Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Soil Spatial Variability in Northern Manawatu, New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University Palmerston North New Zealand.

Massey University

Asoka Senarath
2003
This Thesis is Dedicated to My Loving Mother and
to the Memory of My Loving Father.
Abstract

A detailed soil survey (1:25,000 scale) was conducted in northern Manawatu, near Kiwitea village, covering 2000 ha of terraced lands having three major terraces; a low river terrace, a last-glacial intermediate terrace and loess covered upper terrace. The area is characterized by warm and dry summers and wet and mild winters. The annual rainfall ranges from 900-1200 mm and the mean annual temperature ranges from 12°-13.5°C.

The parent materials are recent alluvium for the soils of the lower terrace; a mixture of alluvium, colluvium, loess and tephra for the soils of the intermediate terrace and Ohakean loess intermixed with tephra for the soils of the upper terrace. The loess originated from the local alluvium. The alluvium is derived mainly from greywacke, which is non calcareous and quartzo-feldspatic in mineralogy, and local early Pleistocene sands and mud.

In the soil survey, soils with gley profile form are considered poorly drained; with mottled profile form are considered imperfectly drained; with redox-mottled horizon below 60 cm are considered moderately well drained and; with no reductimorphic horizon or redox-mottled horizon within 80 cm are considered well drained. According to these drainage criteria the Ohakea and Marton series are redefined. Five new soil series are identified. Thirteen soil types are mapped.

The soil survey revealed that there is little relationship between soil drainage and topography. Chemical and mineralogical analysis of the soils revealed that there is a strong relationship between soil drainage, clay mineralogy and phosphate retention (P-retention).

Three parameters important for soil management were studied in detail in a window area (2000 m by 300 m) selected from the intermediate terrace. These three parameters were drainage status, P-retention and penetration resistance (PR) of the topsoil.

When mapped at 1:25,000 scale the window area comprised three different soil map units having well, moderately well and imperfect drainage. A small window area
(300 m by 250 m) from each map unit was selected and again mapped at 1:10,000 (100 m by 100 m grid) and 1:5,000 (50 m by 50 m grid) scales.

The simple soil pattern represented at 1:25,000 scale map is more complex when mapped at 1:10,000 scale. At least three different soil types (drainage classes) were identified in each of the blocks at 1:10,000 scale. When mapped at 1:5,000 scale little new information was found, but the drainage class boundaries could be shown more accurately. P-retention and PR of the topsoil are highly variable within the soil map units at all different mapping intensities. Variability of PR is dependent on the soil type and the land use, whereas P-retention is influenced by soil type alone.

Soil maps at 1:25,000 or smaller scale are not capable of readily delineating drainage status of this particular soil complex. A 1:10,000 scale soil map is the smallest scale that portrays reliable information.

No clear relationship could be established between soil drainage and landscape features, or depth to underlying river gravels. Therefore, a grid method is most suitable for conventional soil surveys in the area. An electromagnetic sensor (Em38) linked to a GPS can successfully be used to map soil drainage classes reliably, rapidly and cost effectively.

There is a good relationship between P-retention and soil drainage. Low P-retention values are associated with poorly drained soil conditions whereas high P-retention values are associated with well-drained soil conditions. The relationship is not as strong with moderately well drained and imperfectly drained soils. A majority of the observations on the imperfectly drained soils have medium P-retention values whereas a majority of the observations on the moderately well drained soils have P-retention values that range from medium to high.

The relationship between P-retention and soil type allows soil maps to be used effectively to identify areas likely to have low and high P-retention in the field. Soil maps at 1:10,000 scale are more suitable for identifying the areas reliably. However, some uncertainty exists within imperfectly and moderately well drained areas.
There is a good relationship between the PR and soil types as for the P-retention. The PR of the topsoil is relatively low in poorly drained soils and gradually increases through imperfect, moderately well to well drained soils. Soil maps at 1:5,000 are the most suitable for delineating PR classes.

The spatial scale of the variability of the three soil properties was quantitatively investigated using variogram models. The spatial variability of the three soil properties is anisotropic over the intermediate terrace. The variability is greater across the terrace than along the terrace. The maximum variability occurs at shorter lags (100-200 m) across the terrace and at longer lags (250 – 500 m) along the terrace.

Soil drainage and the tephra mixed parent material are the driving force behind the spatial variability of the three soil properties. Under well drained conditions, volcanic glass present in the tephra weathers to allophane and kandite and under imperfect and poorly drained conditions into kandite alone. P-retention is high in allophone-rich, well-drained soils and low in kandite-rich imperfectly and poorly drained soils. Variability of soil drainage within short distances is attributed to the minor textural differences responsible for the different hydraulic conductivity properties in the original alluvial sediments from which the soils developed.

