DEFOLIATION MANAGEMENT OF
BIRDSFOOT TREFOIL (*Lotus corniculatus* L.)

A thesis presented in partial fulfilment of the requirements for the
degree of Doctor of Philosophy,
Institute of Natural Resources, Massey University, New Zealand

Walter Ayala
2001
This Thesis is dedicated to my wife Rossy, and our daughters Agustina and Bianca
for their love, help and support
ABSTRACT

Birdsfoot trefoil (Lotus corniculatus L.) is a forage legume widely cultivated around the world, adapted to grow on infertile, drought-prone or acid soils, and with a high feeding value and bloat safe forage. However, its persistence is poor, limited by the management of defoliation and disease incidence. Adjustments in defoliation strategies, reproductive processes and population dynamics are seen as alternatives to increase production and persistence of birdsfoot trefoil swards. The objectives of this research were to determine appropriate defoliation strategies for different birdsfoot trefoil cultivars, in terms of the frequency, intensity and timing of defoliation, and to quantify morphological and physiological adaptations and population changes in response to defoliation. A series of three field and one glasshouse experiments were conducted in Massey University, Palmerston North, New Zealand (latitude 40°23'S) and INIA Treinta y Tres, Uruguay (latitude 33°54'S) from 1997 to 2000. The cultivars evaluated were San Gabriel (Brazil), INIA Draco (Uruguay), Grasslands Goldie (New Zealand) and Steadfast (USA). Management varied in intensity of defoliation from 2 to 10 cm height, in frequency from 20 to 40 days, and in timing the start of defoliation in the first year from vegetative to late mature stages. Also, combinations of rest periods in autumn, winter and summer were studied on pure and mixed birdsfoot trefoil swards.

A preliminary short term study with Grasslands Goldie in New Zealand, showed that hard defoliation (2 cm) in spring reduced birdsfoot trefoil spring production (17%) and plant population (21%) compared with the average of laxer defoliation (6 and 10 cm). Root mass, crown mass, primary and total number of shoots/m² and root reserves were all reduced under hard defoliation. Early autumn rest (last cut in April) improved plant root reserves and increased spring herbage production (17%). The effects of intensity of defoliation were confirmed under controlled glasshouse conditions, where lax regimes
(6 and 10 cm) increased herbage production over intensive defoliation (2 cm) when defoliated at 20 day intervals. In spring, intensive and frequent defoliation (2 cm-20 days) reduced production and plant survival, and lax and less frequent defoliation (10 cm-40 days) resulted in herbage losses by excessive accumulation. Limited and short term plant adjustments in relative growth rate, leaf area, specific leaf area and number of leaves per plant were not enough to compensate for the excessive loss of plant tissues under severe defoliation (2 cm). The effects of defoliation intensity increased over time, reducing crown size, root mass, root diameter and root reserves of birdsfoot trefoil plants.

Cultivars evaluated in a two years study in Uruguay differed in plant habit (from semi-prostrate to erect types), winter activity (active and dormant types) and morphology. The presence of rhizomes in cv. Steadfast was observed in 17% of individual plants tested. Cultivars San Gabriel and INIA Draco were 2.6 and 2.5 times more productive than introductions from New Zealand and USA in the first and second year respectively. The group of cultivars tested showed adequate standards of forage quality, varying from 590-720 g/kg DM for digestibility of organic matter, 25-39 g/kg DM for nitrogen, 230-400 g/kg DM for acid detergent fibre and 22-31 g/kg DM for condensed tannins. In contrast with previous results, herbage production was higher for plots defoliated at 4 cm height than at 8 cm during the first year and there were no differences in the second year. Contrasts with previous experiments were attributable to an extended defoliation interval (40 days) and rest periods of approximately 6 months in the year that allowed plants to rebuild enough reserves for successive regrowths.

When growing in competition with white clover, birdsfoot trefoil production was improved by autumn rest and lax grazing (10 cm). Plant density was reduced by intensive grazing (4 cm) and by strategies that grazed swards between 9 and 12 times a year compared with those where grazing was 6 times a year. Summer spelling increased seed production of birdsfoot trefoil, achieving 11,110 viable seeds/m² if a winter rest was also used. However, seedling emergence from soil seed reserves was only between 5-13% under grazing conditions during autumn and winter, demanding additional management practices to increase recruitment of new individuals.
Abstract

The results of these studies were used to define practical management strategies to optimise the production and persistence of birdsfoot trefoil swards, and plant characteristics appropriate to Uruguayan and New Zealand conditions.

