Characterisation of an Interaction Involved in Viral Replication

Jolyon Claridge

Submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy

Institute of Fundamental Sciences
Massey University
Abstract

Human rhinoviruses (HRVs) are a major cause of illness worldwide and, as members of Picornaviridae, are closely related to several other human and animal pathogens that exact a large medical and economic cost on society. Viral infections in general are particularly difficult to treat, as viruses co-opt many of the host’s own biochemical pathways, making disabling the virus without harming the host very difficult. Carefully targeted strategies are required and detailed structural information is useful, both to identify new drug targets, and to fully understand interactions. One particular protein expressed by picornaviruses is 3C protease, which is responsible for post-translational processing of the viral capsid. This protease has a cysteine as its active site nucleophile, a functionality not found in eukaryotic proteases. The unusual active site makes 3C an attractive target for pharmaceuticals. Drugs that block the proteolytic action of 3C are currently in clinical trials. In addition to its proteolytic activity, 3C protease also has another function, that of an RNA binding protein. This activity has been shown to be required during replication of the viral RNA genome. In this study, the structure of 3C protease from HRV14 is investigated using NMR and other biophysical techniques. The structural information gained from these studies is used, along with data on 3C protease RNA-binding activity acquired using solution-state NMR and SAXS data, to elucidate a structure of the 3C–RNA complex. In addition, the dynamics of the free protein and of the protein in the presence of a specific inhibitor are investigated by solution-state NMR, and the potential role of dynamics in the function of the protein is explored. Finally, potential allosteric interaction between the RNA-binding and proteolytic functions of 3C is postulated, and further interactions of 3C and the 3C–RNA complex are discussed. It is hoped that a more complete understanding of 3C and its interactions will lead to more effective treatments for picornaviral infections in the future.
I would like to thank Dr. Steve Pascal for providing me with a grounding in NMR spectroscopy and for a great deal of helpful advice (mostly taken eventually...) about all aspects of the project. I also wish to thank Dr. Andrew Sutherland-Smith; Professors Geoff Jameson and Dave Harding and Dr. Gill Norris for many discussions and assistance over the years. I wish to thank Trevor Loo for a great deal of help with protein expression and purification when I was a new (and not so new) PhD. student. Dr. Pat Edwards for a phenomenal amount of help with all matters NMR. And also for the homebrew books! Dr. Stephen Headey for help with several aspects of the project and especially for teaching me practical NMR. Dr. David Libich for help with proof reading and for a great deal of input into the biophysical aspects of the project. The other members of the lab, especially Martin and Hari. The structural biology crowd at Massey especially Matt, Simon, Alice and Greg. My parents Gillian and Jolyon Claridge for their support and who can usually be relied upon to deliberately misunderstand my work in humorous and unpredicatatable ways. My sister Emma for everything. And finally, my wonderful and long-suffering wife Sarah who was briefly under the impression that a 3 year PhD lasted 3 years...
Glossary of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
3C 3C protease in a previous study
3CI 3Cpro with inhibitor
3CD covalently linked 3Cpro and 3Dpol
3CIR 3CI with SLD
3Dpol 3D polymerase
BB1 \(\beta\)-barrel number 1
BB2 \(\beta\)-barrel number 2
BMRB Biological Magnetic Resonance Data Bank
BTM bis-Tris propane / MES
CD circular dichroism
CN1-3C 1st C- and N-labelled sample of 3C produced
CPMG Carr-Purcell-Meiboom-Gill
CSA chemical shift anisotropy
CSI chemical shift index
CSP chemical shift perturbation
ddH\textsubscript{2}O distilled deionised water
DLS dynamic Light Scattering
DTT dithiothreitol
HRV	human rhinovirus
HRV-14 | human rhinovirus isotype 14
HRV-2 | human rhinovirus isotype 2
HSQC | heteronuclear single quantum coherence
IMAC | immobilised metal ion affinity chromatography
IPTG | isopropyl-β-D-thiogalactopyranoside
LB | Luria-Bertani broth
MES | (2-(N-morpholino)ethanesulphonic acid
NOE | nuclear overhauser effect
N2-3C | 2nd N-labelled sample of 3C produced
R_1 | longitudinal relaxation rate
R_{1p} | relaxation rate under a transverse spinlock
R_2 | transverse relaxation rate
RBD | RNA-binding domain
RCI | random coil index
RDC | residual dipolar coupling
R_{ex} | contribution to relaxation from slow exchange processes
R_{ex}^{CC} | R_{ex} as determined from cross-correlation analysis
R_{ex}^{LS} | R_{ex} as determined from Lipari-Szabo model-free analysis
S^2 | order parameter
S_{ave}^2 | average order parameter
SDS-PAGE | sodium dodecyl sulphate polyacrylamide gel electrophoresis
SLD | stemloop-d
T_1 | characteristic longitudinal relaxation time
T_2 | characteristic transverse relaxation time
TROSY | transverse relaxation optimised spectroscopy
Contents