The implications of spatial scale of soil variability for soil mapping, land use, soil management and land suitability evaluation are discussed.

A summary of the study, research findings, recommendations and further research needs are given.

A soil survey report of Kiwitea district including formation, distribution, properties, limitations and the management of soils is written in simple English for non-technical people and is included as an appendix.
Acknowledgements

I would like to extend my profound thanks to my supervisors, Dr. Alan S. Palmer, for his guidance, valuable suggestions, supervision and support throughout my study and his patience until the final editing of the manuscript; Professor Russ W. Tillman, for his enthusiasm, constructive suggestions, encouragement and moral support throughout my study and Mr. Mike Tuohy, for his advice and help in the preparation of the digital soil map.

I am most thankful to, Dr. Kapila Zoysa, for his cooperation, since the initial correspondence with Massey University, continuous help and friendship; Dr. Loga P. Loganathan for taking time to help me at the initial stage of my life in Massey University, and for valuable discussions and his friendship.

I am particularly grateful to Mr. Greg Arnold, Department of Information Science and Technology (statistics) for his advice and suggestions in field experimental design and help in geostatistical analysis. Special thanks go to Dr. Ganesh Ganesalingam (statistics) for his enthusiasm and cooperation extended in geostatistics.

I would like to express my sincere gratitude and appreciation to Dr. David Scotter, Dr. David Horne, Professor. Nanthi. S. Bolan and Professor Vince Neall for taking their valuable time for useful discussions and finding some reference material.

I am extremely thankful to Mr. Joe Whitton, Landcare Research, for his invaluable knowledge, experience and help in the mineralogical analysis and in related calculations. I am also thankful to Ms Michele D’Ath for her assistance in separating minerals.

I am very grateful to Mr. John Dando, Landcare Research, for taking his time to assist me in the field to measure penetration resistance. I appreciate his enthusiasm, help and friendship.

Many thanks go to Risinanda Keerthiwansha, for his continuous help and company in my field experiments, taking grid alignments, spot heights and soil sampling; Dhamsiri
Dissanayake, Mahinda Atapattu, H.A.Sumanasena and Fletcher Msuya for their friendship and generous help in my field work.

I am particularly thankful to Lance Currie making arrangements to analyze soil samples in the Fertilizer and Lime Research Centre free of charge and making available the test results in rapid time. My special thanks go to Ian Furkert for his generous assistance in soil sampling, field and laboratory experiments; Bob Toes and James Hanly for their assistance in analysis of phosphate retention and readiness to help at any time; Ross Wallace, Anne West and Glenys Wallace for their assistance and support. I especially thankful to Dennis Brunskill, Moria Hubbard, Hera Kennedy, and Irene Manley for their support and co-operation; Mike Bretherten, Dean, Adam, David and Ailih for assisting in computing.

Many thanks go to Chris Anderson for his help in graphics and his friendship; Andrew Manderson for help in preparation of soil map and location maps; Callum Estwood for help in preparation of EC maps; my fellow graduate students, particularly to Tin Maung Aye for his friendship and company from the beginning of my study at Massey University.

I wish to extend many thanks to Mrs. Triss White, Reid Line, R.D.7, Feilding; Alan and Mary Mason, Sandon Road, P.O.Box 155, Feilding; Rodney Wilson and Margaret Sargent, Cross Hill gardens, P.O.Box 20, Kimbolton and Richard Heerdegen, Geography Department, Massey University for providing rainfall data and farmers of the Kiwitea study area for their co-operation during soil survey and field experiments.

I am most grateful to Helen E.Akers Scholarship foundation for granting me a Ph.D scholarship and providing financial support.

I would like to give a special thanks to the Harrison family; Phil, Sue, Paul, Elizabeth and Sarah for their close friendship. Many thanks to Sue and Paul for proof reading my thesis within a very short period of time.

Finally my heartiest thanks go to my beloved wife Padma and my loving daughter Nadeesha for their patience, continuous encouragement, cooperation and love until the completion of my thesis and made my stay in New Zealand very pleasant.
Table of Contents

Abstract .. 1
Acknowledgements ... iv
Table of Contents ... vi
List of Tables ... xiii
Lists of Figures ... xxii
List of Maps .. xxvii
Appendices .. xxviii

Chapter 1 Introduction ... 1

Chapter 2 Overview of the Study Area ... 6
 2.1. Introduction ... 6
 2.2. Location and General Description of the Study Area 6
 2.3. Previous Soil Studies in the Manawatu Region .. 9
 2.3.1. Rangitikei County ... 12
 2.3.2. Manawatu County ... 13
 2.3.3. Kairanga County ... 14
 2.3.4. Oroua County .. 15
 2.3.5. Pohangina County .. 15
 2.4. Physical Environment ... 16
 2.4.1. Climate ... 16
 2.4.1.1. Rainfall ... 17
 2.4.1.2. Temperature .. 20
 2.4.1.3. Sunshine Hours .. 22
 2.4.1.4. Wind .. 23
 2.4.1.5. Frost and Hail .. 24
 2.4.2. Landforms ... 25
 2.4.3. Parent Materials .. 29
Chapter 3 Soil Mapping and Characterization: Methods 34

