DESIGN OF AN IMPROVED FUZZY CONTROLLER MICROCHIP FOR WASHING MACHINE

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Engineering

in

Mechatronics

at

Massey University,
Auckland, New Zealand

Pritesh Lohani

May 2010
ABSTRACT

Washing machines are today a common household requirement. Wash time is one of the key factors that need to be taken into account in a design of a washing machine. Washing machines which do not use fuzzy controller serves most purposes of washing function but wash time is somewhat not dealt properly.

This study describes the full architectural (both circuitry and physical layout) design of an improved washing machine controller microchip that uses fuzzy logic approach to specifically deal with the wash time in a much more efficient manner. Recent research shows that fuzzy logic approach responds much faster than any other conventional technique. This fuzzy logic controller microchip for washing machine has 36 Input/Output (I/O) pins including two Vdd and two Vss. On chip fuzzification, Fuzzy Inference Engine, Defuzzification, ROM-based Fuzzy sets and MIN-MAX array-based Fuzzy rules are the salient features of the design.

With full Complementary Metal Oxide Semiconductor (CMOS) interface, it is suitable as a co-processor.
ACKNOWLEDGEMENTS

I cannot stress the fact that the single most important person contributing to student’s success is the supervisor. It is important to pick an advisor who is both interested and knowledgeable in the chosen research area. With this in mind, I would like to express my deepest gratitude and sincerest appreciation to Dr. S M Rezaul Hasan for his supervision, enthusiastic guidance and continuous encouragement throughout the course of study. Dr. Hasan’s extensive knowledge of circuits and keen insight into VLSI design were major assets.

I am also thankful to my sister Priti Lohani; and my friends Nooriyah Poonawala, Mahoda Ratnayaka, Cao Van Pham, Jack Li and Mohammad Khurram for assisting in many ways.

Last but not least, very special thanks go to my parents for their emotional support and advice throughout all my achievements in life.
# TABLE OF CONTENTS

ABSTRACT ......................................................................................................................................................... ii
ACKNOWLEDGEMENTS ................................................................................................................................... iii
LIST OF FIGURES ............................................................................................................................................... vii-viii
LIST OF TABLES ................................................................................................................................................ ix
LIST OF ABBREVIATIONS ................................................................................................................................ x-xi

CHAPTER 1 - INTRODUCTION .............................................................................................................................. 1
  1.1 Problem Definition.......................................................................................................................................... 1
  1.2 Objective of the Thesis................................................................................................................................. 1
  1.3 Scope of the Study......................................................................................................................................... 1

CHAPTER 2 - LITERATURE REVIEW .................................................................................................................. 2
  2.1 Fuzzy logic Control Systems....................................................................................................................... 2
  2.2 History of Fuzzy Logic.................................................................................................................................. 2
  2.3 Description of a Fuzzy Logic System.......................................................................................................... 3
  2.4 Conventional Logic Systems versus Fuzzy Logic Systems.......................................................................... 3
  2.5 Humans and Fuzzy Logic........................................................................................................................... 3
  2.6 Control System for Washing Machine....................................................................................................... 4

CHAPTER 3 - THEORY .......................................................................................................................................... 9
  3.1 Fuzzification of crisp input signals............................................................................................................... 9
  3.2 Use of fuzzy sets and fuzzy rules for fuzzy inference.................................................................................. 10
  3.3 Defuzzification and generation of crisp output signal.................................................................................. 11

CHAPTER 4 - METHODOLOGY .......................................................................................................................... 12
  4.1 Linguistic Inputs............................................................................................................................................ 13
  4.2 Linguistic Output......................................................................................................................................... 13
CHAPTER 5- HARDWARE DESIGN AND IMPLEMENTATION ..........................................................21
  5.1 Fuzzification Hardware .................................................................................................21
    5.1.1: Read Only Memory (ROM) ................................................................................21
    5.1.2 Word line Select Hardware ..................................................................................24
  5.2 Fuzzy Inference Hardware ..........................................................................................26
    5.2.1 Hardware to calculate MIN/MAX .........................................................................26
  5.3 Defuzzification Hardware ............................................................................................34
    5.3.1 MOD-13 counter .................................................................................................34
    5.3.2 Full Adder ............................................................................................................36
    5.3.3 Multiplier .............................................................................................................40
    5.3.4 Dividend Hardware ...............................................................................................42
    5.3.5 Divisor Hardware .................................................................................................45
    5.3.6 Divider ................................................................................................................47
  5.4: Overall Hardware Implementation ............................................................................49
CHAPTER 6- SIMULATION STUDY ......................................................................................52
  6.1 Simulation study of MAX Hardware ..........................................................................52
  6.2 Simulation study of MIN Hardware ..........................................................................56
  6.3 Simulation study of Multiplier Hardware .................................................................61
  6.4 Simulation study of Divider Hardware ......................................................................65
CHAPTER 7- CONCLUSION AND FUTURE WORK ..............................................................69
  7.1 Conclusion ..................................................................................................................69
  7.2 Future Work ...............................................................................................................69
REFERENCES .....................................................................................................................70
APPENDICES A-B ...............................................................................................................71
Appendix A: Construction of CMOS Logic gates in S-Edit and L-Edit..........................71
Appendix B: Design of other basic components in S-Edit and L-Edit..............................76
LIST OF FIGURES