Keywords: Lotus corniculatus L.; birdsfoot trefoil; cultivars; defoliation management; forage production; nutritive value; persistence; plant morphology; carbohydrate root reserves; seed production; soil seed reserves; seedling emergence.
ACKNOWLEDGEMENTS

There are many people that I would like to express my gratitude for their support and contribution to the completion of this project.

I wish to thank sincerely to my chief supervisor, Professor John Hodgson (Institute of Natural Resources, Massey University) for his continuous encouragement, guidance and support over these years, providing a fertile environment of discussions and development of research skills. His accurate supervision from the start to the end, made possible to organize a split Ph.D program between New Zealand and Uruguay, and contributed to extend more the research links between both countries.

Special thanks to my co-supervisor, Dr. Peter Kemp (Institute of Natural Resources, Massey University) for provides always constructive comments, guidance and patience throughout this study. His fine sense of humor made always the difference between peaks of frustration and motivation.

My particular appreciation to my co-supervisors, Professor Ing. Agr. Milton Carámbula (National Institute of Agricultural Research of Uruguay) and Ing. Agr. Diego Risso (Head of Pastures Program of the National Institute of Agricultural Research of Uruguay), for their generous help and suggestions particularly over the trials ran in Uruguay, making this study productive.

I am extremely grateful to the National Institute of Agricultural Research of Uruguay for the support, research facilities and financial assistance, especially to the following members: Mr. J.P. Hounie and Ing. Agr. P. Bonino (past and present presidents of the INIA Board and in their name to the other Board members), Dr. E. Indarte (National Director), Dr. G. Cerizola (Human Resources) and Ing. Agr. H. Duran (Leader of Animal Production group). To Dr. F. Montossi (Head of Sheep Program of the National Institute of Agricultural Research of Uruguay) for his encouragement and help in many stages of this project.
I would like to express my recognition to New Zealand, through the Ministry of Foreign Affairs and Trade (MFAT) for provision of financial support by a NZODA scholarship. My gratitude to Mr. Mac Herrera, consul of New Zealand in Uruguay, who provided early arrangements for this scholarship. Also to the staff of the International Students Office in Massey University for the assistance provided to me and my family.

My thanks to the staff of Natural Resources Institute, and particularly to Pastoral Science Group at Massey University for their friendship and support over these years. The assistance and invaluable criticism provided by Dr. C. Matthew, Mr P. Matthews and Dr I. Valentine in different stages are well recognized. In particular, to Mr M. Alexander, Mr R. Dissanayake, Ms K. Hamilton, Ms H. Kennedy, R. Levy, I. Manley, Mr M. Osborne and others. Also to the staff of the Plant Growth Unit, Mr C. Johnstone, L. Taylor, L. Sylva and H. Logan, and late Charlie Howell of Deer Research Unit of Massey University. Very special thanks to Dr D. Woolley and Mr C. Rawlingson for provide assistance to conduct the root carbohydrate analysis.

My recognition to those people that provided seeds of evaluated cultivars, to Dr. W. Williams (Agresearch, Palmerston North, New Zealand), to Dr P. Beuselinck (USDA-ARS, Columbia, Missouri, USA) and Ing. Agr. J. Bologna (Agronomy Faculty, Uruguay).

My sincere thanks to Ing. Agr L. Helguera and Ing. Agr. G. Zorrilla, past and present Directors of INIA Treinta y Tres, to provide the best technical and human conditions to execute this project. To the staff of the “old” Estación Experimental del Este (INIA Treinta y Tres Research Station, Uruguay) for their assistance, warm support and encouragement to achieve this goal.

I would like to acknowledge the generous field and laboratory assistance given by Mr C. Carmona, Mr G. Ferreira, Mr J. Jackson and Mr N. Serron of Pastures Group of INIA Treinta y Tres, during the trials conducted in Uruguay. Their attention and accuracy during many hours that we shared running these experiments will be never forgotten. Many thanks goes to my colleague of Pastures group Ing. Agr. R. Bermúdez,
that gave me unconditional assistance. Thanks to the students Mr. C. Machado and Mr. I. Nuñez from the Agronomy Faculty of Uruguay, who co-laboured with me collecting and sharing information.