3.1. Introduction ... 34
3.2. Soil Survey Methodology .. 35
 3.2.1. Preliminary Study ... 35
 3.2.2. Base Maps ... 35
 3.2.3. Aerial Photo Interpretation .. 35
 3.2.4. Field Observations ... 36
 3.2.5. Separation of Soil Series and Types 36
 3.2.6. Separation of Soil Drainage Classes 36
 3.2.7. Soil Map Units .. 40
 3.2.8. Soil Profile Descriptions ... 41
 3.2.9. Soil Mapping Legend .. 43
3.3. Soil Correlation and New Soil Series ... 48
3.4. Soil Sampling and Preparation .. 50
3.5. Methods of Soil Characterization ... 51
 3.5.1. Physical Characterization .. 51
 3.5.2. Chemical Characterization .. 53
 3.5.3. Mineralogical Characterization .. 55
3.6. Method of Soil Map Production .. 61

Chapter 4 Characteristics of Soils of the Study Area: Results and Discussion 64

4.1. Introduction ... 64
4.2. List of Abbreviations ... 65
4.3. Physiographic Legend of Soil Types .. 67
4.4. Soil Characteristics ... 68
 4.4.1. Soils of the Lower Terrace .. 68
 4.4.1.1. Manawatu fine sandy loam ... 68
 4.4.1.2. Manawatu fine sandy loam (moderately shallow) 75
 4.4.1.3. Manawatu silt loam .. 75
 4.4.1.4. Discussion ... 82
 4.4.2. Soils of the Intermediate Terrace .. 83
4.4.2.1. Kawhatau stony silt loam .. 83
4.4.2.2. Coulter silt loam (new series) ... 90
4.4.2.3. Horoeka silt loam (new series) .. 96
4.4.2.4. Barrow silt loam (new series) ... 98
4.4.2.5. Ohakea silt loam ... 104
4.4.2.6. Discussion .. 107
4.4.3. Soils of the Upper Terrace ... 109
4.4.3.1. Dannevirke silt loam ... 109
4.4.3.2. Kiwitea silt loam ... 116
4.4.3.3. Cheltenham silt loam (new series) ... 122
4.4.3.4. Feilding silt loam (new series) .. 124
4.4.3.5. Marton silt loam .. 130
4.4.3.6. Discussion .. 136
4.4.4. Soils of the Terrace Risers ... 137
4.4.4.1. Steepland soil complex ... 137
4.5. Summary and Conclusions .. 140

Chapter 5 Spatial Variability of Three Soil Properties on Terrace Lands: Drainage,
P-retention and Penetration Resistance ... 144
5.1. Introduction .. 144
5.2. Soil Sampling Methodology ... 145
5.3. Spatial Variability of Drainage Properties .. 147
5.3.1. Introduction ... 147
5.3.2. Methodology .. 149
5.3.2.1. Mapping of Drainage Classes ... 149
5.3.2.2. Use of the EM38 Sensor for Soil Mapping 150
5.3.2.3. Topographic Survey ... 150
5.3.2.4. Water Table Measurements ... 150
5.3.3. Results and Discussion .. 151
5.3.3.1. Drainage Variability within Map Units 151
5.3.3.2. A Brief Explanation of the Drainage Class Maps 157
5.3.3.3. Drainage Class Maps and Electrical Conductivity (EC) Maps 160
Chapter 6 Use of Geostatistics in Quantification of Soil Spatial Variability: Soil Drainage, Phosphate Retention and Penetration Resistance

6.1. Introduction ... 198
6.2. A New Concept: Pedometrics ... 199
6.3. Geostatistics and Its Principles .. 200
Chapter 7 Factors Influencing Soil Spatial Variability in the Study Area

7.1. Introduction .. 226
7.2. Previous Hypothesis on Drainage Variability in Soils of Terrace Lands ... 227
7.3. Proposed Hypotheses for the Spatial Variability of Soil Drainage in Current Study .. 230
7.3.1. Depth to Underlying River Gravels and Soil Drainage Variability 230
7.3.2. Ground Water Movement on the River Gravels and Soil Drainage Variability .. 231
7.3.3. Soil Physical Properties and Drainage Variability 233
7.4. Soil Colloids Involved in Phosphate Retention 235
7.5. Factors Influencing the Spatial Variability of P-retention 236
7.6. Conclusions .. 238
Chapter 8 Implications of Soil Spatial Variability ... 239
 8.1. Introduction .. 239
 8.2. Implications to Soil Mapping ... 239
 8.3. Implications to Land Use and Management ... 241
 8.3.1. Implications to Pastoral Farming .. 241
 8.3.2. Implications to P Fertilizer Management ... 242
 8.4. The Implication of Soil Spatial Variability to Land Evaluation 243
 8.4.1. Importance of Land Evaluation ... 243
 8.4.2. Methods of Land Evaluation .. 244
 8.4.3. Commonalities Among Land Evaluation Methods 245
 8.4.4. Implications for Applying Evaluations to Land in Northern Manawatu 246

