Environmental effects on Cabernet Sauvignon (*Vitis vinifera* L.) when grown in different sub-regions within Hawke’s Bay (New Zealand)

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science

at Massey University
Palmerston North
New Zealand

Dejan Tešić
2001
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>Coefficient of simple correlation</td>
</tr>
<tr>
<td>R</td>
<td>Coefficient of multiple correlation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>CDA</td>
<td>Canonical Discriminant Analysis</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation (%)</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>ppt</td>
<td>Parts per trillion</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Soluble Solids (°Brix)</td>
</tr>
<tr>
<td>TA</td>
<td>Titratable Acidity (g/L)</td>
</tr>
<tr>
<td>IR</td>
<td>Index of Ripeness, or gluco-acidometric index</td>
</tr>
<tr>
<td>IRA</td>
<td>Index of Ripeness corrected for Anthocyanans</td>
</tr>
<tr>
<td>AC</td>
<td>Concentration of anthocyanins in wine (g/L)</td>
</tr>
<tr>
<td>d.w.</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>f.w.</td>
<td>Fresh Weight</td>
</tr>
<tr>
<td>O.D.</td>
<td>Optical Density</td>
</tr>
<tr>
<td>AOC</td>
<td>Appellation d'origine contrôlée</td>
</tr>
<tr>
<td>GDD</td>
<td>Growing Degree-Days (°D)</td>
</tr>
<tr>
<td>ET</td>
<td>Estimated potential evapotranspiration (mm)</td>
</tr>
<tr>
<td>ESA</td>
<td>Estimated exposed leaf Surface Area</td>
</tr>
<tr>
<td>SC</td>
<td>Canopy density ScoreCard points</td>
</tr>
<tr>
<td>CDI</td>
<td>Canopy Density Index</td>
</tr>
<tr>
<td>RDI</td>
<td>Regulated Deficit Irrigation</td>
</tr>
<tr>
<td>IPF</td>
<td>Index of precocity of flowering</td>
</tr>
<tr>
<td>IPV</td>
<td>Index of precocity of véraison</td>
</tr>
<tr>
<td>IPCY</td>
<td>Index of precocity of the vegetative cycle</td>
</tr>
<tr>
<td>SF</td>
<td>"Soil Factor"</td>
</tr>
</tbody>
</table>
Environmental effects on Cabernet Sauvignon (*Vitis vinifera* L.) when grown in different sub-regions within Hawke’s Bay (New Zealand)

Abstract

During three consecutive seasons a study was undertaken in order to characterise viticultural environments for cv Cabernet Sauvignon in Hawke’s Bay. The initial 1996/97 study showed that phenology, titratable acidity and canopy characteristics were of central importance for site characterisation. Based on fruit and canopy attributes of the initial 28 sites, six were selected for a detailed study in the 1997/98 and 1998/99 seasons. Air temperatures varied slightly between the six sites and some differences were observed in temperature amplitudes and rainfall. Variability between sites in solar radiation was low. A large variability was observed in soil temperatures, with gravel and sandy soils warmer than silt and clay. A budburst model based on air and soil temperatures is presented. Canopy density was affected by seasonal variability of soil moisture and soil temperature. Yield to pruning ratio was higher at sites with light soils than at others. Flowering date was correlated with temperature and rainfall in the month preceding flowering and with shoot length before flowering. Duration of flowering was negatively correlated with temperature and with fruit set. Véraison and ripening were significantly affected by soil and air temperatures. Soluble solids in fruit at harvest were positively correlated with air and soil temperature and negatively with soil moisture content. Total phenolic and anthocyanin concentration in berry skins was correlated with soil temperature and soil moisture content.

Harvest dates at each of the studied sites were chosen solely by their respective vineyard managers and the information driving these decisions was not made available. Differences between seasons and sites were found in sensory evaluation scores of unreplicated wines produced by microvinification. High wine scores were associated with precocity in
phenological stages, favourable canopy density and optimal Mg status of the vines. The novel TSS/malic acid*pH maturity index was positively correlated with wine scores and appears to offer potential for early prediction of Cabernet Sauvignon wine quality. Air and soil temperatures for the final ripening month were positively correlated with wine scores. Wines from soils of limited water capacity or limited root growth achieved highest sensory evaluation scores, probably by reducing vegetative growth and thus inducing canopy characteristics favourable for fruit development and ripening.