The friendship and encouragement of my fellow graduate students at Massey University provided an excellent environment, especially to Dr. S. Assuero, Dr. S. Bluett, Mr. W. Beskow, Mrs. R. Briant, Mr D. Cabrera, Ms. D. Carvalho, Dr. N. Devkota, Mrs M. Ercolin, Dr. A. Guevara, Mr. C. Hepp, Mr. F. Hughes, Mr. and Mrs. Laborde, Dr. G. Li, Mrs. H. Logan, Dr. I. Lopez, Dr. Z. Nie, Dr. S. Oppong, Dr. C. Poli, Dr. D. Real, Mrs C. Realini, Mr. A. Romera, Mr. J. Rossi, Mrs P. Salles, Mr. T. Pande, Mr. A. Wall and others.

My sincere thanks to my parents and sister for their education, support and continuous encouragement from early steps at the primary school (Escuela Rural No. 84 de Molles de Gutierrez, Lavalleja, Uruguay) to nowadays. The support of our friends, in special to my relations in Uruguay, is greatly appreciated.

Finally I want to express my gratitude to my wife Rossy and daughters Agustina and Bianca. Their technical help, tolerance, sacrifice and motivation throughout these “long and hard” years, accepting the challenge to complete this project, contributed to make this study successful.

Walter Ayala
April 5, 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1. GENERAL INTRODUCTION

1.1 INTRODUCTION 1

2. REVIEW OF THE LITERATURE

2.1 INTRODUCTION 9

2.2 AGRONOMIC CHARACTERISTICS

2.2.1 Plant morphology 11

2.2.2 Birdsfoot trefoil habitat 12

2.2.3 Herbage production 13

2.3 NUTRITIVE VALUE 14

2.3.1 Digestibility 15

2.3.2 Crude protein 15

2.3.3 Fibre content 16

2.3.4 Mineral content 16

2.3.5 Condensed tannins content 17

2.4 UTILIZATION IN FARMING SYSTEMS 18

2.4.1 New Zealand 18
3. CHANGES IN THE MORPHOLOGY, PRODUCTION AND POPULATION OF *Lotus corniculatus* L. cv. GRASSLANDS GOLDIE IN RESPONSE TO SEASONAL DEFOPIATION REGIMES

3.1 ABSTRACT

3.2 INTRODUCTION

3.3 MATERIALS AND METHODS

3.3.1 Measurements

3.3.1.1 Herbage production

3.3.1.2 Plant density, size and morphology

3.3.1.3 Root carbohydrate analysis

3.3.2 Statistical analysis

3.4 RESULTS

3.4.1 Climate conditions during experimental period

3.4.2 Herbage production

3.4.3 Plant density

3.4.4 Plant morphology

3.4.5 Carbohydrate root reserves

3.5 DISCUSSION

3.6 CONCLUSIONS

3.7 REFERENCES
4. EFFECTS OF DEFOLIATION INTENSITY ON GROWTH, BIOMASS DISTRIBUTION, AND MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES OF BIRDSFOOT TREFOIL IN GLASSHOUSE CONDITIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 ABSTRACT</td>
<td>68</td>
</tr>
<tr>
<td>4.2 INTRODUCTION</td>
<td>69</td>
</tr>
<tr>
<td>4.3 MATERIALS AND METHODS</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1 Measurements</td>
<td>72</td>
</tr>
<tr>
<td>4.3.2 Statistical analysis</td>
<td>73</td>
</tr>
<tr>
<td>4.4 RESULTS</td>
<td>75</td>
</tr>
<tr>
<td>4.4.1 Growth analysis</td>
<td>75</td>
</tr>
<tr>
<td>4.4.2 Biomass production</td>
<td>76</td>
</tr>
<tr>
<td>4.4.3 Carbohydrate root reserves</td>
<td>79</td>
</tr>
<tr>
<td>4.4.4 Dynamics of plant components</td>
<td>80</td>
</tr>
<tr>
<td>4.4.4.1 Below-ground components</td>
<td>80</td>
</tr>
<tr>
<td>4.4.4.2 Above-ground components</td>
<td>86</td>
</tr>
<tr>
<td>4.4.5 Relationships between herbage harvested and plant components</td>
<td>90</td>
</tr>
<tr>
<td>4.4.5.1 The influence of below-ground plant components</td>
<td>90</td>
</tr>
<tr>
<td>4.4.5.2 Residual leaf area for regrowth</td>
<td>91</td>
</tr>
<tr>
<td>4.4.5.3 Carbohydrate root reserves and regrowth</td>
<td>92</td>
</tr>
<tr>
<td>4.4.5.4 Effect of defoliation intensity on plant components</td>
<td>93</td>
</tr>
<tr>
<td>4.4.6 Plant survival</td>
<td>94</td>
</tr>
<tr>
<td>4.5 DISCUSSION</td>
<td>94</td>
</tr>
<tr>
<td>4.6 CONCLUSIONS</td>
<td>98</td>
</tr>
<tr>
<td>4.7 REFERENCES</td>
<td>99</td>
</tr>
</tbody>
</table>