Chapter 9 Summary, Research Findings, Recommendations and Future Research
.. 253
 9.1. Available Soil Information and Future Needs .. 253
 9.1.1. Recommendations ... 255
 9.2. Physical Environment ... 255
 9.3. Soil Mapping and Characterization ... 256
 9.3.1. Spatial Variability of Soil Drainage Status .. 256
 9.3.1.1. Research Findings ... 256
 9.3.1.2. Recommendations ... 257
 9.3.2. Spatial Variability of P-retention .. 260
 9.3.2.1. Research Findings ... 260
 9.3.2.2. Future Research Needs ... 261
 9.3.3. Spatial Variability of Penetration Resistance (PR) 262
 9.3.3.1. Research Findings ... 262
 9.3.3.2. Future Research Needs ... 263
 9.4. Spatial Scale of Soil Variability .. 263
 9.4.1. Research Findings ... 264
 9.4.2. Recommendations ... 265
 9.4.3. Future Research Needs ... 265
9.5. Factors Influencing Soil Drainage Variability .. 266
 9.5.1. Research Findings ... 267
 9.5.2. Future Research Needs ... 268
9.6. Implications of Soil Variability for Land Use, Management and Land Evaluation ..
 .. 268
 9.6.1. Recommendations ... 269

References .. 270
Appendices .. 284
List of Tables

Table 2.1 Mean monthly rainfall (1985-1999) for Feilding, Kiwitea and Kimbolton. ... 17

Table 2.2 Seasonal distribution of rainfall (mm) in Feilding, Kiwitea and Kimbolton. ... 19

Table 2.3 Rainfall (RF) for Kiwitea and evapo-transpiration (ET) for Ohakea, Kairanga and Palmerston North (DSIR). 19

Table 2.4 Mean monthly/annual air temperatures for Kairanga, Palmerston North (DSIR), Ohakea and Marton. 21

Table 2.5 Mean monthly/annual soil temperature (at 10 cm depth) for Kairanga, Palmerston North (DSIR), Ohakea and Marton. 21

Table 2.6 Seasonal mean air and soil temperature variations for Kairanga, Palmerston North (DSIR), Ohakea and Marton. 22

Table 2.7 Mean Daily Temperature Ranges for Kairanga, Palmerston North, Ohakea and Marton. .. 22

Table 2.8 Total numbers of sunshine hours for Kairanga, Palmerston North (DSIR), and Ohakea. ... 23

Table 2.9 Mean daily wind speed (km/hr) for Kairanga, Palmerston North (DSIR) and Ohakea. ... 24

Table 2.10 Seasonal frequency (percentage) of fresh (30-39 km/hr) and strong winds (at least 40 km/hr) at Kairanga, Palmerston North Airport and Ohakea. ... 24

Table 2.11 Average days of air frost and ground frost at Kairanga, Palmerston North, Ohakea and Marton. ... 25
Table 2.12 Mean annual hail frequencies in Kairanga, Palmerston North and Ohakea...

Table 3.1 Soil drainage classes and depths to reductimorphic features...

Table 3.2 Soil map units and their inclusions...

Table 3.3 Correlation of soil units and new soil series...

Table 4.1 Physiographic legend for the soils of the study area...

Table 4.2 The physical properties of Manawatu fine sandy loam: density and porosity...

Table 4.3 The physical properties of Manawatu fine sandy loam: water relationships...

Table 4.4 The chemical properties of Manawatu fine sandy loam: cation exchange Properties...

Table 4.5 The chemical properties of Manawatu fine sandy loam: phosphorus, carbon, and nitrogen...

Table 4.6 Mineralogy of the sand fraction of the Manawatu fine sandy loam...

Table 4.7 Mineralogy of the heavy mineral fraction of the Manawatu fine sandy Loam...

Table 4.8 Mineralogy of the clay fraction of the Manawatu fine sandy loam...

Table 4.9 The physical properties of Manawatu silt loam: density and porosity...