1 Introduction .. 1
 1.1 Introduction 2
 1.2 Picornaviruses 3
 1.3 Clinical and Societal Significance 4
 1.4 Picornaviral Phylogeny 4
 1.4.1 Rhinoviruses 5
 1.5 Picornaviral Capsid 5
 1.6 Viral Genome 9
 1.7 Picornaviral Life Cycle 9
 1.7.1 Translation and protein processing 10
 1.7.2 RNA replication 12
 1.7.3 Virion packaging and cellular apoptosis 14
 1.8 3C Protease (3C_{pro}) 17
 1.8.1 RNA binding 21
 1.9 Research Aims 25

2 Characterisation of 3C_{pro} in Solution 27
 2.1 Introduction 28
 2.2 Methods 29
 2.2.1 Transformation of BL21 cod⁺ \textit{Escherichia coli} cells with HRV-14 3C ... 29
 2.2.2 Unlabelled test expression and production of glycerol stocks of transformed \textit{E. coli} ... 29
 2.2.3 Glucose optimisation procedure 29
 2.2.4 Trials of different affinity media 30
 2.2.5 Cleavage of fusion protein and final polishing 31
 2.2.6 Inhibitor synthesis 31
 2.2.7 Flame spectroscopy 32
 2.2.8 NMR sample preparation 32
 2.2.9 NMR experiments 35
 2.2.10 Structural modelling of 3CI 36
 2.3 Results 38
 2.3.1 Initial sample NMR 38
 2.3.2 Assignment of apo 3C 39
 2.3.3 Flame spectroscopy 44
 2.3.4 Attempts to recover missing peaks 44
 2.3.5 CSI ... 46
 2.3.6 Inhibitor addition 46
 2.3.7 Assignment of inhibited 3C 51
 2.4 RDCs .. 53
 2.5 Discussion 54
 2.5.1 Sample production 54
 2.5.2 Implications of structural model 59
CONTENTS

3 Dynamics of Inhibited and Uninhibited 3C 63
 3.1 Introduction ... 64
 3.2 Materials and Methods 65
 3.2.1 Sample preparation 65
 3.2.2 NMR-based dynamic analysis 66
 3.2.3 Circular Dichrosim (CD) 69
 3.2.4 Dynamic Light Scattering (DLS) 70
 3.3 Results .. 70
 3.3.1 HSQC Spectra of 3C and 3CI 70
 3.3.2 CD spectra of 3C and 3CI 70
 3.3.3 DLS and SDS-PAGE analysis of 3C and 3CI 73
 3.4 Dynamics Analysis 73
 3.5 Discussion .. 82
 3.5.1 3CI relaxation 82
 3.5.2 3C relaxation and comparison with 3CI 84
 3.5.3 RCI analysis of 3C and 3CI 85
 3.5.4 Distinct dynamics states of 3C protease 87
 3.5.5 Substrate-recognition loop mobility 89
 3.5.6 Other active-site-associated dynamics 89
 3.5.7 Mobility of RNA-binding surface 90
 3.6 Conclusion .. 93

4 Interaction of 3C with Stemloop-D RNA 95
 4.1 Introduction ... 96
 4.2 Materials and Methods 96
 4.2.1 NMR sample preparation 96
 4.2.2 X-ray scattering sample preparation 98
 4.2.3 NMR spectroscopy 98
 4.2.4 Calculation of chemical shift indexing and perturbation 98
 4.2.5 Docking with HADDOCK 99
 4.2.6 Small-angle X-ray scattering data acquisition, reduction, and analysis 99
 4.2.7 Shape restoration calculations from scattering data 100
 4.2.8 Rigid-body refinement of models against the scattering data 100
 4.3 Results .. 101
 4.3.1 NMR data .. 101
 4.3.2 Analysis of NMR results for use with SAXS refinement 110
 4.3.3 SAXS data ... 111
 4.4 Discussion .. 116

5 Conclusions and Further Work 123
 5.1 Completed Work .. 124
 5.1.1 Characterisation of 3C in solution 124
 5.1.2 Dynamics of 3C_{pro} in apo and holo forms 124
 5.1.3 SAXS structure of complex 124
 5.2 Contribution to Current Knowledge 125
 5.2.1 Dynamics .. 125
 5.2.2 Allostery ... 125
 5.2.3 Allostery in single domain proteins 126
 5.2.4 Possibilities of networks for 3C_{pro} 128
 5.3 Aims of the Project 128
 5.3.1 Solution structure and Dynamics 130
 5.3.2 RNA-binding surface mapping 130
 5.3.3 Complex Structure 130
 5.3.4 Instability of complex 131
List of Figures