Figure 2.1: Comparisons between controller implementation methods .......................... 7
Figure 3.1: Impulse Fuzzification ................................................................. 9
Figure 3.2: Triangular Fuzzification ............................................................. 9
Figure 4.1: Operation of a Fuzzy logic controller ............................................ 12
Figure 4.2: Membership function graphs for all three LIs .................................... 14
Figure 4.3: Membership function graph for LO ............................................... 16
Figure 4.4: Membership value VS crisp value for the linguistic output ................. 19
Figure 5.1: Schematic of Mask Programmable ROM for Small “Dirtiness of Clothes” ........ 22
Figure 5.2: Screenshot of Word line selector for Small “Dirtiness of the clothes” ......... 24
Figure 5.3 MIN/MAX Selector ........................................................................ 26
Figure 5.4: Bit selector hardware .......................................................................... 27
Figure 5.5: Layout design of a complete MIN/MAX calculation hardware ............... 28
Figure 5.6: Block diagram showing working of MIN calculation hardware to compare 4 sets of 8 bit binary numbers ................................................................. 30
Figure 5.7: Fuzzy Inference technique to work out the MAX sets and the Final Membership Value ............................................................................................................. 31
Figure 5.8: Layout design of the fuzzy inference hardware ..................................... 33
Figure 5.9: Synchronous MOD-13 counter ....................................................... 35
Figure 5.10: One bit full-adder cell ....................................................................... 37
Figure 5.11: One-bit full-adder circuit schematic ............................................... 38
Figure 5.12: Four-bit binary adder ......................................................................... 39
Figure 5.13: A 4x4 bit array multiplier ............................................................... 41
Figure 5.14: Layout design of the 4x4 bit array multiplier ....................................... 42
Figure 5.15: Functioning of the hardware to calculate the dividend ....................... 42
Figure 5.16: Selection of divided output to be fed into divider ............................... 44
Figure 5.17: Functioning of the hardware to calculate the divisor ........................... 45
Figure 5.18: Divider hardware…………………………………………………………………………………47
Figure 5.19: Layout of the Final Defuzzification Hardware .........................................................48
Figure 5.20: Complete hardware implementation of the Fuzzy Logic Controller .................49
Figure 5.21: Design rule check of the complete microchip showing no design error ........50
Figure 5.22: Labelled layout of the complete Microchip............................................................51
Figures 6.1 (a-h): Simulation Results of MAX circuit output.......................................................52-56
Figure 6.2 (a-h): Simulation Result of MIN circuit output..............................................................57-60
Figure 6.3 (a-h) Simulation Result of Multiplier circuit output.........................................................61-65
Figure 6.4 (a-d) Simulation Result of Divider circuit output..............................................................66-67
LIST OF TABLES

Table 4.1: Linguistic Inputs along with their respective adjectives..............................13

Table 4.2: Linguistic output along with its respective adjectives.................................13

Table 4.3: Rule for Fuzzy Wash Time control...............................................................17

Table 5.1: Data of the membership function graph for the adjective “small” of the LI “Dirtiness of the Clothes” .................................................................23

Table 5.2: Cycle of counting sequence of the MOD- 13 counter.................................35

Table 5.3: One bit full adder cell truth table ................................................................37
LIST OF ABBREVIATIONS

ASIC: Application Specific Integrated Circuit

CMOS: Complementary Metal Oxide Semiconductor

CLK: Clock

CLR: Clear

DRC: Design Rule Checker

EDA: Electronic Design Automation

I/O: Input/Output

LI: Linguistic Input

LO: Linguistic Output

MAX: Maximum

MIN: Minimum

NGT: Negative Transition (of the clock)
PGT: Positive Transition (of the clock)

LIFE: Laboratory for International Fuzzy Engineering

LSB: Least Significant Bit

MSB: Most Significant Bit

MOD-13: Modular 13

OE: Output Enable

ROM: Read Only Memory

SPICE: Simulation Program with Integrated Circuit Emphasis

T-SPICE: Tanner Simulation Program with Integrated Circuit Emphasis

US: United States of America

VLSI: Very Large Scale Integration