Table 4.10 The physical properties of Manawatu silt loam: water relationships...
Table 4.11 The chemical properties of Manawatu silt loam: cation exchange properties... 80
Table 4.12 The chemical properties of Manawatu silt loam: phosphorus, sulphate, carbon and nitrogen. ... 80
Table 4.13 Mineralogy of the sand fraction of the Manawatu silt loam....... 81
Table 4.14 Mineralogy of the heavy mineral fraction of the Manawatu silt loam... 81
Table 4.15 Mineralogy of the clay fraction of the Manawatu silt loam....... 82
Table 4.16 The physical properties of Kawhatau stony silt loam: density and porosity... 86
Table 4.17 The physical properties of Kawhatau stony silt loam: water relationships... 86
Table 4.18 The chemical properties of Kawhatau stony silt loam: cation exchange Properties.. 87
Table 4.19 The chemical properties of Kawhatau stony silt loam: phosphorus, sulphate, carbon and nitrogen. .. 88
Table 4.20 Mineralogy of the sand fraction of the Kawhatau stony silt loam... 89
Table 4.21 Mineralogy of the heavy mineral fraction of the Kawhatau stony silt loam... 89
Table 4.22 Mineralogy of the clay fraction of the Kawhatau stony silt loam... 89
Table 4.23 The physical properties of Coulter silt loam: density, porosity, hydraulic conductivity and infiltration.. 93
Table 4.24	The physical properties of Coulter silt loam: water relationships.	93
Table 4.25	The chemical properties of Coulter silt loam: cation exchange properties	94
Table 4.26	The chemical properties of Coulter silt loam: phosphorus, sulphate, carbon and nitrogen	94
Table 4.27	Mineralogy of the sand fraction of the Coulter silt loam	95
Table 4.28	Mineralogy of the heavy mineral fraction of the Coulter silt loam	95
Table 4.29	Mineralogy of the clay fraction of the Coulter silt loam	96
Table 4.30	The phosphate retention values for topsoil samples of Horoeka silt loam and Coulter silt loam	97
Table 4.31	The physical properties of Barrow silt loam: density, porosity, hydraulic conductivity and infiltration	101
Table 4.32	The physical properties of Barrow silt loam: water relationships	101
Table 4.33	The chemical properties of Barrow silt loam: cation exchange properties	102
Table 4.34	The chemical properties of Barrow silt loam: phosphorus, sulphate, carbon and nitrogen	102
Table 4.35	Mineralogy of the sand fraction of the Barrow silt loam	103
Table 4.36	Mineralogy of the heavy mineral fraction of the Barrow silt loam	103
Table 4.37	Mineralogy of the clay fraction of the Barrow silt loam	104
Table 4.38 The chemical properties of Ohakea silt loam: cation exchange properties.. 107

Table 4.39 The chemical properties of Ohakea silt loam: phosphorus, carbon and nitrogen... 107

Table 4.40 The physical properties of Dannevirke silt loam: density and porosity... 112

Table 4.41 The physical properties of Dannevirke silt loam: water relationships... 113

Table 4.42 The chemical properties of Dannevirke silt loam: cation exchange properties.. 114

Table 4.43 The chemical properties of Dannevirke silt loam: phosphorus, carbon and nitrogen... 114

Table 4.44 Mineralogy of the sand fraction of the Dannevirke silt loam. 115

Table 4.45 Mineralogy of the heavy mineral fraction of the Dannevirke silt loam... 115

Table 4.46 Mineralogy of the clay fraction of the Dannevirke silt loam. 116

Table 4.47 The physical properties of Kiwitea silt loam: density, porosity, hydraulic conductivity and infiltration.......................... 119

Table 4.48 The physical properties of Kiwitea silt loam: water relationships... 119

Table 4.49 The chemical properties of Kiwitea silt loam: cation exchange properties... 120

Table 4.50 The chemical properties of Kiwitea silt loam: phosphorus, sulphate, carbon and nitrogen. ... 120

Table 4.51 Mineralogy of the sand fraction of the Kiwitea silt loam. 121
Table 4.52 Mineralogy of the heavy mineral fraction of the Kiwitea silt loam... 121
Table 4.53 Mineralogy of the clay fraction of the Kiwitea silt loam... 121
Table 4.54 The physical properties of Feilding silt loam: density, porosity, hydraulic conductivity and infiltration... 127
Table 4.55 The physical properties of Feilding silt loam: water relationships... 127
Table 4.56 The chemical properties of Feilding silt loam: cation exchange properties... 128
Table 4.57 The chemical properties of Feilding silt loam: phosphate, sulphate, and carbon and nitrogen... 128
Table 4.58 Mineralogy of the sand fraction of the Feilding silt loam... 129
Table 4.59 Mineralogy of the heavy mineral fraction of the Feilding silt loam... 129
Table 4.60 Mineralogy of the clay fraction of the Feilding silt loam... 129
Table 4.61 The chemical properties of Marton silt loam: cation exchange properties... 134
Table 4.62 The chemical properties of Marton silt loam: phosphorus, sulphate, carbon and nitrogen... 134
Table 4.63 Mineralogy of the sand fraction of the Marton silt loam... 135
Table 4.64 Mineralogy of the heavy mineral fraction of the Marton silt loam... 135
Table 4.65 Mineralogy of the clay fraction of the Marton silt loam... 136
Table 4.66 Percentage minerals present in the sand fraction of analysed soil types occurring on the lower terrace, intermediate terrace and upper terrace. ... 141