1.1 Picornaviral Phylogeny .. 6
1.2 Viral capsid and structural proteins 8
1.3 Types of picornaviral 5' UTR ... 9
1.4 Overview of picornaviral life-cycle 10
1.5 Polyprotein processing by viral proteases 15
1.6 Putative 3CD polymerisation during VPg uridylation 16
1.7 Picornavirus 3C_{pro} Structures 18
1.8 Stereo Views of HRV 14 3C_{pro} 19
1.9 Catalytic triad residues ... 20
1.10 Mutation data and electrostatics of 3C_{pro} 22
1.11 SLD sequences .. 23
1.12 Surface representation of HRV14, coxsackie virus and enterovirus SLD ... 24
2.1 SDS-PAGE gel of samples from final 3C purification steps 34
2.2 1D spectra of 3C ... 38
2.3 ¹⁵N, ¹H-HSQC-TROSY spectrum of 3C_{pro} 40
2.4 3C_{pro} spectrum under Bjorn Dahl et al. buffer conditions 42
2.5 Plot of Residues with Missing Amide Peaks onto Structure of Human Rhinovirus 14 3C_{pro} .. 43
2.6 Overlay of full-peak and low-peak spectra 45
2.7 ¹⁵N, ¹H-HSQC-TROSY of apo 3C in L-Arg and 50 mM L-Glu buffer ... 47
2.8 CSI Data for 3C, 3CI and PDB 2IN2 48
2.9 JMC 99-9 (Also known as AG7088) and 98-3 specific 3C inhibitors ... 49
2.10 JMC 98-15 and 98-16 specific 3C inhibitors 50
2.11 Overlay of IPAP spectra .. 52
2.12 Distribution of RDCs ... 53
2.13 View of active site face of 3C_{pro} showing acidic residues 55
2.14 Stereo view of residues with missing NH resonances in 3CI 58
2.15 View of G154 ... 59
2.16 3CI and 3CI^B structural comparison 61
3.1 3C and 3CI HSQC overlay ... 71
3.2 Plot of exchange-broadened residues and <i>R</i>_{ex} for 3C and 3CI 72
3.3 CD and DLS results for 3C and 3CI 74
3.4 Model-free and RCI-derived <i>S</i>² values for 3C and 3CI plotted onto pdb of 3CI ... 76
3.5 Relaxation parameters for 3C and 3CI 77
3.6 <i>R</i>_{ex}^{CC} values for 3C and <i>R</i>_{ex}^{CC} and <i>R</i>_{ex}^{LS} values for 3CI 79
3.7 <i>S</i>² values for 3C and 3CI .. 81
3.8 RCI-derived <i>S</i>² values for 3C, 3C^B, 3CI and 3CI^B 86
3.9 Average RCI-derived <i>S</i>² values broken down by secondary structure element ... 88
3.10 <i>R</i>₁,<i>r</i>-detected exchange in 3CI 90
4.1 Protonated 3CI complexed with excess 27mer 102
4.2 Overlay of 3CI and 3CIR spectra 103
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>CSP from complex of protonated $3C^{pro}$–SLD</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>CSI plots for $3C$ and $3CIR$</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>Pecan Results</td>
<td>107</td>
</tr>
<tr>
<td>4.6</td>
<td>Chemical shift perturbation plot for $3CI$ vs $3CIR$</td>
<td>108</td>
</tr>
<tr>
<td>4.7</td>
<td>$3C^{pro}$ chemical shift perturbation on binding SLD</td>
<td>109</td>
</tr>
<tr>
<td>4.8</td>
<td>$3C^{pro}$ peak intensity change on binding SLD</td>
<td>109</td>
</tr>
<tr>
<td>4.9</td>
<td>Scattering data for $3CI$ and $3CIR$ I</td>
<td>112</td>
</tr>
<tr>
<td>4.10</td>
<td>Scattering data for $3CI$ and $3CIR$ II</td>
<td>112</td>
</tr>
<tr>
<td>4.11</td>
<td>$3C^{pro}$–SLDInteraction close-up</td>
<td>114</td>
</tr>
<tr>
<td>4.12</td>
<td>Interaction residues from Ohlenschläger and co-workers</td>
<td>118</td>
</tr>
<tr>
<td>4.13</td>
<td>Cartoon representation of SLD from coxsackie virus and HRV-14</td>
<td>118</td>
</tr>
<tr>
<td>4.14</td>
<td>Complex showing SAXS envelope</td>
<td>119</td>
</tr>
<tr>
<td>4.15</td>
<td>Allosteric “communication pathway”</td>
<td>121</td>
</tr>
<tr>
<td>5.1</td>
<td>Allosteric Slice</td>
<td>129</td>
</tr>
<tr>
<td>E.1</td>
<td>RMSD from lowest energy structure versus HADDOCK score</td>
<td>191</td>
</tr>
<tr>
<td>E.2</td>
<td>Overlay of four lowest energy structures from cluster 4</td>
<td>192</td>
</tr>
</tbody>
</table>
List of Tables

1.1 Picornaviral Classification .. 3
2.1 Table of Glucose Optimisation Parameters 31
2.2 Residues with unobservable NH peaks in 15N,1H-HSQC of 3CI 57
2.3 Structure statistics of models ... 60
3.1 Residues with significant $R_{1\rho}$ values 80
A.1 3C chemical shifts ... 152
A.2 3CI chemical shifts ... 160
A.3 3CIR chemical shifts ... 168
B.1 3CI modelfree parameters .. 178
G.1 Sample preparations with experiments carried out 196