5. PERFORMANCE OF FOUR *Lotus corniculatus* L. CULTIVARS IN RESPONSE TO INTENSITY AND TIMING OF DEFOLIATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 ABSTRACT</td>
<td>103</td>
</tr>
<tr>
<td>5.2 INTRODUCTION</td>
<td>104</td>
</tr>
</tbody>
</table>
5.3 MATERIALS AND METHODS

5.3.1 Measurements

5.3.1.1 Forage production
5.3.1.2 Forage quality
5.3.1.3 Condensed tannins
5.3.1.4 Plant density and morphology
5.3.1.5 Plant architecture

5.3.2 Statistical analysis

5.4 RESULTS

5.4.1 Climate conditions during experimental period
5.4.2 Herbage production to first harvest
5.4.3 Annual herbage production
5.4.4 Growth rates
5.4.5 Sward structure characteristics

5.4.5.1 Residual forage
5.4.5.2 Plant architecture

5.4.6 Nutritive value

5.4.6.1 Nutritive value of accumulated BFT forage
5.4.6.2 Nutritive value parameters under regular defoliation
5.4.6.3 Condensed tannin content

5.4.7 Plant density
5.4.8 Plant morphology

5.4.8.1 Integrated morphology analysis

5.5 DISCUSSION

5.5.1 Productivity and adaptation of BFT to the eastern region of Uruguay
5.5.2 Growth, plant type and defoliation management
5.5.3 Forage quality
5.5.4 Forage accumulation

5.6 CONCLUSIONS

5.7 REFERENCES
Table of Contents

6. FORAGE PRODUCTION AND PERSISTENCE OF BIRDSFOOT TREFOIL (*Lotus corniculatus* L.) IN MIXTURE WITH WHITE CLOVER IN RESPONSE TO DIFFERENT STRATEGIES AND INTENSITIES OF DEFOLIATION............ 157

6.1 ABSTRACT... 158

6.2 INTRODUCTION.. 160

6.3 MATERIALS AND METHODS... 162

6.3.1 Measurements.. 164

6.3.2 Statistical analysis... 165

6.4 RESULTS... 167

6.4.1 Climate conditions during experiment............................... 167

6.4.2 Herbage production and quality..................................... 167

6.4.2.1 Pre-grazing and post-grazing sward height.................... 167

6.4.2.2 Annual and seasonal herbage accumulation................. 168

6.4.2.3 Species contribution... 170

6.4.2.4 Herbage quality.. 174

6.4.3 Plant density... 177

6.4.4 Plant morphology... 179

6.4.4.1 Primary shoots.. 179

6.4.4.2 Secondary shoots... 180

6.4.4.3 Crown mass.. 181

6.4.4.4 Root mass... 182

6.4.4.5 Root diameter.. 183

6.4.5 Seed production.. 184

6.4.5.1 Seed yield components... 185

6.4.5.2 Patterns of seed production..................................... 187

6.4.6 Seed soil reserves.. 189

6.4.7 Seedling emergence... 191

6.5 DISCUSSION... 195

6.6 CONCLUSIONS... 199

6.7 REFERENCES... 200
Table of Contents

7. INTEGRATING DISCUSSION ... 203
7.1 INTRODUCTION .. 204
7.2 BIRDSFOOT TREFOIL GENOTYPES .. 206
7.3 DEFOLIATION MANAGEMENT, PRODUCTION AND PLANT SURVIVAL ... 208
7.4 THE ROLE OF THE SOIL SEED BANK ON POPULATION DYNAMICS AND PERSISTENCE OF BIRDSFOOT TREFOIL ... 213
7.5 PRACTICAL MANAGEMENT RECOMMENDATIONS 216
7.5.1 Seasonal management ... 217
7.5.2 General management ... 219
7.6 CONCLUSIONS ... 220
7.7 REFERENCES .. 222

APPENDIX I. METHOD TO MEASURE TOTAL AVAILABLE CARBOHYDRATES ... 225
APPENDIX II. METHOD TO EVALUATE SOIL SEED RESERVES .. 227
LIST OF TABLES