Table 4.67 Percentage of heavy minerals present in the heavy mineral fraction of different soil types occurring on lower terrace, intermediate terrace and upper terrace. ... 142

Table 4.68 The relationship between drainage, clay minerals and phosphate retention of some soil types on different terraces 142

Table 5.1 The range of P-retention values among and between quality control samples in each run and co-efficient of variation of P-retention among quality control samples. ... 166

Table 5.2 The variability of P-retention within the soil map units in the study area when mapped at three different scales 170

Table 5.3 Soil moisture content (v/v %) of soil samples collected from Coulter, Horoeka and Barrow silt loam soils at 0 - 75 mm depth .. 183

Table 5.4 A comparison of variability of penetration resistance within map units at different intensities ... 187

Table 5.5 The percentage number of observations below penetration resistances of 900, 1100, 1300 and 1500 Kpa within Ohakea, Barrow, Horoeka and Coulter silt loams at 1:25,000, 1:10,000 and 1:5,000 scales. ... 190

Table 5.6 Variability of penetration resistance at 0 and 10 mm depths in Ohakea, Barrow, Horoeka and Coulter silt loams .. 193

Table 5.7 The percentage number of observations below penetration resistance of 300, 500, 700 and 900 Kpa within Ohakea, Barrow, Horoeka and Coulter silt loams at 0 and 10 mm depths .. 195
Table 5.8 The variability of penetration resistance according to land use within Coulter and Horoeka silt loams. ... 196

Table 5.9 The variability of penetration resistance according to land use within Barrow and Ohakea silt loams. ... 196

Table 6.1 The numbers of paired observations at each lag distance considered when constructing the variograms for blocks A, B and C. ... 207

Table 6.2 Numbers of paired observations at each lag distance considered when constructing the variograms for the 2000 m by 300m window area. ... 207

Table 6.3 A summary of lag distances and maximum semivariances (sill) reached for soil drainage in blocks A, B, C and the 2000 m by 300 m large window area. ... 213

Table 6.4 Numbers of paired observations at each lag distance considered when constructing the variograms for blocks A, B and C. ... 214

Table 6.5 Numbers of paired observations at each lag distance considered when constructing the variograms for the 2000 m by 300m window area. ... 215

Table 6.6 A summary of lag distances and maximum semivariances (sill) reached for P-retention in blocks A, B, C and the 2000 m by 300 m large window area. ... 219

Table 6.7 A summary of lag distances and maximum semivariances (sill) reached for PR in blocks A, B and C. ... 223