The use of a ‘Soil Factor’ (SF) that integrates soil temperature, soil moisture volumetric content, depth of topsoil and water availability index based on soil texture is proposed. SF is significantly correlated with several attributes of vine vegetative growth, véraison date, soluble solids, tartaric acid, malic acid, total phenolics and anthocyanins in fruit, and with wine scores. It appears that environmental characterisation of vineyard sites in Hawke’s Bay based mainly on SF is possible. This site characterisation could eventually lead to determination of future viticultural ‘terroirs’ for Cabernet Sauvignon.
Acknowledgments

I wish to thank my supervisors Professor Errol Hewett and Dr David Woolley of Massey University, and Dr Damian Martin of Corbans Wines Ltd, for their useful advice and supervision. I also wish to thank Professor Ken Milne and Associate Professor Hossein Behboudian of Massey University for their help and encouragement.

I am very grateful to AGMARDT for their generous financial support. Also thanks to Dr Stuart Tustin and all at HortResearch Havelock North Research Centre for their help and for use of their facilities. I particularly want to mention Mr Brent Fisher whose work on microvinification was essential for my work. Mr Keith Vincent of Soil Selection Services Ltd provided his soil science expertise enthusiastically.

Thanks to Mr Chris Rawlingson of Massey University for his help with laboratory analyses. Many thanks to Hawke’s Bay Grape Growers Association for their financial assistance and Massey University for their Graduate Research Fund assistance. Also I am thankful to Professor Geoff Scollary and others at Charles Sturt University (Australia) for their help with sensory analysis of wines.

I am very grateful to following people who allowed me access to their vineyards: Mr Larry Morgan and Mr Peter Cowley (Te Mata Estate Winery); Mr Brian Penhall; Mr Bruce Ellingham; Ms Chris Van Berkel; Mr Bob Newton; Mr Tim Turvey (Clearview Estate); Mr Malcolm Reeves (Cross Roads Winery); Dr Michael Hewitt; Mr Barry Hoy (Esk Valley Vines); Mr John P. Smith (Hawkhurst Vineyard); Mr Devon Lee (Huthlee Estate); Mr John Rees (Trinity Hill Winery); Mr Kingsley Tobin (Kingsley Estate); Mr Len Tucker; Mr John van der Linden (Linden Estate); Mr Maurice Menneer; Mr Ian Cadwallader (Riverside Wines); Mr Mark Allan (Morton Estate Riverview Vineyard); Mr Robin Back; Mr Robin Sage; Mr Rod Cotton; Mr Ted Bugden (Springfield Vineyard) and Dr Allan Limmer (Stonecroft Wines).

Last but not least, a big thank you to my wife Milena for her patience and support.
Table of Contents

CHAPTER 1. GENERAL INTRODUCTION

- **NEW ZEALAND WINE INDUSTRY** ... 1
- **ENVIRONMENT AND VITICULTURAL PERFORMANCE, THE CONCEPT OF ‘TERROIR’** 3
- **WINE-GROWING REGION OF HAWKE’S BAY** .. 11
 - Cabernet Sauvignon in Hawke’s Bay .. 14
- **HAWKE’S BAY SUB-REGIONS** ... 16
 - Fennhill/Ohiti/Ngatarawa .. 17
 - Dartmoor/Puketapu ... 18
 - Taradale/Meeanee/Brookfields ... 18
 - Mangatahi/Maraekakaho .. 18
 - Eskdale/Bayview .. 18
 - Haumoana/Te Awanga .. 19
 - Te Mata/Havelock North ... 19

OBJECTIVES AND EXPERIMENTAL RATIONALE .. 19

CHAPTER 2. GENERAL MATERIALS AND METHODS .. 21

- INTRODUCTION ... 21
- REGION ... 23
- ENVIRONMENTAL CONDITIONS .. 23
- EXPERIMENTAL BLOCK .. 25
- PHENOLOGICAL STAGES .. 26
- NUTRIENT STATUS ... 28
- VEGETATIVE GROWTH .. 29
- YIELD COMPONENTS .. 30
- BERRY AND JUICE COMPOSITION .. 30
 - Determination of malic and tartaric acid in juice .. 33
 - Determination of polyphenols and anthocyanins in berry skins 33
- PRUNING WEIGHTS .. 34
- LIMITATIONS TO EXPERIMENT ... 35
- STATISTICAL ANALYSIS ... 35

