canada, Ziter et al. (2013) employed similar metrics along with the ENN distance 

in their analysis of forest fragmentation and carbon storage. Bhatia and Cumming (2020) used 

aggregation and clumpiness indices in their meso-scale analysis of deforestation and economic growth 

on 23 oceanic islands. In the northern Rocky Mountains, USA, Crist et al. (2005) used aggregation 

indices, ENN distance, patch size, and number of patches to investigate how road networks impacted 

forest connectivity. These are just a few examples that demonstrate the application of landscape 

metrics in a range of different scales and ecological regions.     

2.7 Classified Multispectral and Hyperspectral Imagery 

To apply fragmentation indices and quantify the spatial configuration of indigenous forest, a classified 

land cover map is required for the landscape analysis (McGarigal et al., 2002). Classified land cover 

maps are often created from remotely sensed imagery which provides a more cost-effective data 

acquisition solution through utilisation of airborne and spaceborne platforms than ground surveying 

(Bourgoin et al., 2021; Liang & Wang, 2020; Roughgarden et al., 1991). As Toth and Jóźków (2016) 

explain, this involves passive multispectral or hyperspectral sensors capable of detecting emitted 

radiation over a range of spectral bands (see Figure 1). The greater spectral resolution provides more 

data for feature detection than other remote sensing methods and is therefore better suited to land 

cover classification (Liang & Wang, 2020; Toth & Jóźków, 2016). 
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Hyperspectral and Multispectral Differences  

 

Figure 2. Hyperspectral and Multispectral Differences. Note: Hyperspectral (top) and multispectral 

(bottom) imagery capture a greater range of the electro-magnetic spectrum than traditional 3-band 

cameras. The bands in hyperspectral images are contiguous, capturing more of the spectral profile 

than the discrete wavelength bands captured with multispectral sensors (Giannoni et a., 2018, p. 3).  
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Classification of land cover is generally supervised or unsupervised, referring to the process by which 

pixels are classified (Enderle & Weih Jr, 2005; Liu, 2005). In an unsupervised land cover classification, 

spectral features are detected through clustering and dimension reduction algorithms that allocate 

pixels into a user defined number of land cover classes (Duda & Canty, 2002; Olaode et al., 2014). 

Unsupervised classification is an efficient way to classify large land cover datasets as it removes user 

bias in the selection of training data required for supervised classification (El Abbassi et al., 2021; 

Olaode et al., 2014). However, supervised classification generally achieves greater accuracy and model 

performance due to the inclusion of training data collected by the user (Bahadur KC, 2009; Zhang et 

al., 2016).  

A training dataset is comprised of spectral samples carefully selected for each class and may involve  

the use of ground-truth data or high-resolution imagery to confirm sample selection (Richards & 

Richards, 2022). The sampled spectral data is then used to train a classifier which may take multiple 

iterations to achieve a satisfactory level of model performance (Zhang et al., 2016). Once trained, the 

model can be used to classify an entire image, allocating each pixel to a class within the parameters 

defined during the training process (Richards & Richards, 2022).  

Numerous studies have compared the accuracy of supervised and unsupervised approaches in 

classifying land cover from multispectral data. For example, Hasmadi et al. (2009) compared the 

accuracy of supervised and unsupervised land cover classification with SPOT 5 imagery. They found 

the supervised classification had an accuracy of 90 % while the unsupervised classification was 81 % 

accurate. Similarly, Bahadur KC (2009) used Landsat data to classify land cover, producing a maximum 

classification accuracy of 83 % when supervised and 68 % when unsupervised. In another Landsat 

study, Ahmad and Quegan (2013) reported a supervised accuracy of 97 % and an unsupervised 

accuracy of 93 %.  

Other research has focussed on the benefits of hyperspectral classification over multispectral. Boori 

et al. (2018) performed supervised and unsupervised classification on multispectral Landsat 8 data 

and hyperspectral Hyperion data. They found that the hyperspectral Hyperion data produced more 

accurate results than the multispectral Landsat 8 data, particularly when the classification was 

supervised, though all datasets demonstrated a high degree of accuracy. In another comparative study, 

Govender et al. (2008) found that the classification of multispectral satellite data resulted in genus 

level detection whereas hyperspectral data could be used to detect vegetation at genus and species 

level. The authors attribute the finer spectral resolution of the hyperspectral imagery to the observed 

improvements in vegetation detection.  
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These examples demonstrate how different image classification techniques combined with 

multispectral and hyperspectral imagery can be used to accurately quantify land cover. Using 

supervised classification techniques with hyperspectral imagery provides the best outcomes in terms 

of vegetation detection. However, unsupervised classification with multispectral imagery can still 

provide excellent results.  

2.8 Conclusion 

Improving assessments of forest fragmentation and habitat connectivity is of utmost importance to 

the future health of New Zealand's indigenous forests. To effectively manage and preserve these 

critical ecosystems, it is necessary to utilize advanced technologies such as multispectral and 

hyperspectral imagery from which the spatial configuration of forest remnants can be quantified. By 

mapping fragmentation patterns that affect connectivity and edge dynamics, targeted management 

strategies can be developed that improve forest health and mitigate the negative impacts of 

fragmentation. Prioritizing the implementation of landscape metrics that are associated with 

ecological processes related to forest structure and function will ensure the long-term viability of 

these vital ecosystems and the species that depend on them. 
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3. Case Study 1: National Scale Landscape Fragmentation Analysis  

3.1 Abstract 

Indigenous forests are highly fragmented and disproportionately allocated across New Zealand’s 16 

regional councils. To quantify regional fragmentation characteristics and trends, the classified Climate 

Change Initiative - Land Cover (CCI-LC) dataset was analysed with FRAGSTATS. The analysis revealed 

spatial and temporal variability in configuration of forest patches and their distribution over a 28-year 

period. Configuration-based metrics employed to quantify the area-perimeter ratio indicated 

increasing fragmentation was occurring in most regions. This occurred during periods of both growth 

and decline, though some infilling of convoluted forest fragments was observed. Composition-based 

metrics revealed similar spatial and temporal variability in patch distribution throughout the 

landscape. A common trend was increasing disaggregation towards the end of the study period as 

evidenced by a sharp decline in the Clumpiness Index and Euclidean Nearest-Neighbour distance. The 

increasing fragmentation and spatial disaggregation of indigenous forest patches suggests landscape 

metrics are well suited to monitoring forest health and should be included in state of the environment 

reporting. However, these results should be interpreted with caution as the coarse resolution (246 

m2) of the CCI-LC may not provide sufficient accuracy to quantify fragmentation at regional level. 

3.2 Introduction 

New Zealand’s indigenous forests are highly valued for their cultural significance, habitat provision, 

ecosystem services, and aesthetic beauty yet they remain threatened due to human activities that 

continue to alter forest range, dynamics, and composition. To manage these vulnerable areas, 

landscape managers are increasingly turning to high resolution, remotely sensed, classified imagery 

obtained by earth observing satellites to quantify land cover change (Fynn & Campbell, 2018; Hall et 

al., 2009; Lafortezza et al., 2010). Landscape analysis is then employed to quantify forest loss and gain 

with results frequently presented in state of the environment reports in terms of area, or percentage 

of landscape, change (Ministry for the Environment & Stats NZ, 2022). While important in quantifying 

forest area, these metrics do not describe the spatial arrangement of forest fragments within the 

landscape. Utilising additional metrics that provide valuable spatial information could help improve 

environmental assessments through the inclusion of indices linked directly to ecological processes 

that maintain forest health (Didham & Ewers, 2012; Ewers & Didham, 2007). 

3.2.1 Background 

The present configuration of New Zealand’s indigenous forests, like many around the world, is due to 

historical processes that led to the clearance of forests for agriculture, settlements, and access. The 

first humans to arrive in New Zealand were the Polynesians who reached the North Island in ca. 1250 
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AD. In the following 600 years, large tracts of indigenous forest were cleared, reducing the total extent 

from 82 % to around 53-68 % by 1840 (Ewers et al., 2006; Roche, 2017). In 1840, New Zealand became 

a colony of the British empire and mass European migration began, initiating a second phase of forest 

clearance. The new colonists were encouraged to continue clearing native forests and develop farms 

to increase the productivity of the land. By the mid-1940s, indigenous forest cover had been reduced 

to 23-25 % of land area and most of the remaining forest was located on steep hill country or along 

the axial ranges where agriculture was much more difficult (see Figure 3) (Ewers et al., 2006; Roche, 

2017).  

Growing concern at the rate of forest being cleared eventually led to the Forests Act 1949 which 

legislated against the removal of existing indigenous forest without a sustainable harvesting plan, 

helping dramatically slow the rate of deforestation in New Zealand (Ewers et al., 2006; Tilling, 1992). 

With initial legislation in place, the indigenous forest remnants were protected but fragmented, 

spatially constrained, and disproportionately located on steep hill country (Gillman, 2008; Norton, 

2002; Ogden, 1995). Subsequent legislation (such as the Resource Management Act 1991) afforded 

additional protection yet forest loss is still occurring, further altering the spatial configuration and 

connectivity of forest patches which affects species composition, vegetative structure, landscape 

morphology, and ecosystem services (Barbaro et al., 2012; Ewers & Didham, 2007; Hall et al., 2009; 

Jedraszak et al.; Scarsbrook & Halliday, 1999; Smale et al., 2005; Staples et al., 2012). 
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Historical Extent of Indigenous Forest Cover Compared to Extent in 2008 

 

Figure 3. Historical Extent of Indigenous Forest Cover Compared to Extent in 2008. Note: The extent 

of pre-human indigenous forest cover around 1000 AD (left) compared to the 2008 extent (right). The 

images show the widespread loss and fragmentation of indigenous forests since the arrival of humans 

in 1250 AD (Ausseil et al., 2011, p. 205). 

 

The continued decline of indigenous forests has not gone unnoticed with numerous state of the 

environment reports highlighting the loss of forest, often in terms of percentage of landscape (PLAND) 

change (Ewers et al., 2006; Riitters et al., 2000). Percentage of landscape is a valuable statistic for 

quantifying forest gain and loss, but it can be misinterpreted to infer that as area increases forest 

health improves (Trumbore et al., 2015). For example, Fynn and Campbell (2018) explain how forest 

fragmentation occurs during periods of both gain and loss such that PLAND figures can remain static 

while fragmentation is invariably occurring. Trumbore et al. (2015) argue that area alone does not 

adequately describe temporal changes in shape complexity or spatial configuration and should be 

supported by other metrics to holistically describe forest health. Utilising landscape metrics that 

quantify the spatial configuration and composition of indigenous forest remnants could provide 
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greater insight into regional forest fragmentation dynamics, improving management and future 

planning strategies (Bhatia & Cumming, 2020).  