Table 3-1. Monthly rainfall and soil temperature at 100 mm during the evaluation period and the 60-year average (Source: AgResearch, Palmerston North) ... 51

Table 3-2. The effect of defoliation management on BFT accumulation (kg DM/ha), growth rate (kg DM/ha/day) and contribution to total production (%) during spring ... 52

Table 3-3. Leaf/(Leaf+Stem) ratio (dry weight) in BFT under different defoliation frequencies and intensities in spring 53

Table 3-4. Effects of defoliation treatments on plant morphology parameters/m² and plant density in December 1997 for birdsfoot trefoil cv. Grasslands Goldie ... 56

Table 4-1. Cutting and destructive harvests schedule for BFT pots from September to December 1997 .. 71

Table 4-2. Cumulative above-ground growth, above-ground biomass at the time of destructive harvest and below-ground mass of BFT cv. Grasslands Goldie under different intensities of defoliation .. 78

Table 4-3. Content of starch and free sugars in roots of BFT cv. Grasslands Goldie under different intensities of defoliation over 120 days (actual values expressed in mg/plant and log values used for statistical analysis) 79

Table 4-4. Crown mass, primary and secondary roots mass and root diameter (expressed in natural log (x+1) values) of BFT cv. Grasslands Goldie managed at cutting heights of 2, 6 and 10 cm and one undefoliated control treatment, over 120 days .. 84

Table 4-5. Primary and secondary shoots per pot (actual and log values) of BFT cv. Grasslands Goldie managed at cutting heights of
<p>| Table 4-6. | Leaf area ratio (LAR), specific leaf area (SLA), weight per leaf (wt./leaf) and leaves/gram of birdsfoot trefoil under different defoliation intensities over time. | 88 |
| Table 4-7. | Regressions between BFT herbage harvested (Y, g DM/pot) and below-ground parameters during two periods of growth after defoliation. | 91 |
| Table 4-8. | Multivariate analysis of variance (Manova test) performed on morphological components affected by defoliation height at three successive destructive harvests (40, 80 and 120 days). | 94 |
| Table 5-1. | Soil characteristics at experimental site in Palo a Pique Research Unit. (Source: Laboratory of Soils, INIA La Estanzuela, Uruguay). | 106 |
| Table 5-2. | Cutting schedule of BFT plots sown on May 1998. | 107 |
| Table 5-3. | Monthly rainfall and soil temperature at 50 mm depth during the evaluation period and the 8-year average (Source: INIA, Treinta y Tres, Uruguay). | 112 |
| Table 5-4. | Herbage harvested (kg DM/ha) and plant height at harvest (cm) of local BFT cultivars from sowing (8/5/98) to three different stages of development in the establishment year. | 114 |
| Table 5-5. | Herbage harvested (kg DM/ha) and plant height at harvest (cm) of introduced BFT cultivars from sowing (8/5/98) to three different stages of development in the establishment year. | 115 |
| Table 5-6. | The effect of defoliation intensity applied in Year 1 and 2 on annual herbage production (t DM/ha/year) in Year 2 of two groups of BFT cultivars (local and introduced). | 118 |
| Table 5-7. | Effects of Year 1 and Year 2 treatments on overall growth rates (kg DM/ha/day) during spring-summer of Year 2 in two pairs of BFT cultivars. | 124 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-8</td>
<td>Residual herbage mass, residual leaf area index (LAI) and leaf/(leaf+stem) ratio after cutting of local cultivars managed at two defoliation heights and three times of initial defoliation.</td>
</tr>
<tr>
<td>5-9</td>
<td>Residual herbage mass, residual leaf area index (LAI) and leaf/(leaf+stem) ratio of introduced cultivars managed at two defoliation heights and three times of initial defoliation.</td>
</tr>
<tr>
<td>5-10</td>
<td>Nutritive value of local BFT cultivars for the first harvest from sowing to three different periods of dry matter accumulation for plots defoliated at two different heights.</td>
</tr>
<tr>
<td>5-11</td>
<td>Nutritive value of introduced BFT cultivars for the first harvest from sowing to three different periods of dry matter accumulation for plots defoliated at two different heights.</td>
</tr>
<tr>
<td>5-12</td>
<td>Nutritive value of local BFT cultivars managed at two defoliation heights over 40 day intervals from November 1998 to April 1999.</td>
</tr>
<tr>
<td>5-13</td>
<td>Nutritive value of introduced BFT cultivars managed at two defoliation heights and 40 day intervals from December 1998 to April 1999.</td>
</tr>
<tr>
<td>5-14</td>
<td>Condensed tannin (CT, g/kg DM) contents of four BFT cultivars at vegetative stage in early spring.</td>
</tr>
<tr>
<td>5-15</td>
<td>Morphological parameters of four BFT cultivars 110 days after a sowing made on May 8, 1998.</td>
</tr>
<tr>
<td>5-16</td>
<td>Individual plant morphology parameters in BFT cultivars affected by the intensity and timing of defoliation at the end of the first year (March 1999).</td>
</tr>
<tr>
<td>5-17</td>
<td>Individual plant morphology parameters in BFT cultivars affected by the intensity and timing of defoliation at the end of the second year (March 2000).</td>
</tr>
<tr>
<td>6-1</td>
<td>Soil nutrients levels at experimental site in Palo a Pique Research Unit. (Source: Soils Laboratory, INIA La Estanzuela, Uruguay).</td>
</tr>
<tr>
<td>Table 6-2.</td>
<td>Seasonal average heights (cm) of pre and post-grazing herbage (showed as pre and post) and standard deviation values in brackets for all treatment combinations.</td>
</tr>
<tr>
<td>Table 6-3.</td>
<td>Annual and seasonal herbage accumulation (kg DM/ha) of an oversown birdsfoot trefoil/white clover mixture managed under different strategies and intensities of grazing during the third and fourth year after establishment.</td>
</tr>
<tr>
<td>Table 6-4.</td>
<td>Annual and seasonal herbage accumulation of birdsfoot trefoil (kg DM/ha) in a birdsfoot trefoil/white clover mixture managed under different strategies and intensities of grazing during the third and fourth year after establishment.</td>
</tr>
<tr>
<td>Table 6-5.</td>
<td>Annual and seasonal herbage accumulation of white clover (kg DM/ha) in a birdsfoot trefoil/white clover mixture managed under different strategies and intensities of grazing during the third and fourth year after establishment.</td>
</tr>
<tr>
<td>Table 6-6.</td>
<td>Annual and seasonal herbage accumulation of grasses (kg DM/ha) in a birdsfoot trefoil/white clover mixture managed under different strategies and intensities of grazing during the third and fourth year after establishment.</td>
</tr>
<tr>
<td>Table 6-7.</td>
<td>Seasonal averages of in vitro organic matter digestibility (g/kg DM) of a birdsfoot trefoil/white clover oversown mixture, during two years.</td>
</tr>
<tr>
<td>Table 6-8.</td>
<td>Seasonal averages of nitrogen content (g/kg DM) of a birdsfoot trefoil/white clover oversown mixture, during two years.</td>
</tr>
<tr>
<td>Table 6-9.</td>
<td>Seasonal averages of acid detergent fibre (g/kg DM) of a birdsfoot trefoil/white clover oversown mixture, during two years.</td>
</tr>
<tr>
<td>Table 6-10.</td>
<td>Number of primary shoots/plant of BFT under different strategies and intensities of defoliation from April 1998 to December 1999.</td>
</tr>
</tbody>
</table>
List of Tables