CHAPTER 3. INITIAL ASSESSMENT OF DIFFERENT VITICULTURAL ENVIRONMENTS

- INTRODUCTION ... 37
- MATERIAL AND METHODS ... 38
 - Edaphic Conditions ... 40
 - Estimation of Meteorological Data for the Observed Sites 41
- RESULTS .. 43
 - Phenology ... 44
 - Flowering ... 45
 - Veraison ... 45
 - Berry Ripening .. 46
 - Yield and Yield Components ... 47
 - Vigour and Canopy Properties ... 47
 - Nutrient Status of Grapevines ... 50
 - Berry Composition at Harvest ... 52
 - Results by Training System .. 56
 - Results by Row Orientation ... 58
- DISCUSSION .. 58
 - Phenology ... 58
 - Yield .. 61
 - Vigour ... 63
 - Fruit composition ... 66
 - Nutritional Status ... 68
 - Row Orientation ... 69
 - Site selection ... 70

SUMMARY ... 75

CHAPTER 4. CHARACTERISATION OF SELECTED VITICULTURAL ENVIRONMENTS

... 76
CHAPTER 5. BUDBUST AND VEGETATIVE GROWTH
INTRODUCTION .. 98
MATERIAL AND METHODS .. 99
RESULTS .. 100
 Shoot Elongation .. 102
 Canopy Density .. 106
 Post-veraison Growth .. 107
 The Content of Major Nutrients in Leaf Petioles .. 107
 Pruning Weights ... 110
 Mature Cane Properties ... 111
 Yield/Pruning Weight Ratio ... 112
DISCUSSION ... 113
 Phenology of Budburst ... 113
 The Effect of Site on Growth and Yield/Pruning Weight Ratio 117
 Nutrient Status, Fruit Cropping and Composition .. 120
SUMMARY ... 122

CHAPTER 6. FLOWERING, BERRY SET AND THE DEVELOPMENT OF GREEN BERRIES
INTRODUCTION .. 124
MATERIAL AND METHODS .. 125
RESULTS .. 126
 Environmental Conditions during Flowering .. 126
 Flowering Dynamics .. 126
 Berry Set and its Variability ... 128
 Variability of Weight in Green Berries .. 129
DISCUSSION ... 131
SUMMARY ... 138

CHAPTER 7. VÉRAISON AND BERRY RIPENING
INTRODUCTION .. 140
MATERIAL AND METHODS .. 141
RESULTS .. 141
 Development and Ripening of Berries ... 143
 Yield and Yield Components .. 156
 Weight, TSS and Seed Number Variability in Berries .. 158
DISCUSSION ... 158
SUMMARY ... 173

CHAPTER 8. EVALUATION OF CABERNET SAUVIGNON WINES FROM DIFFERENT SITES
INTRODUCTION .. 175
MATERIAL AND METHODS .. 176
RESULTS .. 179
 FTIR Analysis Results .. 181
 Wine Sensory Analysis Results .. 181
DISCUSSION ... 184
 The RVV Wines .. 189
 The JRS Wines .. 189
The BPN Wines .. 191
The SFV Wines .. 192
The LND Wines .. 192
The MMR Wines .. 193
Different Wine Styles and Potential 'Terroirs' .. 193

SUMMARY .. 197

CHAPTER 9: GENERAL DISCUSSION AND CONCLUSIONS .. 198
THESIS OBJECTIVES .. 198
A REVIEW AND ANALYSIS OF OUTCOMES .. 201
Phenology and 'Terroir' Definition .. 201
Soil, Climate, Vineyard Management and the 'Terroir' Effect .. 208
The 'Soil Factor' and Grape and Wine Attributes .. 213
Potential Viticultural 'Terroirs' in Hawke's Bay .. 215
CONCLUSIONS AND FUTURE PROSPECTS .. 220