3.3 Data sources 

3.3.1 Climate Change Initiative Land Cover 

To assess indigenous forest fragmentation in New Zealand, an annually produced, globally classified 

dataset was required with sufficient resolution to detect regional-scale change. This would ensure the 

methodology could be employed globally while providing a long enough time span from which to 

observe and identify changes in forest fragmentation. The selected land cover dataset was developed 

by the European Union’s Earth observation programme, Copernicus, under their Climate Change 

Initiative (CCI). The CCI-LC dataset is provided annually from 1992, has a spatial resolution of 300 m, 

and features 23 parent land cover classes that describe a wide range of environments (see Appendix 

A). The classes are based upon the United Nation’s Food and Agriculture Organisation's (UN FAO) Land 

Cover Classification System (LCCS), a flexible, a-priori classification system with a hierarchical structure 

(UCL-Geomatics, 2017). Class allocation of vegetated areas occurs initially through definition of 

physiognomic and vegetative structure. Additional attributes, such as landform, lithology, climate, 

altitude, and aspect are then considered as the class allocation process proceeds down the hierarchy. 

The advantage to this approach is that land cover classification is objective and generalises well while 

maintaining applicability at varying scales (Herold & Di Gregorio, 2012).  

According to the CCI-LC Product User Guide (UCL-Geomatics, 2017), the dataset is created from 

multispectral images that are classified within an automated processing chain. Multispectral imagery 

acquired by earth-observing satellites (see Table 1) are processed against a baseline land cover map 

generated from the MERIS Full Resolution and Reduced Resolution archives (2003-2012). Land cover 

changes are detected independently from the baseline land cover map at a resolution of 1 km using 

the AVHRR (1992-1999), SPOT-VGT (1999-2013), PROBA-V (2013-2019), and Sentinel-3 (2020) 

datasets. Changes detected for at least two consecutive years are recorded and the baseline land 

cover map is both backdated and updated, including the adjacent area up to 5 km from the detected 

pixel change. Images collected post-2004 are further remapped at 300 m when higher resolution 

imagery is available from the MERIS FR or PROBA-V archives. The process of back- and updating the 

baseline map ensures the classification remains consistent over time. Numerous studies (Bhatia & 

Cumming, 2020; Guidigan et al., 2019; Liu et al., 2018; Mousivand & Arsanjani, 2019; Wang et al., 

2021) have employed the CCI-LC dataset at regional to global scale and demonstrated the consistency 

and inherent value in the dataset for landscape analysis. 
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Table 1. Satellites and Sensors That Provided Imagery for the CCI-LC Dataset. 

 

 

 

3.3.2 Landcare Database 

Prior to performing the landscape analysis, a CCI-LC class was selected to represent NZ’s indigenous 

forest. Class selection was verified with the medium resolution, vector-based Land Cover Database 

(LCDB v5.0) developed by Manaaki Whenua -Landcare Research. The LCDB features 33 land cover 

classes specifically created to describe local land cover. It was designed for use with NZ’s 1:50,000 

topographic maps and maintains the same scale and accuracy with a minimum nominal mapping unit 

of 1 ha (Manaaki Whenua - Landcare Research, 2020).  

Imagery used in the LCDB was captured over five summer periods during 1996-97, 2001-02, 2008-09, 

2012-13, and 2018-19 and was initially developed from classified SPOT imagery with land cover 

polygons manually adjusted and refined (Dymond et al., 2017). The present version, LCDB v5.0, is 

derived predominantly from Sentinel-2 imagery and has a higher classification accuracy than earlier 

versions while retaining backwards compatibility (Schindler et al., 2021). As the LCDB is widely used 

across both regional and national government agencies for planning, land management, and state of 

the environment reporting, it provides a high-quality, well-documented option for validating CCI-LC 

class selection. 

3.4 Methods 

3.4.1 Pre-processing 

To perform class selection, the CCI-LC dataset of 28 classified global land cover maps was retrieved 

from Copernicus’ Climate Data Store (ESA Climate Change Initiative - Land Cover, n.d.) and pre-

Sensor Satellite Resolution at Nadir Years Active 

Advanced Very High-Resolution 

Radiometer (AVHRR) 

National Oceanic Atmospheric 

Administration (NOAA) 

1000 m  1992-1999 

Medium Resolution Imaging 

Spectrometer (MERIS) 

Environmental Satellite (ENVISAT) 300 m Full Resolution 

1200 m Reduced Resolution 

2003-2012 

Vegetation (VGT) Project for Onboard Autonomy – 

Vegetation (PROBA-V) 

100 m VNIR 

200 m SWIR 

2014-Present 

Vegetation (VGT) Satellite Pour l’Observation de la 

Terre Vegetation (SPOT-VGT) 

1150 m 1999-2013 

Ocean & Land Cover Instrument 

(OLCI) 

Sentinel-3 300 m Full Resolution 

1200 m Reduced Resolution 

2016-Present 

Note: (UCL-Geomatics, 2017, p.23-24).    
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processed in ArcGIS. Pre-processing was performed to reduce file size and improve file handling in 

ArcGIS while also improving processing speed during computation of landscape configuration statistics 

(see Figure 4). Each CCI-land cover map was first converted from NetCDF to GeoTIFF format then 

clipped to the NZ coastline using the NZ Coastlines and Islands Polygons from LINZ (Land Information 

New Zealand, 2022). File compression was applied to each raster using lossless LZW (Lempel-Ziv-

Welch) compression to preserve the original raster cell values. Finally, regional information was 

extracted for each of New Zealand’s regional councils (see  ), resulting in 16 regional datasets each 

containing 28 CCI-LC maps correlating to the years covered (see Appendix B for more detail). 

 

 

Import CCI-LC 
raster into ArcGIS

Convert raster 
format NetCDF to 

GeoTIFF

Clip GeoTIFF to 
NZ coastline

Apply lossless 
LZW compression 

Extract regional 
data 

Allocate 
extracted data to 
regional dataset

Schematic Representation of Pre-processing Workflow 

 

Figure 4. Schematic Representation of Pre-processing Workflow. Note: For more information 

see Appendix B. 
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Figure 5. New Zealand’s Regional Council Boundaries. Note: Regional boundary shapefiles were used 

to extract the corresponding CCI-LC data in preparation for landscape analysis.  

New Zealand’s Regional Council Boundaries 
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3.4.2 Class Selection 

Following pre-processing, the LCDB was employed to assist in correlating a CCI-LC class to indigenous 

forest. The LCDB describes a range of indigenous environments that could collectively be described as 

forest, including shrubland, mangroves, matagouri, and manuka/kanuka. There is also provision in the 

LCDB for successional forest types and mixed native/exotic land cover classes. However, for the 

purposes of this work, the indigenous forest class, defined as areas covered in mature indigenous 

beech, podocarps, and/or mixed broadleaved species, was selected (Manaaki Whenua - Landcare 

Research, 2019). The indigenous forest class accounted for 23.5 %, or >63, 000 km2, of New Zealand’s 

total land surface area in the 2018-19 LCDB survey (Manaaki Whenua - Landcare Research, 2019). 

Identification of a CCI-LC class that spatially correlated with the LCDB’s indigenous forest class was 

performed in ArcGIS. The LCDB v5.0 vector layer was retrieved from the Land Resource Information 

Systems Portal (Manaaki Whenua - Landcare Research, 2019) and clipped to the NZ Coastlines and 

Islands Polygons available through the LINZ Data Service (Land Information New Zealand, 2022). The 

indigenous forest class layer was then extracted for each of the five available time periods (1996-97, 

2001-02, 2008-09, 2012-13, and 2018-19). The resulting raster layers were then used to clip the 

corresponding years from the CCI-LC dataset. The five clipped CCI-LC raster layers were then processed 

through the landscape configuration and composition software, FRAGSTATS, to quantify the total land 

area of each class within the LCDB indigenous forest polygons. The CCI-LC class occupying the greatest 

area within the LCDB indigenous forest polygons was then selected as the representative indigenous 

forest class. 

3.4.3 Class Analysis        

Following selection of an indigenous forest class from the CCI-LC dataset, the class was then extracted 

from each regional dataset using ArcGIS and landscape statistics were calculated in RStudio. 

Landscape analysis was performed with the FRAGSTATS derived landscapemetrics package (v1.5.4) by 

Hesselbarth et al. (2019). Six class-based metrics were employed for the analysis: class area (CA), 

percentage of landscape (PLAND), edge density (ED), mean fractal dimension index (MFDI), Euclidean 

nearest-neighbour distance (ENN), and the clumpiness index (CI) (see Table 2). Metrics were 

calculated for each regional CCI-LC dataset and the aggregated results output in table format. 
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Table 2. FRAGSTATS Metrics, Units, and Description. 

Metric Units Description 

Class Area (CA) Hectares (ha) Area encompassed by a class within a given landscape 

Percentage of Landscape 

(PLAND) 

Percent (%) Percentage of landscape covered by a class 

Edge Density (ED) Metres per 

hectare (m ha-1) 

A standardised value describing perimeter to area relationship of a 

class. Higher ED indicates a more fragmented forest margin 

Mean Fractal Dimension 

Index (MFDI) 

None A measure of increasing shape complexity from simple Euclidean 

geometry. Ranging from 1-2, higher MFDI indicates greater shape 

complexity 

Mean Euclidean Nearest-

Neighbour Distance (ENN) 

Metres (m) Mean Euclidean distance to nearest patch of same class. A measure 

of patch connectivity 

Clumpiness Index (CI) Percent (%) A measure of patch aggregation. Range is from -1 (maximum 

disaggregation) to 1 (maximally clumped) with values above zero 

 

3.5 Results 

3.5.1 Class Selection 

The CCI-LC class selection results in Figure 6 reveal 23 of the 28 CCI-LC classes had pixels present within 

the LCDB’s indigenous forest polygons. The class with the greatest representation in the LCDB 

polygons over all five correlating time periods was class 50, described as “Tree cover, broadleaved, 

evergreen, closed to open (>15%)” (UCL-Geomatics, 2017, p.26). Over 80 % of class 50 pixels were 

found within the LCDB indigenous forest polygons, accounting for over 78% of polygon area. The 22 

remaining classes had significantly fewer classified pixels spatially constrained within the LCDB 

indigenous forest polygons. Classes of note included class 100 (‘Mosaic tree and shrub 

(>50%)/herbaceous cover (<50%)), class 110 (Mosaic herbaceous cover), and class 120 (Shrubland). 

Over the five survey periods, these classes had averages of 29 % (class 100), 13 % (class 110), and 27 % 

(class 120). In terms of percentage of LCDB polygon area occupied, class 120 occupied the greatest 

percentage of polygon area at 7.0 %, while class 100 and 110 occupied 5.8 % and 2.9 % respectively. 