Table 6-11. Evolution of secondary shoots (no./plant) of BFT plants under a combination of four defoliation strategies and two defoliation intensities from April 1998 to December 1999... 181

Table 6-12. Evolution of crown mass (g/plant) of BFT plants under four defoliation strategies and two defoliation intensities from April 1998 to December 1999................................. 182

Table 6-13. Evolution of root mass (g/plant) of BFT plants under four defoliation strategies and two defoliation intensities from April 1998 to December 1999.. 183

Table 6-14. Evolution of root diameter (mm) of BFT plants under four defoliation strategies and two defoliation intensities from April 1998 to December 1999................................. 184

Table 6-15. Annual seed production (g/m²) of birdsfoot trefoil (BFT) and white clover (WC) in mixture under different strategies and intensities of defoliation during two years................................. 185

Table 6-16. Inflorescences/m² (I), viable seeds/m² (S) and 1000 seed weight (W) (g) of BFT/WC mixture under different strategies and intensities of defoliation, evaluated during two years.. 186

Table 6-17. Soil seed reserves and 1000 seed weight parameters in mixed birdsfoot trefoil (BFT) and white clover (WC) swards under different defoliation strategies and intensities, during two years.. 191

Table 6-18. Seedling emergence (no./m²) and percentage of emergence from soil seed reserves of birdsfoot trefoil (BFT) and white clover (WC) under different strategies and intensities of defoliation from March – August 1999......................... 194