Table 6.8 A summary of lag distances and maximum semivariances (sill variance) reached for soil drainage, P-retention and PR in blocks A, B, C and the 2000 m by 300 m large window area. ... 224
Table 7.1 The physical properties of Coulter silt loam related to water movement in soil. ... 234
Table 7.2 The physical properties of Barrow silt loam related to water movement in soil. ... 234
Table 7.3 The percentage minerals present in the sand fraction of different soil types ... 237
Table 7.4 The percentage heavy minerals present in the heavy mineral fraction of different soil types ... 237
Table 7.5 The relationship between drainage, clay minerals and phosphate retention of well drained and imperfectly drained soils of the intermediate terrace ... 237
Table 8.1 The percentage of land area occupied by different drainage classes in blocks A, B and C of the intermediate terrace. 241
Table 8.2 The optimum land characteristic conditions required for carrots ... 248
Table 8.3 Evaluation of land characteristics of the Coulter, Horoeka, Barrow and Ohakea silt loam soils for growing carrots, with suitability ratings ... 249
Table 8.4 Land suitability ratings and limitations of Coulter, Horoeka, Barrow and Ohakea silt loam soils for growing carrots ... 249
Table 8.5 Percentage areas in different suitability classes when soils of blocks A, B and C are mapped at 1:25,000 and at 1:10,000 scale ... 251
Table 9.1 A summary of soil information available for the Manawatu Region ... 254
Table 9.2 Separation of existing soil series into new soil series considering parent material and soil drainage ... 258
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>The structure of the thesis</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Location of the study area within the Manawatu district, North Island of New Zealand</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Location of the study area in relation to other urban areas, major roads and river catchments of the northern Manawatu</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The study area near Kiwitea showing the road network, streams and farm boundaries</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Former counties of the Manawatu Region</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Present Manawatu district and the Manawatu-Wanganui Region</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Mean monthly rainfall distribution pattern for Feilding, Kiwitea and Kimbolton</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Seasonal distribution of rainfall in Feilding, Kiwitea and Kimbolton</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Rainfall (RF) at the Kiwitea study area and evapotranspiration (ET) rates for Ohakea, Kairanga and Palmerston North</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The typical terrace landform system in northern Manawatu</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Present land holdings and land use in the study area</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Frequency distribution pattern of depth to reductimorphic features in the survey area</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Schematic representation of soil drainage classes</td>
<td>39</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Part of the soil map at 1:25,000 scale showing the soil distribution in the 2000 m by 300 m window area of the intermediate terrace</td>
<td>146</td>
</tr>
</tbody>
</table>
Figure 5.2 A detailed plan of the 100 m by 100 m soil sampling grid for the 2000 m by 300 m window area. ... 146
Figure 5.3 The 250 m by 300 m windows (A, B and C) within soil map units showing the 50 m interval grid sampling design. 147
Figure 5.4 The 250 m by 300 m windows (A, B and C) within soil map units showing the intensive grid sampling design 147
Figure 5.5 Soil drainage class map for the 2000 m by 300 m block (1:25,000 scale) showing the A, B and C sampling blocks. 152
Figure 5.6 Soil drainage class map for the 2000 m by 300 m block (1:10,000 scale) ... 152
Figure 5.7 Soil drainage class maps for the 250 m by 300 m blocks (1:10,000 scale). ... 152
Figure 5.8 Soil drainage class maps for the 250 m by 300 m blocks (1:5000 scale) ... 152
Figure 5.9 Topography of the land surface of the 250 m by 300 m Block (B) on a 50 m grid (1:5,000 scale). 153
Figure 5.10 The relationship between the topography of the land surface and the drainage classes of the 250 m by 300 m Block (B) on a 50 m grid (1:5,000 scale). ... 153
Figure 5.11 The relationship between land surface elevation and the soil drainage class for Block B. ... 154
Figure 5.12 The relationship between depth to gravel layer and the soil drainage class for Block B. ... 154
Figure 5.13 The topography of the underlying river gravels of the 250 m by 300 m block B on a 50 m grid (1:5,000 scale). 155
Figure 5.14 The relationship between the topography of underlying river gravels and the drainage classes of the 250 m by 300 m Block B on a 50 m grid (1:5,000 scale) .. 155

Figure 5.15 Areas of the river terrace gravel surface in Block B where ground water was encountered in October 2000 156

Figure 5.16 100 m by 100 m grid information and 1:10,000 scale soil maps for blocks A, B and C ... 158

Figure 5.17 50 m by 50 m grid information and 1:5,000 scale soil maps for blocks A, B and C ... 159

Figure 5.18 New information being added to the soil map by the Surfer mapping programme ... 159

Figure 5.19 Comparison of soil drainage class maps and soil EC maps. A Soil EC map. B Soil drainage class map ... 161

Figure 5.20 The frequency distribution of P-retention of topsoil in the study area ... 167

Figure 5.21 The variability of P-retention within Barrow, Horoeka and Coulter silt loam map units at 1:25,000 scale .. 168

Figure 5.22 The variability of P-retention within Ohakea, Barrow, Horoeka and Coulter silt loam map units at 1:10,000 scale .. 169

Figure 5.23 The variability of P-retention within Ohakea, Barrow, Horoeka and Coulter silt loam map units at 1:5,000 scale .. 171

Figure 5.24 The frequency distribution of P-retention within the Ohakea silt loam map unit at 1:10,000 and 1:5,000 scales .. 171

Figure 5.25 The frequency distribution of P-retention within the Barrow silt loam map unit at 1:25,000, 1:10,000 and 1:5,000 mapping scales .. 172
Figure 5.26 The frequency distribution of P-retention classes within the Horoeka silt loam map unit at 1:25,000, 1:10,000 and 1:5,000 mapping scales. ... 173

Figure 5.27 The frequency distribution of P-retention within the Coulter silt loam map unit at 1:25,000, 1:10,000 and 1:5,000 mapping scales. ... 173

Figure 5.28 Soil drainage class (a) and P-retention class (b) on blocks A, B and C, at a 50 m interval grid. ... 175

Figure 5.29 The percentage number of different P-retention class observations made within each drainage class. ... 176

Figure 5.30 The frequency distribution of P-retention within Ohakea, Barrow, Horoeka and Coulter silt loam profile classes. ... 177

Figure 5.31 A sketch of “Penetro Logger” and its important parts. ... 181

Figure 5.32 A frequency distribution of mean penetration resistance (0-100 mm) measured at 339 observation points in the study area. ... 184