The remaining 19 CCI-LC classes had 12 % or less of their classified pixels contained within the polygons. 

When combined, these 19 classes accounted for 5.7 % of total LCDB polygon area. 



22 
 

CCI-LC Classes Within LCDB Indigenous Forest Polygons 

 

Figure 6. CCI-LC Classes Within LCDB Indigenous Forest Polygons. Note: For each of the five available 

LCDB data periods, over 80 % of CCI-LC pixels classified as class 50 could be found within the LCDB’s 

Indigenous Forest class polygons. Class 50 is described as “Tree cover, broadleaved, evergreen, closed 

to open (>15%)” (UCL-Geomatics, 2017, p.26). 

 

3.5.2 Class Area (CA) 

The CA results were normalised and hierarchically clustered into four groups to assist in the 

identification of regional trends and group regions based on trend similarities (see Figure 7). To cluster 

the regions, the normalised CA results were analysed in R Studio using the dendextend package 

(v1.16.0). The largest cluster (blue) shown in Figure 7 contains 12 regions characterised by a general 

increase in CA, with all regions remaining within 0.2 of their maximum normalized value. This includes 

the two regions with the greatest net increase in CA, Canterbury (bold dashed grey line) and Waikato 

(bold dashed orange line). As shown in Table 3, Canterbury increased by 25,527.3 ha and Waikato by 

26,948.6 ha over the study period. Manawatu-Whanganui had the third largest gain in CA with a net 

increase of 24,847.1 ha. The smallest net gain within the cluster occurred in Auckland, which added 

6498.7 ha of indigenous forest. 
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Figure 7. Class Area Results Hierarchically Clustered (top) and Normalised (bottom). Note: The 

dendrogram (top) shows the allocation of regions into one of four clusters based on hierarchical 

analysis of CA results. The blue cluster was the largest containing 12 regions. The line plot (bottom) 

shows the change in CA over the course of the study period. The four solid, bold lines indicate regions 

not found in the largest (blue) cluster. The bold, dashed lines indicate regions with the greatest net 

increase in CA: Canterbury and Waikato.    
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The green cluster in the dendrogram in Figure 7 contains the Bay of Plenty and Tasman which are 

distinguished in the normalised results at the bottom of the figure by bold yellow (Bay of Plenty) and 

green (Tasman) lines. These regions may be characterised by the rise and fall of their profiles, whereby 

both regions rose to a peak in 2008 before descending below 0.4 of their maximum normalized value. 

In Table 3, it can be observed that Bay of Plenty was one of only two regions to record a net loss in 

indigenous forest area, declining by 236.9 ha. This figure is much greater when examining the decline 

in CA from the 2008 peak through to 2020, where the region lost 9,086.1 ha over 12 years. This was 

the largest decline in forest area of all regions. Unlike Bay of Plenty, Tasman had a net gain in 

indigenous forest of 2,393.0 ha. However, Tasman also had a large decline in CA from its 2008 peak, 

losing some 5,417.6 ha of indigenous forest by 2020.  

The red (Nelson) and yellow (Southland) clusters at the top of Figure 7 are the remaining two regions 

and have contrasting profiles. The normalised class results at the bottom of Figure 7 show Nelson’s 

(bold brown line) indigenous forest area declined from 1992 but returned to a similar extent in 2004-

06. From 2006-2020, CA steadily declined, reaching its lowest observed value in 2019-20. Table 3, 

however, shows Nelson had the greatest net loss in indigenous forest area, losing 242.9 ha. In contrast, 

the normalized results in Figure 7 show Southland (bold blue line) increased from 1992, reaching peak 

coverage in 2016 with 1,110,678.8 ha. However, Table 3 reveals that from 2016-2020 Southland 

experienced the second largest post-peak coverage decline in CA, losing 6,681.0 ha of indigenous 

forest.  

 

 



25 
 

Table 3. Net Area Change (1992-2020) and Change in Area from Year of Maximum Coverage to 2020. 

3.5.3 Percentage Landscape (PLAND) 

From the CA results PLAND figures were calculated, revealing wide regional differences in the amount 

of indigenous forest within each landscape (see Figure 8). The region with the highest percentage of 

indigenous forest area was Tasman with 57.65 %. This was followed by West Coast with 56.27 %, and 

Nelson with 50.33 %. Canterbury had the lowest mean PLAND value at 5.16 %, followed by Otago 

(6.21 %), and Auckland (9.82 %). The range of PLAND values also varied, with Otago recording the 

smallest range of 0.43 % and Taranaki the largest at 1.83 %. Taranaki also had the largest net increase 

in PLAND, increasing 1.83 % over the 28-year study period. Wellington (1.42 %), Auckland (1.33 %), 

Gisborne (1.29 %), Manawatu-Whanganui (1.12%), and Waikato (1.10 %) all recorded >1 % net 

increases in the percentage of landscape occupied by indigenous forest. In the Bay of Plenty and 

Nelson where a net loss in CA was observed, PLAND figures declined by -0.02 % and -0.62 % 

respectively.  

Region Total 
Regional 
Area (ha) 

CA 1992 
(ha) 

CA 2020 
(ha) 

Net Change 
1992-2020 

(ha) 

CA 
Max. 
(Year) 

CA 
Max. 
(ha) 

Area Change From CA 
Max to 2020 

(ha) 

Auckland 491179.1 44604.5  51103.2  6498.7  2018 51133.6  -30.4  

Bay Of Plenty 1225600.3 570626.6  570389.8  -236.9  2008 579475.9  -9086.1  

Canterbury 4523298.5 219433.0  244960.3  25527.3  2020 244960.3  0.0  

Gisborne 835850.5 165104.7  175909.6  10804.9  2018 176025.0  -115.4  

Hawke's Bay 1417034.5 301299.0  310142.2  8843.2  2007 311533.0  -1390.9  

Manawatu-Whanganui 2221788.1 337424.8  362271.9  24847.1  2020 362271.9  0.0  

Marlborough 1049684.2 242451.9  252825.6  10373.7  2011 253767.0  -941.4  

Nelson 42363.4 21409.4  21166.5  -242.9  2006 21427.7  -261.2  

Northland 1252968.0 155308.0  164436.6  9128.6  2009 166234.4  -1797.8  

Otago 3187328.5 188445.5  201977.5  13532.0  2015 202372.3  -394.8  

Southland 3183344.2 1096430.1  1103997.8  7567.7  2016 1110678.8  -6681.0  

Taranaki 725663.1 162620.6  175891.4  13270.8  2020 175891.4  0.0  

Tasman 965090.9 552679.1  555072.1  2393.0  2008 560489.8  -5417.6  

Waikato 2458434.3 426609.5  453558.0  26948.6  2015 455768.8  -2210.8  

Wellington 811331.4 190595.6  202044.3  11448.7  2018 202105.0  -60.7  

West Coast 2335109.6 1305434.7  1317946.3  12511.6  2019 1317964.6  -18.2  

Note: The net change in CA shows indigenous forest area increased in all regions except Bay of Plenty 

and Nelson from 1992-2020. In contrast, the change in CA from year of maximum coverage until 2020 

shows most regions were experiencing a decline in indigenous forest area at the end of the study 

period. 
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3.5.4 Edge Density (ED) 

Figure 9 contains the ED results which were again highly variable. Nelson had the highest recorded ED 

value of 10.92 m ha-1 and the highest mean ED value with 10.81 m ha-1. The second (Tasman) and third 

(West Coast) highest mean values were also South Island regions, Tasman recording a mean ED figure 

of 8.17 m ha-1 and West Coast recording 7.99 m ha-1. Bay of Plenty had the highest mean ED in the 

North Island at 6.77 m ha-1. Of all regions, Canterbury had the lowest ED value with 1.77 m ha-1 and 

the lowest mean value with 1.83 m ha-1. The range in ED values was highest in Auckland at 0.6 m ha-1, 

while the smallest range was 0.1 m ha-1 recorded in Hawke’s Bay.  

 

 

Figure 8. Mean Percentage Landscape Results. Note: The mean PLAND results, ordered from highest to 

lowest, reveal wide regional variability in the distribution of indigenous forest. 
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Figure 10 contains the results from hierarchical clustering along with the normalised ED results. Three 

broad trends from Figure 10 can be identified: increasing, a delayed increase, and declining. Regions 

in the blue dendrogram cluster (Auckland, Bay of Plenty, Canterbury, Gisborne, Hawke’s Bay, 

Manawatu-Whanganui, Marlborough, Northland, Otago, Taranaki, Waikato, and Wellington) have a 

profile characterized by a general increase in the density of forest edge per hectare between 1992-

2020. Regions in the red cluster (Southland and Westland) had a delayed increase, rising above a 

normalised value of 0.2 much later than those in the blue cluster. In Southland (bold dashed red line), 

the ED profile did not exceed 0.2 until 2014 and in West Coast (bold dashed yellow line) ED rose above 

0.2 in 2017. Both regions reached their highest observed ED result in 2020. The remaining green 

dendrogram cluster, containing Nelson and Tasman, have profiles that declined. Both Nelson and 

Tasman had their highest normalised values at the start of the study period, with Tasman (bold blue 

line) declining from 1994 and Nelson (bold brown line) from 1999. Edge density in both regions 

declined till 2017 before rising from 2017-2020.      
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 Figure 9. Minimum, Maximum, and Mean Edge Density Results. Note: There was a wide variation in 

ED results, ranging from a low of 1.7 m ha-1 in Canterbury to a high 10.9 m ha-1 in Nelson.    
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Figure 10.  Edge Density Results Hierarchically Clustered (top) and Normalised (bottom). Note: The 

dendrogram (top) shows the three clusters identifiable in the line plot below. Edge density in the red 

cluster generally declined before an increasing from 2017. Regions in the blue cluster experienced a 

more consistent increase in ED while those in the green cluster experienced a delayed increase. 
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3.5.5 Mean Fractal Dimension Index (MFDI) 

The MFDI results in Figure 11 show the shape complexity of indigenous forest patches declined over 

the study period, with many regions experiencing a faster rate of decline from 2015-2020. Bay of 

Plenty (bold orange line) had the highest MFDI values of all regions with a maximum of 1.0574 in 2013. 