Table 7-1. Description of experiments conducted in this project........... 205

Table 7-2. Summary of published research with emphasis in defoliation intensity on birdsfoot trefoil.................................. 209
LIST OF FIGURES

Figure 2-1. Theoretical model for population dynamics of BFT (partially adapted from Emery et al., 1999). Developmental stages are seed (n1), seedling (n2), mature vegetative plant (n3) and mature reproductive plant (n4). The references a1 to 4 represent transitional stages from stages n1 to n4. 28

Figure 2-2. Research priorities in birdsfoot trefoil. 31

Figure 3-1. Treatment effects on seasonal changes in birdsfoot trefoil plant density. Vertical bar represents SEM, (n=16). 54

Figure 3-2. Effects of defoliation management on secondary shoots per plant of BFT in December, under two intervals and three intensities of defoliation. Vertical bar represents SEM, (n=8). 57

Figure 3-3. Carbohydrate reserves in BFT roots in early spring of plants receiving two contrasting autumn managements (early rest in April or late rest in June). 58

Figure 3-4. Carbohydrate reserves in BFT roots at the end of spring (December 1997) of plants managed under two intervals and three intensities of defoliation. 58

Figure 3-5. Influence of defoliation height on plant population, shoots density and herbage contribution to total pasture production in BFT cv. Grasslands Goldie in spring. 61

Figure 4-1. Accumulation rate of herbage harvested (DM g/pot/day) of BFT cv. Grasslands Goldie defoliated at three intensities in controlled conditions. Vertical bars represent SEM, (n= number of observations for each treatment mean, were 15, 10, 10, 5, 5 and 5 for 0-20, 20-40, 40-60, 60-80, 80-100 and 100-120 day intervals respectively). 75
Figure 4-2. Relative growth rate (DM g/g/day) of BFT cv. Grasslands Goldie defoliated at three intensities in controlled conditions. Vertical bars represent SEM, (n= number of observations for each treatment mean, were 15, 10, 10, 5, 5 and 5 for 0-20, 20-40, 40-60, 60-80, 80-100 and 100-120 day intervals respectively) ... 76

Figure 4-3. Crown mass (g DM/pot) of BFT cv. Grasslands Goldie at cutting heights of 2, 6 and 10 cm and for an undefoliated control over 120 days ... 80

Figure 4-4. (a) Primary roots mass and (b) secondary roots mass (DM g/pot) of BFT cv. Grasslands Goldie at cutting heights of 2, 6 and 10 cm and for an undefoliated control over 120 days ... 81

Figure 4-5. Root diameter (mm) of BFT cv. Grasslands Goldie at cutting heights of 2, 6 and 10 cm and for an undefoliated control over 120 days ... 82

Figure 4-6. Regression between residual leaf area and herbage growth of BFT during three periods (day 0 to 20, 40 to 60 and 80 to 100) ... 92

Figure 4-7. Regression between total carbohydrate root reserves and BFT herbage harvested of plants defoliated at 20 day intervals (data comprised average/treatment between day 40 to 60 and 80 to 100) ... 93

Figure 5-1. Effective rainfall, evapotranspiration (EVP) and soil water balance for the period April 1998-February 2000 in Palo a Pique, Research Unit (Raúl Bermúdez and Jose Terra, personal communication) ... 113