REFERENCES .. 227

APPENDICES .. 239
APPENDIX 1. CANOPY DENSITY SCORECARD .. 239
APPENDIX 2. CALCULATION OF THE CONTENT OF POLYPHENOLS AND ANTHOCYANINS .. 240
APPENDIX 3. TOPOGRAPHICAL LOCATIONS OF SOME OF THE STUDIED VINEYARD SITES .. 242
APPENDIX 4. THE SET-UP OF LI-COR LI1000 DATA LOGGERS .. 246
APPENDIX 5. SOIL DESCRIPTIONS AND CLASSIFICATIONS .. 248
APPENDIX 6. VISUAL BASIC FOR EXCEL CUSTOM FUNCTIONS FOR DATA PROCESSING .. 253
APPENDIX 7. METEOROLOGICAL CONDITIONS IN 1996/97 .. 255
APPENDIX 8. NOTES ACCOMPANYING MICROVINIFICATION PROCEDURE .. 255
APPENDIX 9. CORRELATION OF SELECTED VARIABLES OBSERVED IN 1996/97 AT 28 SITES... .. 259
AND 1998/99 SEASONS .. 262
APPENDIX 11: CHARACTERISTICS OF SOILS IN THE GEOGRAPHICAL SUB-REGIONS OF HAWKE'S
BAY .. 269
APPENDIX 14: PHOTOGRAPHS .. 276