However, from 2015-2020 the MFDI fell faster than previously observed, reaching the lowest observed 

value in the region of 1.0523 in 2020. In contrast, Nelson (bold brown line) had the lowest observed 

MFDI values with a minimum of 1.0310 (2017) and a maximum of 1.0399 (1993-1999). Nelson also 

experienced a post-2015 drop, reaching an MFDI minimum in 2017 before increasing to 1.0344 from 

2018-2020. West Coast (bold green line) had the largest range with 0.0115, while the smallest 

observed range was 0.0031 in Waikato (bold blue line).  
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Figure 11. Mean Fractal Dimension Index Results. Note: The MFDI results show shape complexity in 

all regions was low - a potential limitation of the CCI-LC datasets resolution.  
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To investigate the post-2015 decline in MFDI values, hierarchical clustering was performed on the 

normalized MFDI results (Figure 12). The dendrogram in Figure 12 shows the three main clusters 

identified by the analysis and an associated line plot of the normalised MFDI results. The blue cluster 

contains nine regions (Tasman, Bay of Plenty, West Coast, Canterbury, Southland, Gisborne, Hawke’s 

Bay, Northland, and Otago) and may be characterized by a higher shape complexity in the 1990s 

followed by a period of accelerated shape simplification, particularly from 2015 onwards. Tasman 

(bold blue line) is an outlier in the cluster, having steadily declined from a 2005 high through to 2020. 

Regions in the green cluster (Taranaki, Wellington, Manawatu-Whanganui, Waikato, Auckland, and 

Marlborough) have a lower shape complexity in the 1990s than regions in the blue cluster with 

normalized MFDI values below 0.5 in all regions until 1999. However, all green clustered regions 

steadily climb from the mid-1990s to the observed maximum which occurred between 2008-2015. 

Accelerated post-2015 shape simplification is then observed until 2020 like the blue cluster regions. 

The orange cluster is a true outlier, containing only Nelson. Nelson had a high MFDI in the early 1990s 

before falling steadily from 2002-2017. From 2017-2019, the normalised MFDI increased from 0 to 

near 0.4, remaining unchanged from 2019-2020. 
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Figure 12. Mean Fractal Dimension Index Results Hierarchically Clustered (top) and Normalised 

(bottom). Note: Three clusters are shown in the dendrogram at top and are plotted by cluster colour 

in the line plot below for comparison. The sudden decline in shape complexity post-2015 is also 

indicated on the line plot. 
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3.5.6 Euclidean Nearest-Neighbour Distance (ENN) 

Summary statistics of the ENN results in Figure 13 reveal New Zealand’s largest region, Canterbury, 

had the greatest mean patch-to-patch distance, while the smallest region, Nelson, had the shortest. 

Canterbury’s shortest ENN distance was 1267 m observed in 2020 and a maximum of 1411 m was 

observed in 2010. Nelson had the lowest patch-to-patch distance in all three categories with a 

minimum ENN distance of 632 m, maximum of 650 m, and an average of 640 m. This was followed by 

Tasman and West Coast, with average ENN distances of 663 m and 731 m respectively. Auckland, New 

Zealand’s second smallest region, had the second highest ENN values behind Canterbury with a mean 

distance of 1205 m. 

 

 

Figure 13 Minimum, Maximum, and Mean Euclidean Nearest Neighbour Distance. 

 

The normalized ENN results in Figure 14 reveal that between 1992-2020 a net decline in ENN distance 

occurred in 14 of the 16 regions. Like the MFDI results, an accelerated period of decline is observable 

within most regions from 2015. The remaining two regions, Nelson (bold green line) and Tasman (bold 

blue line), are the only areas where a net increase in ENN distance was observed. However, the mean 

patch to patch distance in Tasman was in decline from a 2017 peak through to 2020, while Nelson’s 

ENN distance had increased over the same period.  
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3.5.7 Clumpiness Index (CI) 

The CI results shown in Figure 15 indicate Wellington (bold green line) had the greatest regional 

aggregation of mature indigenous forest patches and Northland (bold black line) had the lowest. 

Wellington’s CI value ranged from a 1997 peak of 0.870 to a low in 2020 of 0.860. Northland fluctuated 

around 0.729 + 0.001 until 2015 when the CI value began to decline. Northland’s 2020 CI value was 

the lowest recorded CI value of all regions at 0.714. Like Northland, all other regions display a post-

2015/16 decline, reaching a minimum, or near minimum, observed CI value by 2020. The only regions 

not to follow this trend were Nelson (bold brown line) and Tasman (bold blue line), though both 
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Figure 14. Normalised Euclidean Nearest Neighbour Distance. Note: Normalised ENN profiles with 

bold lines indicating Nelson and Tasman. The sudden shifts in Nelson’s profile may be related to data 

resolution. 
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regions were declining from maximum CI values observed in 2017. Despite this fall, a net increase in 

CI was observed in both regions. Tasman made a net gain of 0.003 and Nelson increased by 0.005. In 

contrast, Northland had the greatest net loss with -0.014 followed by Auckland with -0.012. 

    

 

Hierarchical clustering results in Figure 16 display the three primary profile trends from the normalised 

CI data. The blue cluster contains 11 regions (Bay of Plenty, Marlborough, Hawke’s Bay, Wellington, 

Waikato, Auckland, Manawatu-Whanganui, Gisborne, Southland, Northland, and West Coast) where 

normalised CI values were all above 0.5 in 1992, rising above 0.8 by 1998. In 2002, the first region in 
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Figure 15. Clumpiness Index Results. Note: Clumpiness Index results show Wellington (bold green line) 

had the highest aggregation of indigenous forest and Northland (bold black line) the lowest. Nelson 

(bold blue line) and Tasman (bold brown line) were the only regions to record a net increase suggesting 

greater an improvement in connectivity of patches. 
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the blue cluster, Wellington (bold blue line), fell below 0.8 while other regions, such as Northland (bold 

blue dashed line), Gisborne, West Coast, and Southland remained above 0.8 till 2015. Post- 2015 all 

regions in the blue cluster are in decline. The yellow clustered regions (Otago, Canterbury, and 

Taranaki) can be similarly characterised post-1998. However, from 1992-1994 all regions in the yellow 

cluster have a normalised CI value below 0.2. From 1994, the normalised CI value began to rise, with 

all regions in the yellow cluster rising above 0.8 by 1998.  The remaining green cluster containing 

Nelson and Tasman both had normalised CI values below <0.2 from 1992-1998. From 1999-2017, both 

Nelson and Tasman’s CI values rose, reaching their maximum observed values in 2017. Both regions 

then experienced a decline but remained above 0.5 by 2020.  
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3.6 Discussion 

Landscape analysis of indigenous forest cover in regional New Zealand reveals spatial and temporal 

variability, supporting studies that suggest forest cover remains threatened and vulnerable to 

anthropogenic activities (McWethy et al., 2010; Ministry for the Environment & Stats NZ, 2022; Norton 

& Miller, 2000; Norton, 2002; Ohlemüller et al., 2006; Stevenson, 2004; Walker et al., 2021). The 

PLAND and CA statistics (Figures 7-8 and Table 3) extracted from the CCI-LC dataset show net increases 
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Figure 16. Clumpiness Index Results Hierarchically Clustered (top) and Normalised (Bottom). Note: 

Hierarchical clustering (top) from normalised regional CI results (bottom). The normalised CI results 

have been coloured by cluster for comparison. 
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in indigenous forest occurred in 14 regions between 1992-2020 with only Nelson and Bay of Plenty 

recording net losses. However, maximum observed areal coverage varied over the study period with 

only three regions (Canterbury, Manawatu-Whanganui, and Taranaki) reaching peak coverage in 2020. 

In the remaining 13 regions, indigenous forest was in decline in 2020 with the greatest post-peak 

losses occurring in Bay of Plenty (9086 ha), Southland (6681 ha), and Tasman (5417 ha). As broad 

indicators of forest health, the CA/PLAND results validate the need for additional landscape 

configuration metrics to describe the effect forest loss and gain has on fragmentation, edge length, 

aggregation, and connectivity in regional New Zealand. 

3.6.1 Edge-Perimeter Relationship 

One aspect of forest health is the relationship between the forest edge and perimeter which can be 

examined by comparing the normalised CA and ED profiles. Assuming no restrictions, forest growth 

that expands steadily outwards from the core will increase in area faster than the increase in 

perimeter length (Midha & Mathur, 2010). Forest health in these areas is thought to be improving as 

the core expands and edge effects are reduced (Barbaro et al., 2012; Coops et al., 2004; Ewers & 

Didham, 2007; Trumbore et al., 2015). A side-by-side examination of the normalised CA and ED profiles 

in Appendix C, reveal area increased faster than perimeter length in regions like Northland (1994-

2009), Manawatu-Whanganui (1994-2001), Gisborne (2000-2005), and Taranaki (1997-2003) and that 

this was more likely to occur in the first half of the study period.  

This type of growth is limited by property and natural boundaries that prevent unrestricted forest 

expansion. However, within forest boundaries the opportunity for infilling to occur and simplify 

complex forest patch shapes also exists. Infilling can be observed from periods where CA increases, 

but ED remains quasi-stable. Examples of infilling can be seen in the West Coast (2000-2015), 

Southland (1995-2008), and Hawke’s Bay (1992-1996). 

 Similarly, growth may occur in areas beyond the range of existing forest patches, creating patterns of 

fragmented growth. Fragmented growth may occur where ED increases at the same rate or faster than 

CA. This type of growth was observed in Auckland (2013-2020), Canterbury (2010-2020), Manawatu-

Whanganui (2002-2020), Marlborough (2001-2004), Otago (1998-2005), Taranaki (2004-2020), 

Wellington (1997-2020), and West Coast (2015-2020). Interestingly, the indicators that fragmented 

growth was occurring were most often seen in the latter half of the study period.  

The edge-perimeter relationship can also indicate forest loss, with evidence for both fragmented and 

managed deforestation over the study period. Midha and Mathur (2010) explain how managed forest 

loss can be described from forest patches where CA is declining, and ED falls at a lesser rate. This is 

the inverse to healthy forest growth and indicates a reduction in both area and shape complexity. 
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Evidence for managed forest loss is seen in Bay of Plenty (2008-2013), Tasman (2012-2017), Northland 

(2009-2013), and Nelson (2004-2011) along with other shorter periods of loss in several regions.  

In contrast to managed forest loss, fragmented forest loss results in an increase in shape complexity 

associated with the growth of the forest edge and a decline in class area. In Northland (2018-2020), 

Bay of Plenty (2015-2020), Hawkes Bay (2015-2020), and Southland (2016-2020) the decline in CA and 

corresponding rise in ED suggest periods of fragmented forest loss occurred. Like fragmented forest 

growth, fragmented forest loss was more frequently observed near the end of the study period. 

3.6.2 Spatial Configuration 

As forest gains and losses affect patch shape, configuration, and distribution across the landscape, 

metrics that quantify such changes were employed to develop a more holistic picture of forest 

fragmentation. To measure changes in patch complexity the MFDI was calculated for each region. The 

MFDI, which has a scale range of 1-2, can be used to assess changes in patch shape from simple 

Euclidean geometry (1) to more complex patterns (2) which may indicate increasing fragmentation 

(Ewers & Didham, 2007; McGarigal & Marks, 1995). Figure 12 shows the rise in MFDI values prior to 

2012-2015 in green clustered regions, indicating a rise in patch shape diversity and heterogeneity. In 

contrast, MFDI values in Nelson (yellow cluster) gradually declined over the same period which could 

be a product of greater shape homogenization and a simplification of existing patches.  