Figure 5.33 Drainage observations made in blocks A, B and C on a 50 m by 50 m grid. ... 185

Figure 5.34 The frequency distribution of penetration resistance within different drainage classes. ... 185

Figure 5.35 The frequency distribution of penetration resistance within Barrow, Horoeka and Coulter silt loam map units at 1:25,000 scale ... 187

Figure 5.36 The frequency distribution of penetration resistance within Ohakea, Barrow, Horoeka and Coulter silt loam map units at 1:10,000 scale ... 188

Figure 5.37 The frequency distribution of penetration resistance within Ohakea, Barrow, Horoeka and Coulter silt loam map units at 1:5,000 scale ... 189
Figure 5.38 The variability of penetration resistance within the top 100 mm depth of soil in the study area................................. 191

Figure 5.39 Variability of penetration resistance within the top 100 mm of the Ohakea, Barrow, Horoeka and Coulter silt loam soils.................. 192

Figure 5.40 The percentage distribution of penetration resistance at 0 mm depth in Ohakea, Barrow, Horoeka and Coulter silt loams.................. 194

Figure 5.41 The percentage distribution of penetration resistance at 10 mm depth in Ohakea, Barrow, Horoeka and Coulter silt loams.................. 194

Figure 6.1 Different forms of variograms (A) Bounded, (B) Unbounded (C) Pure nugget... 205

Figure 6.2 A variogram showing directional variability of soil drainage in block A... 209

Figure 6.3 A variogram showing directional variability of soil drainage in block B... 210

Figure 6.4 A variogram showing directional variability of soil drainage in block C... 211

Figure 6.5 A variogram showing along transect variability of soil drainage in the.. 211

Figure 6.6 A variogram showing directional variability of P-retention in block A... 216

Figure 6.7 A variogram showing directional variability of P-retention in block B... 217

Figure 6.8 A variogram showing directional variability of P-retention in block C... 217

Figure 6.9 A variogram showing along transect variability of P-retention in the 2000 m by 300 m window area.. 218
Figure 6.10 A variogram showing directional variability of penetration resistance in block A. ... 221

Figure 6.11 A variogram showing directional variability of penetration resistance in block B. ... 221

Figure 6.12 A variogram showing directional variability of penetration resistance in block C. ... 222

Figure 7.1 The depth to river gravels, and soil types at 50 m interval observation points in Block B. ... 232

Figure 8.1 The suitability of soils in blocks A, B and C for growing carrots when mapped at 1:25,000 scale ... 250

Figure 8.2 Suitability of soils in blocks A, B and C for carrots when mapped at 1:10,000 scale. ... 250

List of Maps

Map 3.1 Soil map of Kiwitea study area. ... 63
Appendices

Appendix 1 The frequency distribution of P-retention classes within the Ohakea silt loam (poorly drained) map unit at 1:10,000 and 1:5,000 scales. ... 284

Appendix 2 The frequency distribution of P-retention classes within the Barrow silt loam (imperfectly drained) map unit at 1:25,000, 1:10,000 and 1:5,000 scales. ... 284

Appendix 3 The frequency distribution of P-retention classes within the Horoeka silt loam (moderately well drained) map unit at 1:25,000, 1:10,000 and 1:5,000 scales. ... 285

Appendix 4 The frequency distribution of P-retention classes within the Coulter silt loam (well drained) map unit at 1:25,000, 1:10,000 and 1:5,000 scales. ... 285

Appendix 5 The relationship between soil drainage classes and P-retention classes in the three mapping units. ... 286

Appendix 6 The frequency distribution of P-retention within profile classes of four different soil types. ... 286

Appendix 7 The frequency distribution of penetration resistance within Ohakea, Barrow, Horoeka and Coulter drainage classes. ... 287

Appendix 8 The frequency distribution of penetration resistance within Barrow, Horoeka and Coulter silt loam map units at 1:25,000 scale. ... 287

Appendix 9 The frequency distribution of penetration resistance within Ohakea, Barrow, Horoeka and Coulter silt loam map units at 1:10,000 scale. ... 288
Appendix 10 The frequency distribution of penetration resistance within
Ohakea, Barrow, Horoeka and Coulter silt loam map units at
1:5,000 scale.. 288

Appendix 11 Variability of penetration resistance within the top 100 mm of
the Ohakea, Barrow, Horoeka and Coulter silt loam soils...................... 289

Appendix 12 Percentage distribution of penetration resistance at 0 mm
depth in Ohakea, Barrow, Horoeka and Coulter silt loams.................... 289

Appendix 13 Percentage distribution of penetration resistance at 10 mm
depth in Ohakea, Barrow, Horoeka and Coulter silt loams.................... 290

Appendix 14 Soils of the Kiwitea District 290