List of Tables

Table 1. A comparison of main climatic data for Napier, Bordeaux and Coonawarra 12
Table 2. Sites in Hawke's Bay monitored in the 1996/97 growing season 40
Table 3. Estimation of average temperatures for 28 sites in Hawke's Bay observed in
1996/97 .. 42
Table 4. Variables observed in the 1996/97 season and their descriptive statistics 43
Table 5. Main phenological stages of Cabernet Sauvignon vines grown at 28 sites in
Hawke's Bay 1996/97 (site details presented in Table 2) ... 46
Table 6. Yield and yield components of Cabernet Sauvignon grapevines grown at 28 sites
in Hawke's Bay 1996/97 ... 48
Table 7. Canopy properties of Cabernet Sauvignon grapevines grown at 28 sites in
Hawke's Bay 1996/97 ... 49
Table 8. Leaf petiole content of N, P, K, Ca and Mg at veraison in Cabernet Sauvignon
grapevines grown at 28 sites in Hawke's Bay 1996/97 .. 51
Table 9. Total soluble solids (TSS), titratable acidity (TA), index of ripeness (IR), pH, and
index of ripeness adjusted for anthocyanins (IRA) at harvest 1996/97 54
Table 10. Polyphenol and anthocyanin content in berry skin extracts, anthocyanin
extractability, malic and tartaric acid, and potassium in juice at harvest 1996/97 55
Table 11. Phenology, cropping and berry composition in cv Cabernet Sauvignon grown
at six sites in Hawke's Bay 1996/97, presented by training system 57
Table 12. Multiple regression between monthly GDD and the number of days from 1
October to veraison .. 60
Table 13. Selection of six sites for detailed study .. 71
Table 14. Selected sites and their main characteristics ... 73
Table 15. Canonical Discriminant Analysis of selected variables in 1996/97 73
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 16</td>
<td>The main soil properties at six selected sites in Hawke's Bay during the 1997/98 and 1998/99 seasons and environmental conditions for 10-20 September.</td>
<td>100</td>
</tr>
<tr>
<td>Table 17</td>
<td>Average air temperature estimates and seasonal GDD (°D) at 28 vineyard sites in Hawke's Bay in the 1996/97 season.</td>
<td>79</td>
</tr>
<tr>
<td>Table 18</td>
<td>Average air temperatures in 1997/98 and 1998/99.</td>
<td>80</td>
</tr>
<tr>
<td>Table 19</td>
<td>Absolute minimum air temperatures in 1997/98 and 1998/99.</td>
<td>81</td>
</tr>
<tr>
<td>Table 20</td>
<td>Absolute minimum air temperatures in 1997/98 and 1998/99.</td>
<td>82</td>
</tr>
<tr>
<td>Table 21</td>
<td>Average maximum air temperatures in 1997/98 and 1998/99.</td>
<td>83</td>
</tr>
<tr>
<td>Table 22</td>
<td>Absolute maximum air temperatures in 1997/98 and 1998/99.</td>
<td>84</td>
</tr>
<tr>
<td>Table 23</td>
<td>Average night temperatures in 1997/98 and 1998/99.</td>
<td>85</td>
</tr>
<tr>
<td>Table 24</td>
<td>Average soil temperatures at 15 and 30 cm in 1997/98 and 1998/99.</td>
<td>86</td>
</tr>
<tr>
<td>Table 25</td>
<td>Monthly averages for solar radiation (mol/m²) in 1997/98 and 1998/99.</td>
<td>87</td>
</tr>
<tr>
<td>Table 26</td>
<td>Rainfall (mm) and irrigation (mm) at six selected sites in the experimental period.</td>
<td>88</td>
</tr>
<tr>
<td>Table 27</td>
<td>Rainfall (mm) and irrigation (mm) at six selected sites in the experimental period.</td>
<td>89</td>
</tr>
<tr>
<td>Table 28</td>
<td>Cabernet Sauvignon budburst dates at six vineyard sites in Hawke's Bay in the 1997/98 and 1998/99 seasons.</td>
<td>90</td>
</tr>
<tr>
<td>Table 29</td>
<td>The heterogeneity of budburst at site LND on 23 September 1998.</td>
<td>101</td>
</tr>
<tr>
<td>Table 30</td>
<td>Shoot length at several stages of development at six vineyard sites in Hawke's Bay during the 1997/98 and 1998/99 seasons.</td>
<td>102</td>
</tr>
<tr>
<td>Table 31</td>
<td>Summer pruning dates at six vineyard sites in Hawke's Bay during the 1997/98 and 1998/99 seasons.</td>
<td>103</td>
</tr>
<tr>
<td>Table 32</td>
<td>Canopy density scorecard points for six Cabernet Sauvignon vineyard sites in Hawke's Bay during three seasons.</td>
<td>104</td>
</tr>
<tr>
<td>Table 33</td>
<td>Leaf petiole content of N, P, K, Ca and Mg at flowering, véraison, and before harvest in 1997/98 and 1998/99 for six selected sites.</td>
<td>105</td>
</tr>
<tr>
<td>Table 34</td>
<td>Pruning weights (kg/m²) at six selected sites in Hawke's Bay over three seasons.</td>
<td>106</td>
</tr>
<tr>
<td>Table 35</td>
<td>Cane properties at six Cabernet Sauvignon vineyard sites in Hawke's Bay in 1997/98.</td>
<td>107</td>
</tr>
<tr>
<td>Table 36</td>
<td>Yield/pruning weight ratio at six Cabernet Sauvignon vineyard sites in Hawke's Bay over three consecutive seasons.</td>
<td>108</td>
</tr>
<tr>
<td>Table 37</td>
<td>Correlation between the 'Soil Factor' and growth attributes.</td>
<td>109</td>
</tr>
<tr>
<td>Table 38</td>
<td>GDD, solar radiation, soil temperature and soil moisture at six selected vineyard sites in Hawke's Bay during October and November 1996-1998.</td>
<td>110</td>
</tr>
<tr>
<td>Table 39</td>
<td>Flowering dates and duration at six Cabernet Sauvignon vineyard sites in Hawke's Bay over three seasons.</td>
<td>111</td>
</tr>
<tr>
<td>Table 40</td>
<td>Berry set and its variability (SD – standard deviation).</td>
<td>112</td>
</tr>
<tr>
<td>Table 41</td>
<td>Cabernet Sauvignon berry weight at six sites in Hawke's Bay on 5-7 January in the 1997/98 and 1998/99 seasons.</td>
<td>113</td>
</tr>
<tr>
<td>Table 42</td>
<td>Cabernet Sauvignon berry weight at six sites in Hawke's Bay at several stages of development in the 1997/98 season.</td>
<td>114</td>
</tr>
<tr>
<td>Table 43</td>
<td>Seed number per berry and seed weight (g) at harvest in 1997/98.</td>
<td>115</td>
</tr>
<tr>
<td>Table 44</td>
<td>TSS ('Brix) in Cabernet Sauvignon juice at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>116</td>
</tr>
<tr>
<td>Table 45</td>
<td>TA (g/L) in Cabernet Sauvignon juice at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>117</td>
</tr>
<tr>
<td>Table 46</td>
<td>Juice pH in Cabernet Sauvignon at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>118</td>
</tr>
<tr>
<td>Table 47</td>
<td>Tartaric acid (g/L) concentration in Cabernet Sauvignon juice at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>119</td>
</tr>
<tr>
<td>Table 48</td>
<td>Malic acid (g/L) concentration in Cabernet Sauvignon juice at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>120</td>
</tr>
<tr>
<td>Table 49</td>
<td>Potassium (g/L) concentration in Cabernet Sauvignon juice at harvest at six selected sites in Hawke's Bay over three seasons.</td>
<td>121</td>
</tr>
<tr>
<td>Table 50</td>
<td>Index of Ripeness adjusted for Anthocyanins (IRA) at harvest for six selected sites in Hawke's Bay in the 1997/98 and 1998/99 seasons.</td>
<td>122</td>
</tr>
<tr>
<td>Table 51</td>
<td>Concentration of total and extractable anthocyanins (mg/kg of fresh weight) in Cabernet Sauvignon berry skins at harvest at six selected sites in Hawke's Bay in the 1997/98 and 1998/99 seasons.</td>
<td>123</td>
</tr>
</tbody>
</table>
Table 52. Concentration of total and extractable polyphenols (mg/kg of fresh weight) in Cabernet Sauvignon berry skins at harvest at six selected sites in Hawke's Bay in the 1997/98 and 1998/99 seasons ... 156