The post-2015 decline seen in most regions seems to suggest a period of rapid shape simplification. 

However, LaGro (1991) explains how sharp declines in MFDI could still indicate rising fragmentation if 

a large proportion of small fragmented patches are reduced below the minimum mapping unit of the 

dataset. As the minimum mapping unit of the CCI-LC is 246 m2, and the range of MFDI values from 

1.031 in Nelson (2017) to 1.057 in Bay of Plenty (2013) were already close to Euclidean, the post-2015 

decline may be related to data resolution. Support for this hypothesis may be found in the relationship 

between rising ED figures and low area growth during the same period which suggest shape 

fragmentation was occurring.  

The CI can help detect spatial configuration changes indicative of a rise in forest fragmentation by 

assessing the degree of patch aggregation independently from shape and area (McGarigal & Marks, 

1995; Neel et al., 2004). The CI ranges from -1 (highly disaggregated) to 1 (highly aggregated) with 0 

indicating patch aggregation equal to a random distribution. The CI results in Figure 15 show patch 

aggregation ranged from a low of 0.71 in Northland (2020) to a high of 0.87 in Wellington (1997-1998), 

indicating indigenous forest patches in regional New Zealand have high aggregation. However, all 

regions, except Nelson and Tasman, recorded a net decline in CI over the study period. The net decline 

in CI, particularly towards the end of the study period, suggests indigenous forest patches are 
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becoming increasingly disaggregated, or fragmented, over time. In Nelson and Tasman, the net 

increase in CI signals an improvement in patch aggregation overall, but declining CI values in both 

regions from 2017-2020 indicates these regions also remain at risk.   

Further support for increasing fragmentation can be found in the ENN results, a metric used to 

describe the spatial distribution of patches within a landscape. Landscapes with a low ENN distance 

have a higher number of patches and as fragmentation occurs the distance between patches declines 

(Lafortezza et al., 2010; McGarigal & Marks, 1995; Midha & Mathur, 2010; Taubenböck et al., 2019). 

The results in Figure 14 indicate most regions were experiencing increasing fragmentation over the 

28-year period which accelerated from 2015-2020.   

3.6.3 Identifying Hotspots 

The results presented here point to growing fragmentation of indigenous forests across regional New 

Zealand but can be further utilized to identify hotspots of accelerated change. Auckland, for example, 

stands out as the second smallest region while having the second highest mean ENN distance between 

patches, the widest ENN range (169 m), and <10 % indigenous forest cover. The large distance 

between patches and the low percentage of land area covered in forest indicate the net growth in CA 

is creating a patchwork of small, isolated forests throughout the heavily urbanised environment which 

will be dominated by edge effects. The rise in ED coupled with declines in the CI, MFDI, and ENN 

distance also support increasingly fragmented growth, especially from 2015-2020.  

Another example can be taken from Nelson which has a much higher proportion (>50 %) of indigenous 

forest than Auckland. In Nelson, ED and MFDI values trended downwards from 1992-2017 and CI rose, 

an indication that forest patches were being simplified and aggregated, due to broader-scale forest 

management as opposed to localised edge fragmentation. Post-2017, however, CA and CI declined 

while ED and MFDI began to rise. These results suggest localized edge fragmentation was occurring 

leading to an increase in the length of forest edge per hectare and a rise in patch complexity.  

These examples demonstrate how landscape metrics can be used to identify periods of increased 

fragmentation and habitat degradation. They also highlight the complexity in monitoring regional 

forest fragmentation and the need for flexibility in the management approach. However, with this 

information, landscape managers can adopt strategies that target the underlying cause of forest 

degradation and look to improve the health and connectivity of existing forest fragments over the 

creation of new isolated plantings. In Auckland, for example, landscape managers may look to improve 

patch size and aggregation through alternative urban planning approaches that incorporate 

greenbelts or migration pathways, while in Nelson a policy change or public awareness campaign may 

be necessary to halt the rise of edge fragmentation (Ehlers Smith et al., 2019; Norton & Miller, 2000). 
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In doing so, management strategies can be more effectively targeted towards regional issues that are 

contributing towards a decline in forest health. 

3.6.4 Data Limitations 

Consideration should be given to the resolution of the CCI-LC dataset in assessing regional forest cover 

patterns. Staples, Ahmed, and Ewers (2012) explain how data resolution should match the scale of 

change to be monitored. Likewise, McGarigal and Marks (1995) describe how low-resolution raster’s 

produce longer edge results due to the inherent matrix-like structure of raster data. With a pixel size 

of 246 m2, the resolution of the CCI-LC dataset is well suited to global and national scale analyses with 

the benefit of easy accessibility, annual availability from 1992-2020, a high-quality classification 

methodology, and acceptance within the academic community (Bhatia & Cumming, 2020; Mousivand 

& Arsanjani, 2019). However, at regional level, the coarse resolution of the CCI-LC was found to limit 

the accuracy of results, making it best suited to preliminary investigations. Higher resolution (<10 m2) 

multi- and hyperspectral datasets would improve accuracy and enable detection of small-scale 

changes, allowing landscape managers to pinpoint individual forest fragments and affected areas 

where gains and losses are occurring.  

3.7 Conclusion 

The landscape configuration metrics employed in this study indicate complex spatial configuration 

patterns and dynamics are present in mature indigenous forest patches across regional New Zealand. 

In line with other research, these results suggest indigenous forest management could benefit from 

the inclusion of additional landscape configuration metrics to support PLAND and CA as the primary 

indicators of forest health by providing further insight into the spatial dynamics of land cover change. 

In this regard, the resolution of the CCI-LC dataset used to generate landscape metrics proved to be 

sufficient for preliminary investigations but was limited by the low resolution of the raster dataset. 

Higher resolution multi- or hyperspectral data would improve the accuracy and precision of results, 

providing a more comprehensive dataset from which a greater understanding of forest patch 

dynamics, distribution, aggregation, and shape complexity can be derived. With this information, 

regional landscape managers will be able to effectively target management strategies towards 

localized hotspots of change and limit further degradation of indigenous forests.  
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4. Case Study 2: Improving Landscape Configuration Statistics at Farm-

Scale with Classified, High-Resolution, Hyperspectral Imagery  

4.1 Abstract 

The results presented below demonstrate how high-resolution hyperspectral imaging, supervised 

classification, and landscape statistics can be used to classify and analyse land cover at farm-scale. 

This was achieved by collecting hyperspectral imagery above a rural property with the full-spectrum 

(380 nm – 1250 nm), high-resolution (1 m2) AISA FENIX camera mounted in a Cessna 185. The imagery 

was radiometrically corrected in CaliGeoPRO, atmospherically corrected with a radiative transfer 

model, and georectified using ENVI software. A forest class and a non-forest class were then spectrally 

sampled from the georectified reflectance and used to train a 1D-CNN model. The classified output 

was analysed with the FRAGSTATS based landscapemetrics package in RStudio. The classified FENIX 

landscape statistics were compared to the low-resolution (246 m2) CCI-LC and medium-resolution (100 

m2) LCDB classified datasets. Results reveal the FENIX had greater patch detection and precision in 

quantifying area and perimeter-based metrics than the multispectral derived LCDB and CCI-LC 

datasets. These findings present both financial and environmental opportunities to landowners and 

manages with large rural properties that incorporate diverse income streams from multiple land cover 

assemblages.   

4.2 Introduction 

Low resolution (>100 m) multispectral imagery has been successfully used to describe land cover at 

global and national scales but is not well-suited to regional scale analyses where high resolution 

imagery is required to detect small-scale change. High resolution (<2 m) multispectral imagery can 

provide greater detail at finer scales but is limited by the number of discrete spectral bands available 

for use in land cover classification models. High resolution hyperspectral imagery can satisfy the 

demand for both high resolution data and greater spectral ranges from which classification models 

can be improved, and additional land cover types can be detected. Utilising high resolution 

hyperspectral imagery to predict land cover can also improve the output of landscape configuration 

models at regional and local scales. This study aims to evaluate landscape metrics from spatial data of 

forested land at different spatial resolutions for the purpose of farm-scale management and planning.   

4.2.1 Background 

Forest inventories are important tools employed in forest health assessments to quantify changes in 

area, configuration, and distribution at various scales (Singh & Singh, 2013; Trumbore et al., 2015). At 

global and national scale, low resolution (>100 m2) classified multispectral satellite imagery is 
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frequently used to quantify spatial change as it is well-suited to broad land cover assessments that 

require a good degree of accuracy while retaining the data handling capabilities associated with 

smaller image file size (Linyucheva & Kindlmann, 2021). For example, the European Space Agency 

(ESA) has developed the Climate Change Initiative - Land Cover (CCI-LC), a classified annual dataset 

available from 1992-2020 that has a spatial resolution of 246 m2 and an image size of ~2.2 GB. The 

CCI-LC is derived from imagery acquired by several space-borne multispectral sensors and classified 

using a robust methodology that utilizes an a-priori classification system for general applicability over 

a range of scales (Herold & Di Gregorio, 2012; UCL-Geomatics, 2017). Several studies have 

demonstrated the applicability of the CCI-LC in a range of contexts and scales for describing forest 

cover change (Bhatia & Cumming, 2020; Guidigan et al., 2019; Linyucheva & Kindlmann, 2021; 

Mousivand & Arsanjani, 2019). However, Mousivand and Arsanjani (2019) note that while excellent 

for global analysis, the low spatial resolution can limit detection of smaller land cover features.  

At national and regional scale, higher resolution multispectral imagery can be employed to improve 

spatial resolution and classification accuracy. In New Zealand, national and regional scale forest 

assessments are typically described from land cover statistics estimated from the Land Cover Database 

(LCDB V5.0) (e.g., Cieraad et al., 2015; Dymond et al., 2017; Golubiewski et al., 2020; Honnor et al., 

2011; Pannell et al., 2021). The LCDB was developed by Landcare Research – Manaaki Whenua and 

may be defined as a medium-high resolution dataset with a nominal mapping unit of 1 ha (Manaaki 

Whenua - Landcare Research, 2020). It is available as a vector-based shapefile and covers five different 

dates: 1996/97, 2001/02, 2008/09, 2012/13, and 2018/19. Land cover classes have been classified 

from multispectral sensors onboard SPOT and LandSat satellites and manually enhanced through 

digitization and user feedback (Dymond et al., 2017). The length, resolution, and excellent 

classification methodology make the LCDB a valuable tool for regional and national scale forest health 

assessments.  

Despite the high quality of the LCDB, it does have limitations as described by Dymond et al. (2017). 