Figure 5-2. Annual herbage production (t DM/ha/year) of BFT cultivars affected by timing of initial defoliation during the Year 1. Vertical bars represent SEM for each group of cultivars, (n=8) .. 116
Figure 5-3	Seasonal variation in growth rates (kg DM/ha/day) of BFT cultivars (a) INIA Draco, (b) San Gabriel, (c) Steadfast and (d) Grasslands Goldie under two defoliation intensities. Vertical bars represent SEM; *, (P<0.05); **, (P<0.01) and NS, (differences not significant) for corresponding growth periods. The number of observations (n) for each treatment mean was 4 (4 Nov-15 Dec), 8 (15 Dec-25 Jan), 12 (25 Jan-8 March) and 12 (8 March-15 Apr) for INIA Draco and San Gabriel. For Steadfast and Grasslands Goldie (n) was 4 (4 Dec-13 Jan), 8 (13 Jan-22 Feb) and 12 (22 Feb-5 Apr).	
Figure 5-4	Effect of height of defoliation on growth rates of local BFT cultivars from November 1998 to April 1999. (**, P<0.01; NS, not significant; SEM, standard error of the mean, n=8 (4 Nov-15 Dec), n=16 (15 Dec-25 Jan), n=24 (25 Jan-8 March and 8 March-15 Apr)).	
Figure 5-5	Growth rate of introduced BFT cultivars defoliated at two different heights from December 1998 to April 1999. (**, P<0.01; NS, not significant; SEM, standard error of the mean), n=4 (4 Dec-13 Jan), n=8 (13 Jan-22 Feb), n=12 (22 Feb-5 Apr)).	
Figure 5-6	Growth rates of (a) local cultivars and (b) introduced cultivars of BFT, influenced by the number of previous defoliation during spring and summer. (**, P<0.01; NS, differences not significant for corresponding growth periods; SEM, standard error of the mean, n=16). Bars with same colour represent the same treatment across periods.	
Figure 5-7	Vertical distribution of tissues in BFT swards strata for local cultivars under two defoliation heights in December 1999, determined from inclined point quadrat contacts.	
Figure 5-8	Vertical distribution of tissues in BFT swards strata for introduced cultivars under two defoliation heights in December 1999, determined from inclined point quadrat contacts.	
Figure 5-9.	Changes in plant density of four BFT cultivars over the period July 1998 – March 2000. Numbers in brackets indicate the SEM between treatments at corresponding dates, (n=24).	136
Figure 5-10.	Canonical analysis for morphology parameters in the Year 1 (a) and Year 2 (b).	143
Figure 5-11.	Changes in dry matter harvested (DM), digestible organic matter harvested (DOMA) and organic matter digestibility of two BFT cultivars (a) San Gabriel and (b) INIA Draco from sowing to three physiological stages.	147
Figure 6-1.	Description of grazing strategies applied on the birdsfoot trefoil-white clover mixture from April 1998 to March 2000. Each strategy was defoliated at 4 and 10 cm height.	163
Figure 6-2.	Changes in BFT density (adult plants) under (a) four defoliation strategies and (b) two defoliation intensities from April 1998-March 2000. Vertical bars indicate SEM (n_strategies=16, n_intensities=32), and NS not significant differences at corresponding sampling dates.	178
Figure 6-3.	Patterns of seed production in BFT (g/m²) over two summer seasons affected by defoliation strategies (a) and by defoliation intensities (b). **, P<0.01; *, P<0.05; NS, not significant; numbers in brackets, SEM (n_a=16, n_b=32).	188
Figure 6-4.	Patterns of seed production in WC (g/m²) over two summer seasons affected by defoliation strategies (a) and by defoliation intensities (b). **, P<0.01; *, P<0.05; NS, not significant; numbers in brackets, SEM (n_a=16, n_b=32).	189
Figure 6-5.	Seedling emergence patterns of (a) birdsfoot trefoil (BFT) and (b) white clover (WC) and (c) climatic parameters, evaluated on field from June to December 1998.	193
Figure 7-1. Results related to the effect defoliation intensity in BFT growth from information presented in (a) Chapters 3 and 4, (b) Chapter 5 and (c) Chapter 6................................. 210
LIST OF PLATES

Plate 3-1. Birdsfoot trefoil plant showing the morphological parameters evaluated .. 50

Plate 3-2. Number of plants of birdsfoot trefoil in December 1997 under three intensities of defoliation (2, 6 and 10 cm). Samples represent 250x250 mm quadrat .. 55

Plate 4-1. General view of BFT pots at the time of start (a) and during the trial (b) and disease symptoms on some BFT plants (c) .. 74

Plate 4-2. Above and below-ground biomass of BFT plants defoliated at different intensities and undefoliated control at 40 days destructive harvest .. 83

Plate 5-1. General view of BFT cultivars under different intensities and timing of defoliation in the year of establishment (Year 1) .. 111

Plate 5-2. BFT plants (6 months old) of San Gabriel and Grassland Goldie (a), and one year old plant of Steadfast showing the development of rhizomes (b) .. 138

Plate 6-1. (a) Sheep grazing birdsfoot trefoil/white clover oversown mixture in the experimental site at Palo a Pique Research Station, Treinta y Tres, Uruguay. (b) Postgrazing sward height were recorded to maintain contrasting defoliation intensities of 4 and 10 cm .. 166

Plate 6-2. Seedling emergence was checked regularly from cores placed in an adjacent area to experimental site and maintained free of ground cover .. 192
1. GENERAL INTRODUCTION

1.1 INTRODUCTION
1.2 OBJECTIVES
1.3 THESIS OUTLINE
1.4 REFERENCES