Table 53. Bud and cluster number in Cabernet Sauvignon grapevines at six vineyard sites in Hawke's Bay in the 1997/98 and 1998/99 seasons ... 157

Table 54. Grape yield (kg/m²) in Cabernet Sauvignon at six sites in Hawke's Bay in the 1997/98 and 1998/99 seasons ... 157

Table 55. Cluster number and weight, berry weight and grape yield in Cabernet Sauvignon at six selected sites in Hawke's Bay over three seasons 158

Table 56. Berry weight, seed number and TSS at the JRS site at harvest 1997/98 158

Table 57. Factor loadings calculated by the Principal Component Analysis (PCA) of data obtained at six vineyard sites in the 1997/98 and 1998/99 seasons (rotation: Varimax Normalised) .. 159

Table 58. Cabernet Sauvignon juice and wine analyses in the 1997/98 and 1998/99 seasons ... 180

Table 59. Wine sensory analysis and scoring of the 1997/98 and 1998/99 seasons' Cabernet Sauvignon wines from six sites in Hawke's Bay ... 182

Table 60. Correlations between wine sensory evaluation score and vine growth, fruit and environmental attributes .. 183

Table 61. Principal component analysis of the variables observed in the 1996/97 season at 28 sites in Hawke's Bay ... 205

Table 62. Coefficients of correlation between soil temperature at 15 cm (ST15), ‘Soil Factor’ (SF) and indices of precocity of véraison (IPV) and the cycle (IPCY) ... 207

Table 63. Coefficients of correlation between TSS, tartaric and malic acid, juice pH, wine score and indices of precocity of flowering (IPF), véraison (IPV) and the cycle (IPCY) 207