The authors investigated five LCDB classes, including the indigenous forest and broadleaved 

indigenous hardwood classes, to determine the accuracy of change detection. They quantified class 

accuracy using over 30,000 samples from the 2001/02 and 2008/09 versions of the LCDB, finding 

smaller areal changes had a higher level of uncertainty at +30 % compared to +10 % for large area 

change. As a result, Dymond et al. (2017) suggest small-scale change in indigenous land covers have a 

significantly greater risk of being overlooked in forest threat assessments. They go on to describe how 

reducing uncertainty by improving small-scale change detection would require a higher resolution 

dataset than the present LCDB is constructed on.  
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High-resolution hyperspectral imagery has the potential to fulfill this need and contribute to improved 

forest health assessments by reducing uncertainty in classification accuracy at finer scales. For 

example, Pullanagari et al. (2017) explain how fine-scale hyperspectral imagery can be used to identify 

urban materials more accurately than multispectral data due to the greater range of spectral 

information available for feature identification during classification. In forested environments, Awad 

(2018) used supervised and unsupervised classification algorithms coupled with ground-truthing to 

compare the performance of two multispectral and two hyperspectral sensors in detecting stone pine 

(Pinus pinea L.). Awad (2018) found that supervised classification from the two hyperspectral sensors, 

Hyperion and CHRIS-Proba, had respective accuracies of 82 % and 92% compared to 52 % and 60 % 

for the multispectral ALI and Landsat8 sensors. Similarly, Halme et al. (2019) found hyperspectral 

imagery was better for species detection in forests than multispectral imagery due to the higher 

spectral resolution. Collectively, these studies illustrate how the increased spectral information in 

hyperspectral imagery can be utilized in a supervised classification algorithm to produce greater class 

accuracy than multispectral imagery with similar spatial resolution.  

At national scale, the cost of acquisition and computational intensity required to process high-

resolution hyperspectral data remains a limiting factor. However, at local-scale, aircraft equipped with 

a high-resolution hyperspectral camera can be deployed at relatively low cost to monitor hotspots of 

change, improve image resolution and classification along the forest edge, or provide species-specific 

information to property owners (Vali et al., 2020). This data could also be combined with larger-scale, 

low and medium resolution datasets, like the LCDB and CCI-LC, to provide additional information in 

forest health assessments. Furthermore, forest health assessments could benefit from the improved 

spatial and spectral resolution of hyperspectral imagery when quantifying forest configuration and 

connectivity of a particular species within a landscape.    

4.3 Methods 

4.3.1 Study Area 

To demonstrate the benefits of high-resolution hyperspectral imagery at local-scale, imagery from a 

rural property in the Manawatu-Whanganui region was acquired on the 8-9 December 2018. The 

property covers around 5,680 ha of hill country and has an effective pasture area of 4,070 ha. Pastural 

land is used primarily for grazing sheep and cattle with areas of manuka (Leptospermum scoparium) 

and kanuka (Kunzea ericoides) employed in honey production. Large tracts of indigenous forest are 

also present on the property along with some plantations of exotic pines, poplar, and willow. 
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4.3.2 Survey Information 

Imagery was collected with Specim’s full spectrum AISA FENIX hyperspectral camera mounted in a 

Cessna 185. The survey was flown on a cloud-free day with sun altitude >35° to ensure optimal lighting 

conditions, avoid cloud shadowing, and minimize shadow length of surface objects. The survey was 

flown at 2,170 ft above ground level (AGL) to achieve a ground sampling distance of 1 m2 per pixel at 

nadir. As the FENIX’s push-broom sensor has a 384 m swath width, 45 flight lines (oriented north-

south) were required to capture the 5680 ha property and maintain sufficient image overlap. 

4.3.3 Image Processing 

Following data capture, the hyperspectral images were radiometrically and atmospherically corrected 

to remove sensor bias, estimate atmospheric aerosols, and account for viewing and illumination 

geometry. Radiometric correction was applied first to the images using Specim’s CaliGeoPRO software 

which converts the raw digital numbers stored in each pixel into radiance values. CaliGeoPRO was also 

used to extract navigational data collected by the aircraft’s dGPS system and generate geographic 

look-up tables (GLTs) for georectification in post-processing.  

Conversion to reflectance involved processing the navigational data and radiometrically corrected 

images using a radiative transfer model. Together, the radiative transfer model and navigational data 

were used to estimate water vapour above each pixel and determine the viewing illumination and 

geometry of a given pixel in relation to the sensor (Bhatia et al., 2018). A correction was then applied 

to each pixel value using the radiative transfer model, converting the images from radiance to 

reflectance. Upon completion, the atmospherically corrected images were georectified using the GLTs 

in preparation for classification. 

4.3.4 Classification 

A supervised classification methodology employing a one-dimensional convolutional neural network 

(1D-CNN) was selected to classify the atmospherically corrected images. Training data for the 

classification was collected for each strip using the georectified reflectance in ENVI 5.6 and a higher 

resolution (48 cm) RGB aerial orthophoto (acquired March 2018) to confirm spectral sample selection 

(see Figure 17). For the purposes of this work, the sampled pixels were classified as either forest or 

non-forest, with the forest class including exotic species, such as pines, willows, and poplars, along 

with native species. The non-forest class contained only pastural land, water courses and ponds, 

infrastructure, and exposed soil and gravel. Sample selection was performed in ENVI by collecting pixel 
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information for the given class in a range of topological regions spread across the property. Around 

1700 pixels were sampled for each class and aggregated for model training.  

To train the 1D-CNN, the sampled spectra were iteratively processed until a minimum model 

performance of 0.97 was achieved in both classes. Each iteration involved training the model, checking 

the classified outputs against the RGB orthophoto, and collecting additional spectral samples from 

poorly classified or noisy areas. Once model performance reached 0.97 in both classes, the 45 

classified images were mosaicked together in ENVI and a 3x3 median filter was applied to remove 

remaining noise and visually improve the layer. The final mosaicked layer, shown in Figure 18, contains 

the classified forest class (blue areas) overlying the RGB orthophoto.   

Figure 17. High Resolution RGB Orthophoto of the Rural Property Surveyed with the AISA FENIX. 
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 To compare the classified FENIX layer against the classified CCI-LC and LCDB layers, land cover classes 

correlating with forested and non-forested areas were identified within each dataset. This was 

achieved by clipping the 2018 LCDB and CCI-LC layers to the property boundary and extracting the 

classes shown in Table 4. Water and pastural classes were allocated as non-forest and the remaining 

classes were visually checked against the high resolution RGB orthophoto to ensure they were situated 

over native or mixed forest regions. Only two classes, the LCDB’s harvested forest (Class 64) and the 

CCI-LC’s mosaic cropland/natural vegetation (Class 30), were reallocated as non-forest during this 

stage of the process. The final allocation of each datasets classes as forest or non-forest is shown in 

Table 4, while Figure 19 displays the composition of forest classes over the high resolution RGB 

orthophoto.  

 

 

Figure 18. Classified Mixed Forest Class (Blue Areas) Derived from FENIX Imagery. 
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Table 4. Allocation of Forest & Non-Forest Land Cover Classes from the LCDB and CCI-LC Datasets. 

 LCDB  CCI-LC  

Class 

Code 

Description Class 

Code 

Description 

FO
R

ES
T 

45 Herbaceous Freshwater Vegetation 40 Mosaic natural vegetation (tree, shrub, 

herbaceous cover) (>50%) / cropland 

(<50%) 

51 Gorse and/or Broom 50 Tree cover, broadleaved, evergreen, 

closed to open (>15%) 

52 Manuka and/or Kanuka  
 

100 Mosaic tree and shrub (>50%) / 

herbaceous cover (<50%) 

54 Broadleaved Indigenous Hardwoods 110 Mosaic herbaceous cover (>50%) / tree 

and shrub (<50%) 

56 Mixed Exotic Shrubland 120 Shrubland 

68 Deciduous Hardwoods   

69 Indigenous Forest   

71 Exotic Forest   

N
O

N
-F

O
R

ES
T 

21 River 30 Mosaic cropland (>50%) / natural 

vegetation (tree, shrub, herbaceous 

cover) (<50%) 

40 High Producing Exotic Grassland 130 Grassland 

41 Low Producing Grassland   

64 Forest - Harvested   
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4.3.5 Landscape Analysis 

Following completion of all three classified land cover layers, landscape configuration statistics were  

calculated in R-Studio with the FRAGSTATS derived landscapemetrics package (Hesselbarth et al., 

2019). Each class level metric along with their respective units and a description are displayed in Table 

5. Selected metrics describe various aspects of fragmentation, shape, and configuration within the 

Figure 19. Land Cover Classes Merged to Create a Composite Forest Class for the LCDB and CCI-LC.  



49 
 

landscape and include class area, percentage landscape, total edge length, edge density, mean fractal 

dimension index, mean Euclidean nearest-neighbour distance, and clumpiness index.  

 

Table 5. FRAGSTATS Landscape Metrics, Units, and Description. 

Metric Units Description 

Class Area (CA) Hectares (ha) Area encompassed by a class within a given landscape 

Percentage of Landscape 

(PLAND) 

Percent (%) Percentage of landscape covered by a class 

Total Edge (TE) Metres (m) Total length of class perimeter. Useful in monitoring changes in edge 

fragmentation   

Edge Density (ED) Metres per 

hectare (m ha-1) 

A standardised value describing perimeter to area relationship of a 

class that can be employed across landscapes of varying size. Higher 

ED indicates a more fragmented forest margin 

Mean Fractal Dimension 

Index (MFDI) 

None A measure of increasing shape complexity from simple Euclidean 

geometry. Ranging from 1-2, higher MFDI indicates greater shape 

complexity. A rise in MFDI may be an indicator that edge 

fragmentation is occurring  

Mean Euclidean Nearest-

Neighbour Distance (ENN) 

Metres (m) Mean Euclidean distance to nearest patch of same class. A measure 

of patch connectivity across a landscape 

Number of Patches (NP) None Total number of patches within a class. Establishes a baseline for 

monitoring of patch fragmentation   

Clumpiness Index (CI) Percent (%) A measure of patch aggregation. Range is from -1 (maximum 

disaggregation) to 1 (maximally clumped) with values above zero 

suggestive of greater patch aggregation or connectivity 

 

4.4 Results 

Figure 20 shows the difference in class area results between the datasets along with the proportion 

of forest and non-forest within the landscape. The total property area calculated by FRAGSTATS is 

shown above each column. This was quantified from the classified CCI-LC raster as 5605.9 ha, 

composed of 1032.5 ha of forest and 4573.4 ha of non-forest. The PLAND results, shown within the 

column, were 18.4 % forest and 81.6 % non-forest. The LCDB had a higher total class area of 5679.8 
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ha which was composed of 1372.3 ha of forest, covering 24.2 % of the landscape. Non-forested area 

was quantified as 4307.5 ha, equivalent to 75.8 % of the landscape. The property area quantified from 

the FENIX imagery was 5680.6 ha with 70.4 %, or 4001.0 ha, allocated as non-forest. Percentage of 

forest cover was highest in the FENIX imagery at 29.6 % of total land area (1679.6 ha).  

The metrics NP, TE, and ED were selected to further describe the area to perimeter relationship with 

results displayed in Table 6 for the forest class only. The NP result shows CA was calculated from 11 

patches within the CCI-LC layer, 102 patches in the LCDB layer, and >40, 000 in the FENIX layer. The TE 

length of those patches (excluding property boundary) was computed as 37,460 m (CCI-LC), 271,097 

m (LCDB), and 2,811,223 m (FENIX). These figures were converted to density per hectare in FRAGSTATS 

with 6.7 m ha-1 for the CCI-LC, 47.7 m ha-1 for the LCBD, and 494.9 m ha-1 for the FENIX.  

 

 

18.4%
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29.6 %
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75.8 %
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Figure 20. Forest and Non-Forest Class Area Quantified with FRAGSTATS. Note: The total area (forest 

and non-forest) is shown above each column. The figures within each column are the percentage of 

total land area occupied by forest (green) and non-forest (grey). Forested area was highest in the 

FENIX layer.  
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Table 6. The Quantified Landscape Metric Results for Each Dataset. 

  

Patch shape complexity and configuration was quantified by the ENN distance, MFDI, and CI metrics 

which are displayed at the bottom of Table 6. These results show that the CCI-LC had an ENN distance 

of 1068 m, the LCDB was recorded as 95 m, and the high-resolution FENIX had an average patch-to-

patch distance of 6 m. Average shape complexity was quantified with the MFDI as 1.03 in the CCI-LC, 

1.15 in the LCDB, and 1.16 in the FENIX layer. Forest configuration across the landscape was quantified 

using the CI which describes the likelihood of patch aggregation in a random distribution. The LCDB 

had a CI value of 0.79, the LCDB had the highest value at 0.99, and the FENIX had a CI value of 0.94.  

4.5 Discussion 

In this study, corresponding landscape configuration statistics were derived from low, medium, and 

high-resolution classified imagery of a rural property located in the Manawatu-Whanganui hill country. 

The low-resolution CCI-LC dataset, designed for global and national scale analyses, was found to be 

too coarse for utilization in farm-scale land cover classification, despite correlating well with large 

tracts of forest across the 5680 ha property (See Figure 21). The limiting factor is primarily the 246 m2 

pixel size which resulted in only 11 classified forest patches compared to 102 in the LCDB layer and 

>40,000 in the FENIX layer. The CCI-LC’s larger pixel size inevitably incorporates non-forest areas 

within areas classified as forest, reducing accuracy across all derived landscape statistics. An example 

can be seen in Figure 5 where both forest and non-forest classes are contained within the yellow 

hatched area indicating the extent of the forest class. Beyond the yellow hatched area, forest can also 

be seen mis-classified as non-forest.  

Metric CCI-LC LCDB FENIX 

Total Property Area (ha) 5605.9 5679.8 5680.6 

CA (ha) 1032.5 1372.3 1679.6 

PLAND (%) 18.4 24.2 29.6 

NP 11 102 40277 

TE (m) 37460 271097 2811223 

ED (m ha-1) 6.7 47.7 494.9 

ENN (m) 1068 95 6 

MFDI 1.03 1.15 1.16 

CI (%) 0.79 0.99 0.94 
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Figure 21. Comparison of Classification Accuracy Between Layers. Note: The low-resolution CCI-LC 

layer (top) misclassifies large areas of forest (yellow hatched area) as non-forest. The LCDB layer 

(middle) has greater accuracy, but large forested areas (likely recolonised between updates of the 

database) have been misclassified. The FENIX (bottom) has the highest classification accuracy which 

is vital to detecting fragmentation at local scale.  

 



53 
 

Another issue with using the CCI-LC at farm-scale is that the classifier was designed with broad land 

cover categories intended for general applicability across globally diverse environments. The 

multispectral derived LCDB attempts to resolve this issue with a classification specifically created for 

New Zealand land cover. With its 1 ha nominal accuracy and wide range of land cover categories, the 

LCDB is the most comprehensive land cover database available in New Zealand for national and 

regional analyses. 

There are, however, two significant limitations to the LCDB that restrict its capabilities for use in 

managing land cover change at local-scale. The first limitation is that due to the size and level of detail 

required in maintaining a national dataset, updated versions of the LCDB are only released every 4-7 

years. In between releases, land cover can change dramatically, particularly in areas where colonizing 

species, such as manuka, kanuka, gorse, or broom are allowed to take hold. For example, in Figure 21, 

manuka, kanuka, and smaller patches of regenerating native forest are visible beyond the classified 

LCDB forest polygons (pink hatched area). This could become an issue when up to date classified 

imagery is required for economic purposes like managing manuka honey production, calculating 

carbon credits, assessing storm damage, quantifying effective pasture area, and monitoring invasive 

weed species. 

The second limitation of the LCDB is that the classified polygons that comprise the database lack 

definition along class boundaries. As can be seen in Figure 22, the higher resolution FENIX polygons 

(blue) correspond better with the forest boundary than the LCDB polygons (pink). This is reflected in 

the TE results in Table 6 which shows the combined boundary length of LCDB forest patches measured 

271,097 m - a significant improvement over the low-resolution CCI-LC’s 37,460 m TE result. However, 

the high-resolution FENIX boundary measured over ten times higher than the LCDB with a total length 

of 2,811,223 m. The derived ED result, which is a product of TE and landscape area, also improved 

with resolution, rising from 47.7 m ha-1 (LCDB) to 494.9 m ha-1 (FENIX) (McGarigal & Marks, 1995).  

In utilizing high-resolution hyperspectral imagery for classification of class area and perimeter metrics, 

shape configuration and aggregation metrics were improved as well. In Table 6, the ENN distance, for 

example, dropped from 95 m in the LCDB classification to 6 m in the FENIX. The FENIX’s 6 m mean 

patch-to-patch distance implies the distribution of forest patches is more fragmented than the LCDB 

result. The CI result supports higher fragmentation with a 5 % decline in patch aggregation between 

the LCDB (99 %) and FENIX (94%) layers. Additionally, a slight rise in the MFDI from 1.15 (LCBD) to 1.16 

(FENIX) suggests mean shape complexity was more convoluted in the FENIX classification – an 

indicator of greater edge fragmentation.  
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Figure 22. Comparison of the Difference in Edge Detail Between the LCDB and FENIX layers. 
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Combined, the landscape statistics derived from the high-resolution hyperspectral imagery provide a 

more detailed summation of forest patch area, configuration, and fragmentation at farm-scale than 

the LCDB or CCI-LC. Although these results are not surprising given the resolution of the LCDB and CCI-

LC, high-resolution imagery in conjunction with medium and low resolution datasets can provide both 

financial and environmental benefits to landowners and land managers. For example, the 300 ha of 

additional forest area calculated from the FENIX imagery (compared to the LCDB) reduces the effective 

pasture area used to manage stocking rates yet it increases carbon sequestration capacity. 

Landowners could utilise this information by reducing stock units and applying for carbon credits to 

compensate for the additional forest area. 

In broader scale land management, hotspots, or areas of rapid change, could be identified from lower 

resolution LCDB or CCI-LC data and then resurveyed at high-resolution in order to improve the 

classification of land cover and the quantification of forest fragmentation statistics. The improved 

classification accuracy achievable with higher resolution spectral data enables the development of 

more effective monitoring and management strategies that allocate resources towards rapidly 

degrading patches across the regional landscape. This type of hierarchical, multi-resolution monitoring 

approach would ensure data acquisition was cost effective and limited to the most at risk areas. It 

could also be undertaken in between releases of the LCDB to provide greater temporal resolution and 

prevent or minimise further degradation and fragmentation of forest remnants through closer 

monitoring. 

High-resolution multispectral imagery could also be employed, potentially at lower cost, to achieve 

similar outcomes. However, there are two main advantages in using classified hyperspectral data for 

forest fragmentation assessments. The first is that higher classification accuracy is achievable with 

hyperspectral data which reduces misclassification and enhances the potential efficacy of 

classification-facilitated control measures. Secondly, the contiguous bands of full spectrum 

hyperspectral sensors offer more flexibility when it comes to classifying spectral data from new threats 

than the discrete bands of multispectral sensors. This offers greater opportunity to successfully classify 

new threats and add the class to the existing spectral library of invasive species.   

4.6 Conclusion 

These findings demonstrate how land cover statistics can be improved with classified, high-resolution, 

hyperspectral imagery and applied at farm-scale. Using a supervised classification methodology, 

atmospherically corrected hyperspectral images were analysed with FRAGSTATS to obtain common 

landscape metrics. Two multispectral-derived datasets, the low-resolution CCI-LC and medium-

resolution LCDB dataset, were also analysed for comparison. Results from the landscape analyses 
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show the number of patches detected in the hyperspectral imagery was much higher than in both 

multispectral-derived datasets. This improved the calculation of class area, perimeter length, shape 

configuration, and aggregation metrics that are commonly employed in forest health and 

fragmentation assessments.  

These results are to be expected with higher resolution data but offer the potential to contribute to 

forest health assessments through a multi-scaled forest health framework. This would utilise lower 

resolution datasets, like the LCDB and CCI-LC, with greater spatial coverage to derive national level 

fragmentation statistics while employing high-resolution hyperspectral data to capture additional 

data in rapidly fragmenting hotspot areas at farm-scale. Utilising an integrated, hierarchical approach 

would allow for the derivation of national-level fragmentation statistics while ensuring the capture of 

fine-grained details in specific regions. Leveraging the rich spectral information provided by 

hyperspectral data, decision-makers and land managers in affected areas could then make informed 

choices regarding resource allocation, conservation efforts, or mitigation strategies, leading to more 

effective land management decisions. 
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5. Synthesis 

As demonstrated in both case studies, the utilisation of landscape metrics to quantify the spatial 

arrangement of indigenous forest shows considerable promise in improving forest health assessments 

over a range of scales. Key to this approach, is the inclusion of metrics that relate to a broad range of 

ecological processes associated with declining forest health. This includes both fragmentation and 

edge effects, an overarching term describing the change in various functional and structural processes 

within a defined edge zone around the forest interior. Fragmentation and edge effects are two of the 

greatest threats facing indigenous forest remnants in New Zealand, particularly in the highly 

fragmented lowlands, however, state of the environment reports frequently fail to include them in 

fragmentation analyses.  

Part of the issue in reporting fragmentation is a lack of available data on land fragmentation statistics. 