List of Figures

Figure 1. Wine regions of New Zealand ... 2
Figure 2. Life cycle of viticultural regions: current positioning 5
Figure 3. Viticultural sub-regions of Hawke's Bay .. 17
Figure 4. Li-Cor LI1000 data logger in a protective shield, placement of sensors, and data download on a laptop computer .. 24
Figure 5. Locations of the observed vineyard sites and meteorological stations .. 38
Figure 6. Distribution of sites in Hawke's Bay according to IR (index of ripeness) at harvest 1996/97 ... 53
Figure 7. Relationship between the yield of grapes and estimated exposed leaf surface area (ESA) ... 62
Figure 8. The relationship between estimated exposed leaf surface area (ESA) and canopy density index (CDI) of Cabernet Sauvignon vines grown at 28 sites in Hawke's Bay .. 64
Figure 9. Scatterplot of canonical scores for selected variables collected at five site categories in 1996/97 ... 74
Figure 10. Soil moisture content relative to estimated field water capacity at six selected sites in Hawke's Bay ... 90
Figure 11. Soil temperature at 30 cm from November through February, clay/silt ratio in main vine rooting zone and air temperature for the same period 96
Figure 12. Mean air temperatures (°C) in July 1997 and 1998 at Havelock North 101
Figure 13. Shoot elongation (cm) at six selected sites in Hawke's Bay 102
Figure 14. Daily shoot elongation rates (cm) at six selected sites in Hawke's Bay during the 1997/98 and 1998/99 seasons ... 104
Figure 15. Number of growing shoot tips per m² at six Cabernet Sauvignon vineyard sites in Hawke's Bay after véraison during the 1997/98 and 1998/99 seasons .. 108
Figure 16. Seasonal dynamics of N, P, K, Ca and Mg in leaf petioles 111
Figure 17. Prediction of budburst date in days from 20 Sep and its duration 116
Figure 18. Changes in coefficient of variation (% of berry weight during development and ripening of berries at six sites in Hawke's Bay .. 130
Figure 19. Dry matter percentage in berries and rachides of Cabernet Sauvignon collected 6-7 January 1999 at six selected sites in Hawke's Bay .. 131
Figure 20. The effect of air temperature on rate of flowering in Cabernet Sauvignon grown at six sites in Hawke’s Bay during the 1997/98 and 1998/99 seasons 134
Figure 21. The relationship between shoot length at mid-flowering and the proportion of underdeveloped inflorescences (those with no flowers open) at approximately 50% of flowering .. 135
Figure 22. The relationship between GDD (°D) for November and the percentage berry set in Cabernet Sauvignon at six sites in Hawke’s Bay during 1997/98 and 1998/99 137
Figure 23. Véraison dynamics in cv Cabernet Sauvignon in the 1997/98 and 1998/99 seasons at six selected sites in Hawke’s Bay ... 142
Figure 24. Berry weight at six Cabernet Sauvignon vineyard sites in Hawke’s Bay during ripening in the 1997/98 and 1998/99 seasons ... 143
Figure 25. Total soluble solids (TSS) in berries of Cabernet Sauvignon at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons .. 145
Figure 26. Titratable acidity (TA) in Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons ... 146
Figure 27. Juice pH of Cabernet Sauvignon at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons 147
Figure 28. Juice yield percentage in Cabernet Sauvignon at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons... 148
Figure 29. Turbidity of Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons........ 149
Figure 30. Tartaric acid (g/L) concentration in Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons ... 150
Figure 31. Malic acid (g/L) concentration in Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons ... 151
Figure 32. Potassium (g/L) concentration in Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons ... 152
Figure 33. Total anthocyanin (g/kg) concentration in Cabernet Sauvignon juice at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons ... 154
Figure 34. Total polyphenols (g/kg) concentration in Cabernet Sauvignon berry skin extracts at six selected sites in Hawke’s Bay during berry development and ripening in the 1997/98 and 1998/99 seasons .. 155
Figure 35. Principal component analysis (PCA) of 61 variables collected at six vineyard sites in the 1997/98 and 1998/99 seasons ... 162
Figure 36. The relationship between soil moisture content in the 0-30 cm profile and soil temperature at 30 cm in February and TSS in juice measured on 23 March, based on data collected at six vineyard sites in the 1997/98 and 1998/99 seasons 164
Figure 37. Total anthocyanins (g/kg) as affected by ‘soil factor’ (SF) for January. Regressions are based on data for six Cabernet Sauvignon vineyard sites in the 1997/98 and 1998/99 seasons .. 165
Figure 38. The relationship between berry weight (g), Canopy Density Index (CDI) and total anthocyanins in berry skins (g/kg fresh weight) based on data collected at six vineyard sites in the 1997/98 and 1998/99 seasons .. 167
Figure 39. The relationship between malic acid in juice (g/L) on 23 March and soil temperature at 30 cm and soil moisture in the 0-30 cm profile in February based on six sites in the 1997/98 and 1998/99 seasons ... 170
Figure 40. The relationship between the Maturity Index TSS/malic acid*pH and the Soil Factor (SF) for January, based on data for six vineyard sites in the 1997/98 and 1998/99 seasons .. 172
Figure 41. Flow diagram for microvinification of Cabernet Sauvignon grapes 178
Figure 42. FTIR analysis of 1998 wines and the results of cluster analysis 181
Figure 43. Regression between the TSS/malic acid*pH index in juice on 23-25 March and wine sensory evaluation score based on data for six sites in the 1997/98 and 1998/99 seasons .. 186
Figure 44. The relationship between total anthocyanins (mg/kg) and the extractability of anthocyanins based on data collected at 28 sites in 1996/97.................................191
Figure 45. Indices of precocity for cv Cabernet Sauvignon at 28 sites in six sub-regions in 1996/97..203
Figure 46. Indices of precocity for cv Cabernet Sauvignon at six sites – average for the 1997/98 and 1998/99 seasons...206
Figure 47. Potential viticultural ‘terroirs’ in Hawke’s Bay ...217