The national scale case study presented above attempts to provide a methodology by which this issue 

can be rectified. This was achieved by analysing a publicly available land cover dataset (CCI-LC) with 

landscape analysis software. The online accessibility of both dataset and software made this 

methodology straight forward and easy to implement. Furthermore, the annual coverage of the 

dataset over a 28-year period allowed for a time-series analysis of forest cover change over an 

extended period. 

One of the main drawbacks of this approach was that the resolution of the CCI-LC made extraction of 

forest fragmentation statistics at regional level less meaningful. The CCI-LC’s 246 x 246 m pixel size is 

sufficient for its primary purpose of providing global-scale land cover data but at national level, 

particularly for a small country like New Zealand, the 246 m2 pixel size was best suited to quantifying 

larger forested patches. As the largest indigenous forest areas are publicly owned and protected from 

deforestation by legislation, they are far less likely to experience degradation than the small (<246 m2), 

fragmented, remnants on privately-owned land. The CCI-LC dataset is therefore best suited to broad 

generalisations of land cover pattern but detection of localized fragmentation a finer resolution 

dataset is desirable.  

Another drawback inherent in the CCI-LC dataset was its global land cover classification system. 

Correlating a CCI-LC forest class to New Zealand’s mature indigenous forest class found in the higher 

resolution LCDB was achieved with around 80 % accuracy. Furthermore, only a single CCI-LC class was 

selected to represent mature indigenous forest. Considering the low resolution of the CCI-LC, it may 

have been worthwhile incorporating all indigenous vegetation commonly found in forested areas. This 

would have included adjacent transitional and successional species, such as manuka, kanuka, and tree 
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fern dominated areas, for a broader overview of spatial fragmentation patterns more appropriate to 

the resolution of the classification. 

An alternative methodology would be to analyse regional forest configuration patterns using data 

from the LCDB. This would effectively solve both the resolution issue and class selection issues as the 

LCDB has a 1 ha nominal mapping unit and a classification system designed specifically for New 

Zealand land cover classes. The LCDB’s bespoke classification system also has the advantage of 

application across other native land cover types such that fragmentation of grasslands, wetlands, or 

fernlands could also be analysed and included in state of the environment reporting.  

At local scale, however, there are two key issues with using the LCDB in spatial configuration analysis. 

Firstly, the 1 ha mapping unit can be a limiting factor in terms of edge detection. The second case 

study demonstrated this point with a farm-scale analysis that revealed the lack of detail in the LCDB 

classification along the forest edge when compared to the 1 m2 pixel resolution of the FENIX imagery. 

As fragmentation along the forest boundary is a primary contributor to the increased penetration of 

edge effects, the additional detail available with the FENIX is far better suited to small, localized forest 

monitoring programs than the LCDB.   

The second issue with employing the LCDB for local scale landscape analysis is that the database is 

only updated every 4-7 years. The infrequency at which updates occur presents a potential barrier for 

monitoring local fragmentation as it may be too infrequent to prevention forest degradation in rapidly 

fragmenting areas. Evidence of this was observed in the farm-scale analyses whereby areas of forest 

growth were captured by the FENIX but missing from the LCDB polygons. While classification error is 

inherent in all land cover datasets, the misclassification of the forest edge and infrequency in which it 

is updated make it less reliable for local landscape analysis and hotspot monitoring than sensors like 

the readily deployable, high-resolution FENIX. However, there are scale limitations with airborne 

sensors, restricting their usage to localised hotspot monitoring rather than regional scale database 

creation. Therefore, a multi-scaled, hierarchical approach is recommended that incorporates lower 

resolution multispectral derived datasets (like the CCI-LC and LCDB) for broad scale fragmentation 

analysis, followed with higher resolution multi- or hyperspectral data in hotspot areas.  

5.1 Future Research 

The implications of these findings are in line with other research that fragmentation indices beyond 

quantification of area would be of significant benefit in monitoring and reporting of forest health. New 

Zealand’s indigenous forest remnants, particularly on private land, are highly vulnerable to 

degradation but spatial configuration analyses could be of benefit in reducing fragmentation and 

improving connectivity between isolated patches. A multi-scaled approach would assist in improving 
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a range of ecological processes associated with forest health, including both functional and structural 

components. It could also create greater public awareness of the extent and rate of forest 

fragmentation, helping assist in better decision making and protection of isolated remnants with 

legislation created to regulate the issue in rapidly fragmenting hotspot areas. Finally, landscape 

metrics that quantify various aspects of forest health could be useful in future research for monitoring 

or identification of changes in external drivers of forest degradation associated with changing landuse 

patterns.  

5.2 Conclusion 

This research sought to quantify and describe changes in indigenous forest fragmentation in New 

Zealand over a 28-year period. This was achieved through landscape configuration analysis of the low-

resolution, classified CCI-LC dataset. It was argued that state of the environment reports produced at 

all levels of government often employ landscape metrics that only quantify area or percentage of 

landscape change. The lack of configuration-based metrics more appropriately suited to quantifying 

landscape pattern and connectivity was demonstrated and used to justify their application in a 

national scale fragmentation assessment. The results from the national scale assessment revealed the 

utility in applying landscape fragmentation indices in forest health reporting, especially with regards 

to identification of at risk or rapidly fragmenting areas. These findings highlighted the importance of 

image resolution when quantifying landscape fragmentation and the need for higher-resolution 

imagery in the monitoring of local hotspot areas to improve metric accuracy. 

The value of high-resolution imagery in local-scale fragmentation assessments was then 

demonstrated on a rural property. The property was surveyed with the high-resolution AISA FENIX 

hyperspectral camera and land cover was classified with a 1D-CNN. The resulting classified layer was 

analysed with FRAGSTATS and compared to the medium-resolution LCDB, and the low-resolution CCI-

LC classified imagery. The high-resolution imagery was found to be capable of far greater detail along 

the forest boundary than the medium and low resolution imagery. As changes in forest boundary 

length are associated with fragmentation, connectivity, and the penetration of edge effects, these 

findings support the need for high-resolution classified imagery and landscape configuration metrics 

in assessing forest health. However, the acquisition of high-resolution, classified imagery at regional 

and national scale is financially prohibitive at present and best suited to local-scale monitoring as part 

of a multi-scaled approach to forest health management that utilises other classified datasets like the 

CCI-LC and LCDB. 

The two case studies presented here indicate landscape configuration indices have the potential to 

improve forest health monitoring and reporting in New Zealand. While high-resolution imagery for 
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regional and national scale analyses are dependent on future reductions in the cost of data acquisition, 

landscape configuration indices could be immediately applied to the current medium-resolution LCDB 

dataset. This would provide baseline statistics of fragmentation and connectivity in indigenous forest 

patches as well as other threatened native vegetation types. Vulnerable, highly fragmented areas 

could then be closely monitored using high-resolution airborne or satellite imagery if desired, 

targeting data collection to the most at risk areas. 
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Appendix A 

Climate Change Initiative – Land Cover Classes 

Class Code Label 

0 No Data 

10 Cropland, rainfed 

20 Cropland, irrigated or post-flooding 

30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 

(<50%)  

40 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) 

(>50%) / cropland (<50%) 

50 Tree cover, broadleaved, evergreen, closed to open (>15%) 

60 Tree cover, broadleaved, deciduous, closed to open (>15%) 

70 Tree cover, needleleaved, evergreen, closed to open (>15%) 

80 Tree cover, needleleaved, deciduous, closed to open (15%) 

90 Tree cover, mixed leaf type (broadleaved and needleleaved) 

100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%) 

110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%) 

120 Shrubland 

130 Grassland 

140 Lichens and mosses 

150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 

160 Tree cover, flooded, fresh, or brackish water 

170 Tree cover, flooded, saline water 

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 

190 Urban areas 

200 Bare areas 

210 Water bodies 

220 Permanent snow and ice 

 



68 
 

Appendix B 

CCI-LC PRE-PROCESSING WORKFLOW 

When accessed, the Climate Data Store contained two land cover dataset versions, v2.0.7cds (1992-

2015) and v2.1.1 (2016-2020). Both versions were retrieved in the available NetCDF format resulting 

in 28 files in NetCDF format, each exceeding 2GB in size. Data preparation was performed to reduce 

file size, improve data handling, and decrease computational processing time during landscape 

analysis. This was achieved by converting the NetCDF image to GeoTIFF with the ‘Make NetCDF Raster 

Layer’ tool in ArcGIS Pro. A square bounding box was used to extract the New Zealand landmass from 

the global land cover dataset before applying lossless LZW compression - an ArcGIS file compression 

type that retains all raster cell values. Next the ocean class within the square bounding box was clipped 

along only the NZ coastline using the ‘Extract by Mask’ tool. The tool requires a feature mask from 

within which the raster cell values of the land cover layer may be extracted. To ensure a high degree 

of accuracy and correlation with other national datasets, the NZ Coastlines and Islands Polygons (Topo 

1:500k) shapefile was retrieved from NZ’s leading government agency for location data, Land 

Information New Zealand (https://data.linz.govt.nz/), and employed as the feature mask. The 

extracted land cover image was now bound to the NZ coastline in GeoTIFF format with a file size <5Mb. 

This process of converting from NetCDF to GeoTIFF, bounding box extraction, LZW compression, and 

NZ coastline extraction was repeated for each file, resulting in a national dataset containing 28 

classified land cover images from 1992-2020.  

To obtain smaller regional datasets for further analysis, the national land cover dataset was divided 

along NZ’s regional council boundaries. Extraction of the regional datasets followed a similar process 

to that outlined above with the ‘Extract by Mask’ tool. In this case, however, the feature mask 

employed was the Regional Council 2020 (Generalised) shapefile retrieved from Stats NZ 

(https://datafinder.stats.govt.nz/), the organization responsible for maintaining the regional council 

boundaries dataset for NZ. Each region within the shapefile was used as a feature mask in the ‘Extract 

by Mask’ tool. The regional output land cover data was used to create 16 regional land cover datasets, 

each containing 28 images for the 1992-2020 period.   

https://data.linz.govt.nz/
https://datafinder.stats.govt.nz/)
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Appendix C 

Auckland - Normalised Trends

Canterbury - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area

Bay of Plenty - Normalised Trends
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Manawatu-Whanganui - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area

Hawke's Bay - Normalised Trends

Gisborne - Normalised Trends
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Marlborough - Normalised Trends

Northland - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area

Nelson - Normalised Trends
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Taranaki - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area

Otago - Normalised Trends

Southland - Normalised Trends
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Waikato - Normalised Trends

Wellington - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area

Tasman - Normalised Trends
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West Coast - Normalised Trends

Edge Density Euclidean NN Mean Mean Fractal Dimension

Percentage Landscape Clumpiness Index Class Area


